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Preface

The field of global optimization has been developing at a rapid pace.
There is a journal devoted to the topic, as well as many publications and
notable books discussing various aspects of global optimization. This
book is intended to complement these other publications with a focus
on stochastic methods for global optimization.

Stochastic methods, such as simulated annealing and genetic algo-
rithms, are gaining in popularity among practitioners and engineers be-
cause they are relatively easy to program on a computer and may be
applied to a broad class of global optimization problems. However, the
theoretical performance of these stochastic methods is not well under-
stood. In this book, an attempt is made to describe the theoretical prop-
erties of several stochastic adaptive search methods. Such a theoretical
understanding may allow us to better predict algorithm performance
and ultimately design new and improved algorithms.

This book consolidates a collection of papers on the analysis and de-
velopment of stochastic adaptive search. The first chapter introduces
random search algorithms. Chapters 2-5 describe the theoretical anal-
ysis of a progression of algorithms. A main result is that the expected
number of iterations for pure adaptive search is linear in dimension for
a class of Lipschitz global optimization problems. Chapter 6 discusses
algorithms, based on the Hit-and-Run sampling method, that have been
developed to approximate the ideal performance of pure random search.
The final chapter discusses several applications in engineering that use
stochastic adaptive search methods.

The target audience includes graduate students, researchers and prac-
titioners in operations research, engineering, and mathematics. A back-
ground in mathematics is assumed, as well as a knowledge of probabilis-
tic concepts, such as Markov chains and moment generating functions.

xvii
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Chapter 1

INTRODUCTION

Global optimization refers to a mathematical program, which seeks a
maximum or minimum objective function value over a set of feasible so-
lutions. The adjective “global” indicates that the optimization problem
may be very general in nature; the objective function may be nonconvex,
nondifferentiable, and possibly discontinuous over a continuous or dis-
crete domain. A global optimization problem with continuous variables
may contain several local optima or stationary points. The problem of
designing algorithms that obtain global solutions is very difficult when
there is no overriding structure that indicates whether a local solution
is indeed the global solution.

Even though global optimization problems are difficult to solve, appli-
cations of global optimization problems are prevalent in engineering and
real world systems. Applications include engineering design in mechan-
ical, civil, and chemical engineering, structural optimization, molecular
biology and molecular architecture, VLSI chip design, image processing,
and a number of combinatorial optimization problems [72, 185]. Engi-
neering functions included in a global optimization problem are often
supplied as “black box” functions, which might be a subroutine that
returns a function evaluation for a specified solution. An engineering
example of this type of problem is to minimize the weight of a structure,
while limiting strain to be below a certain threshold [183]. Engineers
must often provide some solution to their problem, even if it is a sub-
optimal one. Sometimes the global optimization problem may be so
computationally difficult, that a practitioner is satisfied with any feasi-
ble solution. Optimization is currently being applied to complex systems
where the objective function and constraints may only be evaluated us-
ing a simulation model. Not only does the problem lack structure and

1



2 STOCHASTIC ADAPTIVE SEARCH FOR GLOBAL OPTIMIZATION

fall into the category of “black box” functions, but it has the additional
complication of having randomness in the function evaluation. As our
computational capacity and algorithmic knowledge increases, we can ap-
ply global optimization to real world problems that previously were not
even considered to be framed in optimization terms. Also, as the ap-
plications in global optimization develop, they will motivate new and
improved methods. Thus there is a synergy between applications and
algorithmic techniques.

The ultimate goal of global optimization techniques is to develop a
single method that:

works for a large class of problems,

finds the global optima with an absolute guarantee, and

uses very little computation.

We are very far from achieving this goal. Typically the optimization
technique is chosen to match the structure of the relevant problem. For
example, a practitioner solving a linear program would select a different
algorithm than if the problem was nonlinear and convex. If the prob-
lem was a linear programming problem, there are many methods that
take advantage of the linear structure of the problem [113]. Similarly, a
convex problem which is twice continuously differentiable would be bet-
ter solved with an algorithm that uses the Hessian to take advantage of
that structure [13, 103]. However, if the problem was nonlinear and mul-
timodal with mixed continuous and discrete variables, the practitioner
would have difficulty selecting the best algorithm to use, and may exper-
iment with a few methods that would then be tailored to the problem
at hand. Thus, for global optimization it is still an open research ques-
tion as to the best choice of algorithm given a particular problem. This
indicates the need to develop a better understanding of the algorithm
behavior on various problem types.

1. Classification of Optimization Problems
Figure 1.1 illustrates a categorization of optimization problems. It

is similar to the NEOS optimization tree [119] in the first division on
continuous and discrete variables, but then the trees differ. The intent
of Figure 1.1 is to depict a hierarchy of problems. In the categorization
of the figure, the first division is on the type of domain, whether the
variables are continuous or discrete (a mixed variable category is not in-
cluded in the figure). Later in the theoretical analysis of pure adaptive
search (Chapter 2) and hesitant adaptive search (Chapter 3), similarities
are drawn between continuous problems and discrete problems. Further
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Figure 1.1. Categorization of optimization problems.

categories of the domain may include constrained (bounded) or uncon-
strained. When the feasible set is constrained, it could be characterized
as to whether the feasible set was convex or nonconvex, and whether
the equations defining the feasible set were linear or nonlinear. These
characterizations are not depicted in the figure.

