5/24/2013

Alternative Data Models —
Toward NoSQL

Alternative Data Models

* XML Stores
* Object-Relational databases
¢ NoSQL databases

Object-relational impedance mismatch

* When implementing applications we work
with objects

¢ Databases store data in tables

¢ Therefore, what does the programmer need to
do?

5/24/2013

XML Stores

* The need to store and search complex
document structures

¢ Semi-structured data

— Incomplete or irregular

— Some structure
— Changes rapidly or unpredictably
— Schema-less/self-describing

XML Document

<stafflist>
<staff branchNo="B005">
<name>
<fname>Fred</fname>
<Iname>Jones</Iname>
</name>
<dob>1988-10-4</dob>
<salary>50000</salary>
<telelist>
<phone type=‘“cell”>885-933-9393</phone>
<phone type=“home”>885-789-5761</phone>
</telelist>
</staff>

</stafflist>

Do you need a Schema? Where is it?

DTD (Document Type Defintions)

XML Schema

RDF (Resource Description Language)

How do you Process XML Documents?

* DOM — Document Object Model

e SAX —Simple API for XML

5/24/2013

Separation of Physical Presentation
from Logical Structure

XSL -- eXtensible Stylesheet Language

XSLT — XSL Transform

<xsl:for-each select="stafflist/staff”>
<tr>
<td bordercolor="yellow”><xsl:value-of select="staffno” /></td>
<td bordercolor="yellow”><xsl:value-of select="name/fname”/></td
</tr>
</xsl:for-each>

How do you Search?

¢ Xpath (XML Path Language)

child::staff selects the staff elements that
are children of root
child::staff[3] selects the third staff element

that is a child of the context node

5/24/2013

Why Relational Model and XML?

¢ Treating web resources like a structured data
* Data interchange
* XML standard formats

XML Query Languages

where <staff>
<salary>$S</salary>
<name><fname>S$f</fname><Iname>$L</name></name>
</staff>

in “http://www.dreamhome.co.uk/staff.xml”
$S > 30000

construct <Iname>$L</Iname>

XQuery
doc(“staff_list.xml”)/stafflist/staff[1]//staffno
doc(“staff_list.xml”)/stafflist/staff[1 to 2]/staffno

doc(“staff_list.xml”)/stafflist/staff{@branchNo=
“B0005”])/Iname

5/24/2013

How does PostgreSQL support XML?

XMLPARSE (DOCUMENT '<?xml
version="1.0"?><book><title>Manual</title><ch
apter>...</chapter></book>')

XMLPARSE (CONTENT
'abc<foo>bar</foo><bar>foo</bar>')

SELECT xmlelement(name foo,

xmlattributes('xyz' as bar),
xmlelement(name abc),

xmlcomment('test'),
xmlelement(name xyz));

xmlelement

<foo bar="xyz"><abc/><!--test--><xyz/></foo>

SELECT xmlforest(table_name, column_name)
FROM information_schema.columns
WHERE table_schema = 'pg_catalog';

Xmlforest

<table_name>pg_authid</table_name><column_name>rolname</column_name>

<table_name>pg_authid</table_name><column_name>rolsuper</column_name> ...

5/24/2013

xpath(xpath, xml [, nsarray])

SELECT xpath('/my:a/text()', myxml);

"firstName": "John",
"lastName": "Smith",
"age": 25,
"address": {
"streetAddress": "21 2nd Street",
": "New York",
S NY",
"postalCode": 10021

b
"phoneNumbers": [
{
"type”: "home",
"number": "212 555-1234"

"type: "fax",
"number": "646 555-4567"

JSON — Javascript Object Notation

5/24/2013

Use In AJAX Programming (Javascript
example)

var my_JSON_object = {};

var http_request = new XMLHttpRequest();

http_request.open("GET", url, true);

http_request.onreadystatechange = function () {
var done = 4, ok = 200;
if (http_request.readyState == done && http_request.status == ok) {

my_JSON_object = JSON.parse(http_request.responseText);

}

k

http_request.send(null);

NoSQL Databases

¢ Document-style stores
— key-value pairs PLUS document playload
(Key, Value) > payload_blob

¢ Key-value stores
(Key, Value) > [key->payload_blob,
key—> paylaod_blob, ...]

Observations ...

¢ Record at a time processing of data ...

* Steps
1. Given a key go grab some (semi-structured) data
2. Process the data
3. Find another key and goto 1

¢ NO STRUCTURED QUERY LANGUAGE (a step
backwards?)

5/24/2013

Why NoSQL

¢ Performance argument

¢ Flexibility argument

(see Stonebraker, 2010)

AWS DynamoDB

* Managed

e Scalable

* Fast

* Durable and Highly Available
* Flexible

* Low cost

¢ Distributed!

Some System Assumptions

¢ Query model
— Simple read and write
— State in binary objects identified by a key

¢ ACID (Atomicity, Consistency, Isolation,
Durability)

— Full ACID properties are given up
* Efficiency

5/24/2013

Data Model

* No Schema!

Primary Key

1. Hash Type Primary Key
2. Hash and Range Type Primary Key

For the power data what would be the primary
keys?

5/24/2013

Data Types
* Scalar data types
— Number
— String
— Binary
¢ Multi-valued types
— String set
— Number set
— Binary set
In Summary
1. Tables
— Create / update / delete tables
2. Items

— Add / update / delete items
3. Attributes

Query Read and Consistency

¢ Multiple items of each item are kept
¢ Two kinds of reads:

1. Eventually consistent reads