The second level in Figure 1.1 distinguishes between linear and non-
linear objective functions. Notice for discrete problems, the objective
function distinguishes the problem as either a linear discrete or nonlin-
ear discrete problem, whereas commonly an “integer program” presumes
the objective function is linear. The characterization of nonlinear con-
tinuous problems is further broken down into convex and nonconvex,
where nonconvex is typically considered global optimization. The non-
convex functions may be unimodal or multimodal. For example, mini-
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mizing a concave function over a set of constraints, would fall into the
nonconvex multimodal category. This categorization does not rely on
derivatives, and hence allows a nondifferentiable convex function (e.g., a
function with breakpoints) to fall into the same category as twice con-
tinuously differentiable convex functions. On the discrete domain side,
there is not an analogous concept of convexity. In fact, discrete feasible
sets are never convex according to Rardin [129, page 114]. However, it
may be useful to extend the definition of convexity to discrete feasible
regions using an algorithmic perspective based on neighborhoods of dis-
crete points. Discrete problems with nonlinear objective functions are
considered global optimization problems in this book. This organization
of optimization problems may suggest categories of problems that share
similar characteristics and thus may guide algorithmic development.

2. Types of Algorithms
Global optimization algorithms are often classified as either determin-

istic or stochastic. The focus of this book is on stochastic methods that
can be applied to global optimization problems with little known struc-
ture, such as “black-box” functions. There are several excellent books
on global optimization, including the two volume Handbook of Global
Optimization [72, 122], an overview of deterministic methods by Horst
and Tuy [73], and an introduction to global optimization with stochastic
methods by Törn and Žilinskas [165]. A stochastic method in this book
refers to an algorithm that uses some kind of randomness (typically a
pseudo-random number generator), and may be called a Monte Carlo
method. Examples include pure random search, simulated annealing,
and genetic algorithms.

Why stochastic search as opposed to deterministic search methods?
Random search methods have been shown to have a potential to solve
large problems efficiently in a way that is not possible for deterministic
algorithms. Dyer and Frieze [48] showed that estimating the volume
of a convex body takes an exponential number of function evaluations
for any deterministic algorithm, but if one is willing to accept a weaker
claim of being correct with an estimate that has a high probability of
being correct, then a stochastic algorithm can provide such an estimate
in polynomial time. Thus there is a trade-off between the amount of
computation and the type of guarantee of optimality. The analyses in
this book also relax the requirement of providing an absolute guaran-
tee of the global optimum and instead are satisfied with a probabilistic
estimate of the global optimum. One question is whether a stochastic
algorithm can be executed in polynomial time, on the average, while it
is known that a deterministic method for global optimization is NP-hard
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[173]. This is at the heart of the research presented in this book, and is
explored in more detail in subsequent chapters.

Another advantage to stochastic methods is that they are relatively
easy to implement on complex problems. Simulated annealing, genetic
algorithms, tabu search and other random search methods are being
widely applied to continuous and discrete global optimization problems
[129]. Because the methods typically only rely on function evaluations,
rather than gradient and Hessian information, they can be coded quickly,
and applied to a broad class of ill-structured problems. A disadvantage
to these methods is that they are currently customized to each specific
problem largely through trial and error, and there is little theory to
support the quality of the solution. A common experience is that the
stochastic algorithms perform well and are “robust” in the sense that
they give useful information quickly for ill-structured global optimization
problems.

A general theory of performance of stochastic search algorithms is pre-
sented in this book. The basic measure of performance is the number
of iterations until first sampling within ε of the global optimum. The
analysis of performance is developed by investigating a series of algo-
rithms that are theoretical in nature - because they assume properties
of the sampling distribution that may not be practically implemented.
However their analysis motivates algorithms that are practical. The per-
formance analysis also provides an understanding of how the sampling
distribution of an algorithm is related to the performance measure.

3. Definitions and Assumptions
The basic global optimization problem (P ), used throughout the book,

is defined as,

(P ) min
x∈S

f(x) (1.1)

where x is a vector of n decision variables, S is an n-dimensional feasible
region and assumed to be nonempty, and f is a real-valued function
defined over S. The goal is to find a value for x contained in S that
minimizes f . Let the global optimal solution to (P ) be denoted by
(x∗, y∗) where

x∗ = arg min
x∈S

f(x) (1.2)

and
y∗ = f(x∗) = min

x∈S
f(x). (1.3)

It will also be convenient to define

y∗ = max
x∈S

f(x).
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In order to ensure a global optimum exists, we need to assume some
regularity conditions. If (P ) is a continuous problem and the feasible set
S is nonempty and compact, then the Weierstrass theorem from classical
analysis guarantees the existence of a global solution [103]. If (P ) is a
discrete problem and the feasible set S is nonempty and finite, a global
solution exists. The existence of a global optimum can be guaranteed
under slightly more general conditions, but these conditions are suffi-
cient for the purposes of this book. Note that the existence of a unique
minimum at x∗ is not required. If there are multiple optimal minima,
let x∗ be an arbitrary fixed global minimum.

A distinction is usually made between local optima and global op-
tima. A local optimum will be defined as a feasible point x̂ such that
sufficiently small neighborhoods surrounding x̂ contain no points that
are both feasible and improving in objective function value. For contin-
uous domains, a small neighborhood is typically a ball of radius δ, where
δ > 0. For discrete domains, the set of nearest neighbors to x̂ could be
used to determine whether x̂ is a local optimum. Notice the relationship
between the concept of small neighborhood and local optimum. The
definition of neighborhood, especially for discrete problems, is usually
associated with an algorithm, rather than the definition of the problem,
which implies that a point x̂ might be a local optimum with respect to
one algorithm and neighborhood structure, but not with respect to a
different algorithm and neighborhood structure. For example, the Trav-
eling Salesperson Problem has several possible neighborhood structures
that might impose different interpretations of local optima. Thus it is
important to remember that a local optimum is related to a neighbor-
hood structure. The definition of global optima (in Equations 1.2 and
1.3) is more straightforward because it is relative to the entire feasible
region, not just a local region.

The contours of the objective function of a global optimization prob-
lem in two dimensions provides a useful visualization. The level set of
the function may be interpreted as the set defined by a single contour.
The level set at value y, denoted

S(y) = {x : x ∈ S and f(x) ≤ y},

is the set of feasible solutions whose objective function values are y or
better. The level set is defined as including points with equal objective
function values, but in some algorithms we also define an improving
set to only include points that are strictly improving. This distinction
becomes important in the analysis of discrete problems. It is discussed
in more detail when describing pure adaptive search on a finite domain,
in Chapter 2. Also let N(y) be the number of iterations needed to first
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achieve an objective function value of y or less, which corresponds to
the number of iterations to first obtain a sample point in the level set
S(y). It is also convenient in Chapter 3 to define M(y) as the number
of iterations just before landing in S(y), and the relationship N(y) =
1 + M(y) accounts for the extra iteration to actually land in S(y). The
number of iterations needed to achieve an accuracy of y or less, N(y),
is the primary measure of performance for an algorithm in this book. It
may be called the first passage time or first hitting time in the literature
on stochastic processes. If y is close to the optimum, for example y =
y∗+ε for a small positive value of ε, then N(y∗+ε) describes the number
of iterations to get within ε of the optimum. In this book, we focus on
the expected value of N(y), and derive the distribution when possible.

3.1 Assumptions for Continuous Problems
Additional assumptions and restrictions on the generality of the global

optimization problem (P ) are made throughout this book as needed,
however a brief discussion is given here.

A continuous global optimization problem is classified by the feasible
region containing real-valued, continuous variables, S ⊂ R

n. Typically,
the feasible region for a continuous problem, S, is assumed to be a
nonempty, compact set which is full-dimensional. The feasible region
can be described by simple upper and lower bounds, xL

i ≤ xi ≤ xU
i for

i = 1, . . . , n known as box constraints, or by more general functional
constraints, gj(x) ≤ 0 for j = 1, . . . , m. In general, S may form a
nonconvex set, which can possibly be disconnected. In this case, we
usually assume upper and lower bounds on the variables are known,
such that S is contained in a box, or hyperrectangle.

For a continuous global optimization problem, there are several tradi-
tional ways to classify the objective function f(x). The objective func-
tion f(x) may be a linear function (e.g. linear programming), a nonlinear
convex function, a unimodal but nonconvex function, or a multimodal
function. Typically nonlinear programming assumes the objective func-
tion is nonlinear, convex and twice continuously differentiable, while
global optimization often includes functions that are not differentiable
everywhere, and may be discontinuous (e.g., step functions). These char-
acteristics of the objective function may also be used to describe the
constraint equations.

Another way to characterize a function of continuous variables is
whether it satisfies the Lipschitz condition. A function f satisfies the
Lipschitz condition with Lipschitz constant K, if

|f(x) − f(y)| ≤ K‖x − y‖ (1.4)
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for all x and y ∈ S, where ‖ · ‖ is the Euclidean norm on R
n. A func-

tion satisfying the Lipschitz condition has a bound on the derivative,
and according to Törn and Žilinskas [165, page 25], practical objective
functions often have such bounds. It is less common to actually know
the value of the bound. Many stochastic global optimization algorithms
assume a Lipschitz constant exists, but do not use the actual value in the
algorithm. This is in contrast to Lipschitz optimization which requires
the value or an upper bound of the Lipschitz constant. Algorithms that
require the Lipschitz constant and rely on estimates are discussed in
[64]. Several analyses presented later in the book assume the objective
function satisfies the Lipschitz condition.

3.2 Assumptions for Discrete Problems

A discrete global optimization problem is classified by the feasible re-
gion containing discrete variables. The feasible region may be described
in several ways; for example S could be the set of integers between 0 and
100, which retains numerical properties, or S could be a non-ordered set
such as S = {red, yellow, blue}, or the list of cities on a tour for the
Traveling Salesperson Problem. Typically, the feasible region for a dis-
crete problem, S, is assumed to be a nonempty and finite, although it
is possible for S to be infinite with a bounded objective function. The
concept of “dimension” is not always appropriate for a discrete global
optimization problem, so it is difficult to compare a discrete domain with
a continuous domain. One way to construct a comparable problem is
to consider the distinct points in an n-dimensional lattice, {1, . . . , k}n.
The number of points in the domain for the lattice is kn, and as k gets
large, the discrete domain resembles a continuous domain of dimension
n. Later in this book, a lattice is used to compare a discrete problem
with a continuous one.

The objective function for a discrete global optimization problem is a
real-valued function defined on the points in S. The objective function
f(x) may have a functional form, or be evaluated by the means of a sub-
routine or computer code on the possible points in S. For example, f(x)
and S for a continuous global optimization problem can be turned into a
discrete problem by simply adding the constraint that x be integer val-
ued. The objective function for a discrete problem with integer variables
may be considered linear or nonlinear with respect to the variables when
they are relaxed to be continuous variables. This is interesting when al-
gorithms (such as simulated annealing) define neighborhoods that may
not be a natural neighborhood on the relaxed problem. Analogous def-
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initions of linearity, convexity, Lipschitz condition, and other concepts
must be extended to discrete problems to better generalize methods that
are appropriate for both continuous and discrete domains.

3.3 Mixed Continuous-discrete Problems
A mixed continuous-discrete global optimization problem is classified

by the feasible region containing both continuous and discrete variables.
In engineering applications, it is often convenient to define a global opti-
mization problem for continuous variables, and then explore the effects
of limiting a subset of the variables to discrete values. In Chapter 7, a
10-bar truss problem is described, where the decision variables are the
diameters of the bars. While the diameter of a bar is mathematically a
continuous variable, in reality, bars are only manufactured and readily
available with a discrete set of standard diameters. Thus a continuous
problem becomes a discrete one when taking practical considerations
into account.

Another example, described in more detail in Chapter 7, is a com-
posite structure, where the number of plies is an integer variable while
the height and width of stiffeners are continuous variables. Additional
variables in a composite structure are the fiber angles of the plies. The
fiber angle of a ply is similar to the diameter of a truss member in that
mathematically the angle could take on any value between ±90 degrees,
however manufacturing technological constraints restrict the angle to a
discrete set of values, e.g., 0, ±45, or ±90 degrees. In order to solve
these types of real-world problems, we need robust algorithms that can
be applied to global optimization problems with a mixture of continuous
and discrete variables.

4. Overview of Random Search Methods
One motivation for random search methods in global optimization

is the potential to obtain approximate solutions quickly and easily. In
addition, theoretical analysis of random search methods indicates that
performance may be very good, possibly polynomial in dimension, de-
spite the fact that global optimization problems are NP-hard for deter-
ministic methods. A brief overview of random search methods is pre-
sented in this section to provide some context for stochastic methods for
global optimization. Underlying all of these methods is a probabilistic
approach to sampling the feasible region. Whether the algorithm is sim-
ulated annealing, a genetic algorithm or multistart, it has some method
of generating new candidate points, which can be called its sampling
distribution. The sampling distribution employed by the algorithm is
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used in the subsequent analyses to characterize the performance of the
method.

We start with a brief description of exhaustive search, including grid
search and pure random search. Then we present a framework for se-
quential random search and a brief discussion of simulated annealing.
This is followed by a framework for two-phase methods, including multi-
start, clustering, single linkage and multi-level single linkage algorithms.
Finally a brief overview of population-based algorithms is discussed, in-
cluding a framework for genetic algorithms and similar methods. The
common theme carried throughout the book is studying the probability
distribution of the points generated by an algorithm, and the impact
the sampling distribution has on the complexity and behavior of the
algorithm on classes of global optimization problems.

4.1 Enumeration or Exhaustive Search
When confronted with a global optimization problem, the basic and

perhaps most natural approach is to simply evaluate all points in the
domain. If the domain S is finite and relatively small, an exhaustive
search is a reasonable approach. As Rardin notes [129, page 627], if
the domain has only a few discrete decision variables, the most effective
optimization method is often the most direct: enumeration of all the
possibilities. However, in most discrete global optimization, it is not
practical to perform complete enumeration. Combinatorial optimization
includes the Traveling Salesperson Problem, which for an N -city tour,
has (N − 1)! points in the domain. For N = 10, 000, this is over 1020

possible tours, and at one CPU second per function evaluation, brute
force enumeration would exceed 1012 years.

Grid Search. When the global optimization problem involves contin-
uous variables, there are an infinite number of points in the domain, and
complete enumeration is impossible. A common approach is to perform a
grid search, essentially discretizing the domain. A grid search creates an
equally spaced grid of points over the feasible region, and evaluates the
objective function at each point. If the objective function satisfies the
Lipschitz condition with constant K and the domain is an n-dimensional
hyperrectangle of maximum length D on each side, then the grid spacing
can be determined (see Dixon and Szegö [44, 45]) to achieve a desired
accuracy, of having the estimate within ε of the global optimum. If the
spacing between grid points is ε/K on each coordinate, then there are
approximately (KD/ε)n grid points, and the possible error between ad-
jacent points is bounded by ε. Hence, the number of evaluations needed
to obtain an accuracy of ε is proportional to (KD/ε)n. Thus, the number
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of function evaluations to achieve an accuracy of ε is exponential in the
dimension n.

Pure Random Search. A stochastic version of grid search is pure
random search. Pure random search, discussed in Chapter 2, was first
defined by Brooks [26], discussed by Anderssen [6], and later named in
the classic volumes by Dixon and Szegö [44, 45]. Pure random search
samples repeatedly from the feasible region S, typically according to
a uniform sampling distribution. Although the points of pure random
search are not evenly spaced, as in grid search, they are uniformly scat-
tered over the feasible region. If the objective function has some regular-
ity that coincides with the regularly spaced grid points (e.g., a sinusoidal
function), then the probabilistic nature of pure random search provides
an advantage. While pure random search sacrifices the guarantee of
determining the optimal solution within ε, it can be shown that pure
random search converges to the global optimum with probability one.
A similarity between grid search and pure random search is that the
expected number of function evaluations for pure random search to get
within ε is also exponential in the dimension n (see Chapter 2).

Other Covering Methods. Other sampling methods that eventu-
ally cover the feasible set may also be used in a type of exhaustive
search. Törn and Žilinskas discuss other covering methods [165, Chap-
ter 2] which provide a means to sample points throughout the feasible
region in a thorough manner. They include quasi-random sequences,
such as introduced by Halton (see [165, page 33], or [63]) as providing
a uniform covering. Unfortunately, the rate of convergence for a cov-
ering method is in general slow, as is demonstrated by the exponential
complexity of both grid search and pure random search. To improve
performance, some means to focus the search on promising regions is
needed.

4.2 Sequential Random Search

Stochastic algorithms tend to be categorized into two classes, sequen-
tial algorithms, and two-phase methods which include multistart and
clustering methods. Section 4.2 provides an overview of sequential algo-
rithms, including simulated annealing, and Section 4.3 provides a brief
description of two-phase methods. It should be noted that this catego-
rization is blurred as new algorithms are being developed. For example,
it is not clear which categorization includes genetic algorithms; here they
are summarized in Section 4.4.
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Sequential random search, including simulated annealing, has been
applied to many “black box” global optimization problems. Sequential
random search procedures can be characterized by producing a sequence
of random points {Xk} on iteration k, k = 0, 1, . . . which may depend
on the previous point or several of the previous points. We provide a
framework for sequential random search.

Sequential Random Search

Step 0. Initialize algorithm parameters and initial point X0 ∈ S and
set iteration index k = 0.

Step 1. Generate a candidate point Vk+1 ∈ S according to a specific
generator.

Step 2. Update the current point Xk+1 based on the candidate point
and previous points.

Step 3. If a stopping criterion is met, stop. Otherwise update algo-
rithm parameters, increment k and return to Step 1.

Sequential random search depends on two basic iterations, the gener-
ator in Step 1 that produces candidate points, and the update procedure
in Step 2 that may accept a candidate point to be the next point in the
sequence. The sequence of points Xk provides a search path through
the feasible set. If the objective function is consistently improving,
f(X0) > f(X1) > · · · then the algorithm has an improving search. If, as
in simulated annealing, non-improving points are occasionally accepted
in the update procedure, the search path is not consistently improving.
In all practical implementations that this author has seen, a part of
Step 3 includes recording the best point found so far. In this way, an
algorithm may update Xk+1 with a non-improving point without risk of
losing the value of the incumbent solution. This has implications when
discussing convergence of an algorithm, and distinguishing whether the
algorithm converges to the global optimum with respect to the current
point, or the algorithm converges to the global optimum with respect to
the best point sampled thus far.

Simulated Annealing. Simulated annealing may be viewed as a type
of sequential search algorithm. Simulated annealing was motivated by
the physical annealing process when slowly cooling metals, and intro-
duced by Metropolis, et al. [110], and later by Kirkpatrick in 1983
[89]. Simulated annealing has most often been applied to combinatorial
problems (see Aarts and Korst [1]), such as the Traveling Salesperson
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Problem [89] and various scheduling problems [126], but has also been
applied to continuous or mixed domain problems [18, 36, 140, 141, 168].
While simulated annealing had a burst of popularity in the 80’s and
90’s, other sequential random search algorithms predate it. Several of
these sequential random search methods were reported as experiencing
computation that is linear in dimension, and are discussed later in this
section.

The generator, or method of generating candidate points as in Step 1,
is usually specific to each algorithm and tailored for the problem at
hand. The generator usually makes a move in the vicinity of the cur-
rent point Xk on iteration k. In analyses, the generator is often viewed
as a Markov chain characterized by the one-step transition probability.
In continuous domains, the generator often involves making a step in
a specified direction. Then the transition probability would correspond
to the probability of selecting a particular direction and step. In dis-
crete domains, a similar step generator may be used, however it is more
common for discrete generators to be described as selecting a candidate
point at random from a neighborhood, where the definition of the neigh-
borhood is specific to the problem. A discrete neighborhood may be the
set of nearest neighbors, that is the set of points that can be sampled
with one transition. For the Traveling Salesperson Problem, several gen-
erators have been proposed, including a one-city swap, or a k-city swap
where k links are deleted and replaced in a different way that maintains
feasibility [46]. A generator based on Hit-and-Run is discussed in Chap-
ter 6 that does not have to be tailored for specific problems, but can be
defined for a general class of global optimization problems.

A typical feature of simulated annealing distinguishing it from other
sequential random search algorithms is that, besides accepting points
that have improvements in objective function value, it also has a prob-
ability of accepting non-improving points. The update procedure in
Step 2 of sequential random search for simulated annealing is

Xk+1 =
{

Vk+1 with acceptance probability PTk
(Xk, Vk+1)

Xk otherwise

for any iteration k. The parameter Tk is referred to as the tempera-
ture, and it is initialized at a large value. The temperature controls the
probability of accepting a non-improving point; when the temperature
is high there is a large probability of accepting a non-improving point,
and as the temperature decreases to zero the probability of accepting a
non-improving point also decreases to zero.

The acceptance probability PTk
of accepting a candidate point Vk+1,

given the current iteration point Xk and the current temperature Tk, is
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typically given by,

PTk
(Xk, Vk+1) =




1 if improving,
i.e., f(Vk+1) < f(Xk)

e

[
f(Xk)−f(Vk+1)

Tk

]
otherwise,
i.e., f(Vk+1) ≥ f(Xk)

(1.5)

The acceptance criterion based on PTk
is also known as the Metropo-

lis criterion [110]. The Metropolis criterion was introduced to model
the cooling of metals, and the difference in objective function values
f(Xk) − f(Vk+1) was referred to as the energy difference, and the tem-
perature Tk involved the temperature of the heat bath as well as a phys-
ical constant known as the Boltzmann constant. The temperature is
gradually reduced, and if the lowering of the temperature is sufficiently
slow, the metal can reach thermal equilibrium at each temperature. The
sequence of points generated while holding temperature constant T con-
verges to the Boltzmann distribution, which characterizes the thermal
equilibrium (page 14, [1]). The Boltzmann distribution plays an im-
portant role in characterizing the underlying probability of the points
sampled and accepted. This is discussed further in Chapter 4.

The rate at which temperature is gradually reduced is critical to
the annealing process, and if lowered too quickly results in an inferior
metal. The optimization analogy is that if the temperature is lowered
too quickly, the algorithm gets trapped at a local optimum. The control
mechanism to reducing the temperature is called the cooling schedule.
Let τ(Tk) be a function that gradually reduces the temperature Tk on
iteration k. A simple geometric cooling schedule is τ(Tk) = 0.9Tk. Ini-
tially when the temperature Tk is large, many non-improving points will
be accepted, but as Tk approaches zero, mostly improving points will
be accepted. This feature allows the algorithm to escape from local op-
tima when Tk is large, but allows convergence to, hopefully the global
optimum, as Tk becomes small. A cooling schedule often attempts to
allow the optimization process to reach thermal equilibrium (e.g., the
Boltzmann distribution) by lowering the temperature after a minimum
number of iterations NTk

at each temperature step. Often the cooling
schedule is fine-tuned for a particular problem, but recent results de-
rive an analytically motivated cooling schedule [86, 140]. Some of these
results are summarized in Chapter 4.

We now summarize the simulated annealing algorithm.
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Simulated Annealing

Step 0. Initialize algorithm parameters, including temperature T0 and
initial point X0 ∈ S and set iteration index k = 0.

Step 1. Generate a candidate point Vk+1 ∈ S according to a specific
generator.

Step 2. Update the current point Xk+1 using

Xk+1 =
{

Vk+1 with probability PTk
(Xk, Vk+1)

Xk otherwise

where PTk
(Xk, Vk+1) is given in Equation 1.5. Update algo-

rithm parameters, including Tk+1 = τ(Tk).

Step 3. If a stopping criterion is met, stop. Otherwise increment k
and return to Step 1.

The convergence properties of simulated annealing have been ana-
lyzed in [1] for combinatorial optimization problems. The algorithm
is analyzed using Markov chain theory, where iterations correspond to
transitions and the state space is the finite set of outcomes. It is shown
that simulated annealing asymptotically converges to the set of global
optimal solutions with probability one. This is done by proving that
the Markov chain describing the algorithm converges to a stationary
distribution. The number of transitions required to approximate the
stationary distribution depends on the second largest eigenvalue of the
transition matrix. This can be used to show that the stationary distribu-
tion is approximated arbitrarily closely, only if the number of transitions
is at least quadratic in the size of the solution space. For instance if the
solution space S is an n dimensional binary lattice, then there are 2n

possible solutions in the solution space where n denotes the dimension of
the problem. Therefore it will take at least (2n)2 transitions to verify the
global optimal solution. This means that approximating the stationary
distribution arbitrarily closely results in an exponential time execution
of the simulated annealing algorithm. Notice that this involves verify-
ing the global optimal solution. The authors do not give the expected
number of iterations to find the global optimal solution for the first time.
Other analyses by Locatelli [99, 100] and Trouvé [167] provide conditions
for which simulated annealing converges in probability to the global op-
timum. Romeijn, et al. [141] provide convergence results for simulated
annealing with both continuous and discrete variables. This is discussed
in more detail in Chapter 4.
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Step Size Algorithms. A common method to generate a candidate
point on problems with continuous variables is take a step size in a vec-
tor direction, called a direction-step paradigm in [129]. In continuous
problems, the direction of movement may be based on gradient infor-
mation, although not necessarily. Sequential random search, in Step 1,
typically generates a candidate point by taking a step of length Sk in a
specified direction Dk:

Xk+1 = Xk + SkDk

on an iteration k. In a gradient search type algorithm, the direction
is based on local information by evaluating the gradient at the current
point, and the step length may be the result of a line search. Quasi-
Newton methods take advantage of an approximation of the Hessian
to provide a search direction. As an alternative, a direction is often
generated according to a distribution (often uniform on a hypersphere),
and the step length may also be randomly generated.

A collection of sequential step size algorithms, including those of Ras-
trigin, et al. [114, 131, 132], Steiglitz, et al. [97, 152], Schrack, et al.
[150, 151], and Solis and Wets [159] fit into this category of sequential
random search, and all obtain a direction vector by sampling from a uni-
form distribution on a unit hypersphere. The method of choosing the is
specific to each algorithm, such as shrinking or expanding the step length
based on previously chosen points. Several of these sequential random
search methods have been reported as experiencing computation that is
linear in dimension.

After a candidate point is generated, Step 2 of sequential random
search specifies a procedure to update the current point. Algorithms
that are strictly improving have a simple procedure, update the current
point only if the candidate point is improving,

Xk+1 =
{

Vk+1 if f(Vk+1) < f(Xk)
Xk otherwise.

This type of improving algorithm may get trapped in a local optimum if
the generator does not sample over the entire domain. If the neighbor-
hood, or procedure for generating candidate points is too restricted, it
is difficult to find the global optimum. One remedy is to sample a large
neighborhood, possibly draw from the entire feasible set, and another
remedy is to accept non-improving points (as in simulated annealing,
Section 4.2). The algorithms based on Hit-and-Run sampling methods
presented in Chapters 2, 3 and 6 use a global reaching search strategy
so there is a positive probability of sampling anywhere in the entire fea-
sible region. Recent research in Very Large Scale Neighborhood Search
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is pursuing the benefit of enlarging the neighborhood search. The com-
putational tradeoffs between sampling over a very large neighborhood
and possibly the entire feasible region, versus sampling over a restricted
neighborhood but accepting non-improving points is explored in subse-
quent chapters.

Convergence. A convergence proof for sequential random search al-
gorithms was provided by Solis and Wets [159], where convergence means
that, with probability 1, the sequence f(Xk) converges to the infimum
of f on S as the iteration counter k tends towards infinity. The conver-
gence theorem for global search [159, page 20] makes two assumptions.
The first assumption is roughly that the update procedure (Step 2 in
the sequential random search algorithm) chooses the best of the points
found thus far, and the second, more restrictive assumption, is that given
any subset A of S with positive “volume,” the probability of repeatedly
missing the set A when generating the random samples (in Step 1) must
be zero. It basically says that, as long as the method of generating a
subsequent point does not consistently ignore any region, then the algo-
rithm will converge with probability one. This is particularly relevant to
the step-size algorithms of Rastrigin, Schumer and Steiglitz, and others
[97, 131, 132, 114, 152, 150, 151].

A second convergence proof due to Bélisle [14] says that, even if the
generator of an algorithm cannot reach any point in the domain in one
iteration, if there is a means such as an acceptance probability to allow
the algorithm to reach any point in a finite number of iterations, then
the algorithm still converges with probability one to the global optimum.

Algorithms for global optimization must either sample the entire set
or use the structure of the problem to guarantee convergence. Stephens
and Baritompa [161] formalize this by proving that convergence requires
global information. Examples of global information that may improve
performance of an algorithm include the Lipschitz constant, bounds on
derivatives, bounds on the function as in interval methods, informa-
tion on the level sets, number of local optima, functional form, and the
global optimum itself. Stephens and Baritompa show that deterministic
algorithms must sample a dense set to find the global optimum value,
and proved analogous results for stochastic algorithms. They show [161,
Theorem 3.2] that for any deterministic sequential sampling algorithm
on a sufficiently rich class of functions F , there exists a function in F
for which the algorithm fails to detect the global optimum. The anal-
ogous stochastic result [161, Theorem 3.4] is that, for any stochastic
sequential sampling algorithm and any ε > 0, there exists a function in
F such that the probability that the algorithm detects the global op-
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timum is less than ε. While these results show that attempts to find
the global optima on all functions is doomed to failure, Stephens and
Baritompa conclude that using “global optimization heuristics is often
far more practical than running general algorithms until the mathe-
matically proven stopping criteria are satisfied” [161, page 587]. They
point to the need to quantify the ‘niceness’ of realistic functions so that
practical problems and algorithms may be combined with mathemati-
cal confidence in the results. By relaxing the criteria of guaranteeing a
global solution to a weaker claim of probabilistically detecting the global
optimum, the analyses in the book hope to be useful in bridging the gap
between mathematical confidence and practicality.

Why is it that sometimes random search algorithms appear to find a
global optimum quickly, when other times they appear to get trapped
at a local optimum? The rate of convergence is one way to characterize
performance. With random search algorithms, the measure of perfor-
mance should include both the speed of the algorithm as well as the
accuracy of the final solution. This is explored in subsequent chapters.

There is experimental evidence in the literature that suggests se-
quential random search algorithms are efficient for large dimensional
quadratic programs. Schumer and Steiglitz [152] provide experimental
evidence that the number of function evaluations increases linearly with
dimension for their adaptive step size algorithm on the following three
test functions:

∑n
i=1 x2

i ,
∑n

i=1 x4
i , and

∑n
i=1 aix

2
i . They also prove that

the average number of function evaluations for an optimum relative step
size random search restricted to an unconstrained quadratic objective
function is asymptotically linear in dimension. Schrack and Borowski
[150] report experimental results on a quadratic test function,

∑n
i=1 x2

i ,
that doubling the dimension doubles the number of function evaluations
required for their random search algorithm. Solis and Wets [159] exper-
imentally verified a linear correlation between the number of function
evaluations and dimension for their own variation of the step size al-
gorithm on a quadratic test function. They provided a justification of
this linearity condition based on the tendency of these algorithms to
maintain a constant probability of successful improvement.

There is also theoretical justification that sequential random search
algorithms are efficient for a larger class of global optimization problems.
In Zabinsky and Smith [188], complexity is measured as the expected
number of iterations needed to get arbitrarily close to the solution with
a specified degree of certainty, and this measure is used throughout the
book. An analysis of a random search procedure called pure adaptive
search [125, 188] proves that it is theoretically possible for a sequen-
tial random search procedure to achieve linear complexity (in improving



Introduction 19

iterates) for global optimization problems satisfying the Lipschitz con-
dition. If sequential random search algorithms behave similarly to pure
adaptive search, the analysis would explain why they appear efficient.
The linearity performance of pure adaptive search is discussed in detail
in Chapter 2.

4.3 Two-Phase Methods
Many global optimization algorithms may be thought of as having

two phases, a global phase when sampling occurs over the entire feasible
region, and a local phase when sampling occurs over a restricted, or
focused, portion of the feasible region. A common example of combining
a global phase with a local phase is a multistart method. Multistart
samples starting points (often uniformly) from the entire set during its
global phase, and uses them to initiate deterministic gradient search type
algorithms as a part of its local phase. It is also useful to consider other
algorithms as a part of a global and local phase when considering the
performance or behavior of the algorithms. For instance, a multistart
scheme may be used where simulated annealing can be viewed as the
local phase. The global phase can be viewed as an exploratory phase
aimed at exploring the entire feasible region, while the local phase can be
viewed as an exploitation phase aimed at exploiting the location and/or
local information (e.g. gradient) to improve on the objective function.

Schoen [149] provides a general scheme for a two-phase method, and
Wood, et al. [178] also states a generic stochastic optimization algo-
rithm. A generic two-phase algorithm is stated as follows.

Basic Two-Phase Stochastic Global Optimization Algorithm

Step 0. Initialize algorithm parameters and set iteration index k = 0.

Step 1. In the global phase, generate Xk ∈ S according to a sampling
distribution over S.

Step 2. In the local phase, generate a candidate point Vk ∈ S ac-
cording to a local sampling distribution, or local descent al-
gorithm, and update information on the best solution found
so far as well as other parameters of interest.

Step 3. If a stopping criterion is met, stop. Otherwise update algo-
rithm parameters, increment k and return to Step 1.

The multistart algorithm fits into this framework, where the global
phase generates a point using a sampling distribution, and the local
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phase performs a type of local search. Typically the local phase in mul-
tistart is a deterministic gradient search type algorithm, although ex-
periments using simulated annealing and other sequential random search
methods within multistart have promising results [42]. A multistart algo-
rithm may repeatedly find a local optimum from many starting points,
and clustering methods have attempted to modify the multistart idea
by reducing the number of times a local search is initiated. Clusters are
formed (often grown around a seed point) to predict whether a starting
point is likely to lead to a local optimum already discovered, and local
searches are only initiated at promising candidate points (see [165, 149]).
A related idea has led to linkage methods, which “link” points in the
sample and essentially view clusters as trees, instead of spherical or el-
lipsoidal clusters. The most well known linkage method is Multi Level
Single Linkage [137, 138] and several variants are summarized in [149].

4.4 Genetic Algorithms
The division between the global phase and the local phase blurs when

combining algorithms. For instance, when a simulated annealing is cou-
pled with multistart the local phase has a global aspect to it. Population-
based algorithms, including genetic algorithms and evolutionary pro-
gramming [91], maintain a set of current points called the population.
The current population is used to generate candidate points for a new
population, typically by combining pairs of points with specific rules
of crossover, mutation and reproduction. The current and new points
are then evaluated and compared to update the population. The moti-
vation behind population-based algorithms is to parallel the process of
biological evolution.

Several details must be specified to completely define the algorithm.
First, the population size must be chosen. The elitist strategy subdi-
vides the population into three categories and maintains pe elite (best)
solutions, pi immigrant solutions (added to maintain diversity), and pc

crossover solutions. So the total population size is p = pe + pi + pc

(described in [129]). Computational experience indicates that the pop-
ulation size impacts performance, if it is too small, the algorithm has
difficulty finding the global optimum, and if it is too large, then it is in-
efficient and essentially pure random search. The right population size
for a particular problem is usually found through experimentation.

Given a current population of p points, the next step is to generate
candidate points to use in a new population. The primary mechanisms
are crossover, mutation, and reproduction. Crossover implies that two
“parent” solutions in a population are used to generate two “children”
solutions by breaking both parent solutions and reassembling the first
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part of one with the second part of the other and visa versa. This is
usually done with binary variables, but variations on continuous vari-
ables have also been demonstrated. It appears that direct crossover on
continuous variables may be more efficient than encoding a real-valued
number into binary and then performing crossover. Mutation is used
to randomly alter a single solution. Reproduction is used to duplicate
promising solutions which modifies the composition of the population.

The final step is to merge the current population with the new can-
didate points. A naive approach would be to simply rank order the
population on objective function values and select the best, however ex-
perience has shown that some diversity should be maintained, to prevent
premature convergence to a local optimum. Various fitness measures
have been proposed, and different strategies to merge the current and
new populations by selecting “survivors” and “immigrants” to maintain
the population size. As with simulated annealing, the best solution is
always recorded, but unlike simulated annealing, a population of alter-
native solutions is provided. Of course, practitioners could keep track of
alternative solutions in a simulated annealing algorithm too, and keep a
list of the p best solutions if that is of interest.

In keeping with the theme of the book, the method of generating can-
didate points may be viewed as a probability distribution. Researchers
have used Markov chain analysis [40] to analyze the behavior, such as
the expected waiting time, of genetic algorithms [92]. This is similar to
analyses presented in subsequent chapters.

4.5 Other Stochastic Methods
There are many other stochastic methods that have been proposed

for global optimization with discrete and/or continuous variables that
will not be mentioned in this book. Some interesting methods include,
tabu search [55], nested partitioning method [156], Lipschitz optimiza-
tion [127], controlled random search [4], localization search [11, 177],
and uniform covering using raspberries [69]. There are even more deter-
ministic methods, and hybrid algorithms combining deterministic and
stochastic methods (e.g. [93]). This book is not able to review them
all, but instead strives to present a uniform way of viewing stochastic
algorithms.
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5. Overview of this Book
In Chapter 2, we present a theoretical development of the performance

of two stochastic methods that can be viewed as extremes. These two
random search algorithms, pure random search (PRS) and pure adaptive
search (PAS), are not intended to be practical algorithms, but rather are
used to describe the performance of random search algorithms based on
an underlying sampling distribution. It is shown that, under certain
conditions, the expected number of iterations of pure adaptive search is
linear in dimension, while pure random search is exponential in dimen-
sion.

Chapters 3, 4 and 5 discuss relaxations of PAS: hesitant adaptive
search, annealing adaptive search, and backtracking adaptive search.
Hesitant adaptive search is a generalization of PAS that includes an
expression of the extra computation associated with not being able to
always generate improving points. Adaptive search is a relaxation of
PAS by changing the sampling distribution in a way that maintains
the linearity result for improving points, and is discussed in Chapter 4.
Backtracking adaptive search extends the analysis to include a sequence
of points that include non-improving points, backtracking in terms of the
objective function. This concludes the analyses of theoretical algorithms
in this book.

Chapter 6 presents an initial attempt to realize PAS by generating
points that are approximately uniform. The Improving Hit-and-Run al-
gorithm is defined in Section 2, and is shown to have a polynomial com-
putation on average for the class of positive definite quadratic programs.
Section 3 presents the Hide-and-Seek algorithm, which is motivated by
Adaptive Search in the same manner that Improving Hit-and-Run was
motivated by Pure Adaptive Search. Both algorithms are based on the
Hit-and-Run generator, and variations are summarized later in the chap-
ter, as well as initial results on a discrete form of Hit-and-Run. Finally,
several engineering design applications, particularly the optimal design
of composite structures, are discussed in Chapter 7.

6. Summary
Engineers using gradient-based local optimization methods have com-

mented that their problems tend to have many local optima [62, 185].
The most common global optimization method found in practice is mul-
tistart, a combination of random starting points and local searches [62].
However newer methods are quite powerful, and with the advances in
computer technology, are becoming practical. Simulated annealing and
genetic algorithms are useful for new ill-structured applications. The
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primary structure these random search methods have in common is a
probabilistic way of sampling the next point. Characterizing perfor-
mance based on the sampling distribution is a step towards better un-
derstanding the algorithms. This can assist practitioners in selecting
an appropriate algorithm for their problem, as well as developing new
applications and new algorithms. Hopefully, this book and others like
it can help bridge the gap between the advances in global optimization
and the practical needs of the engineers.


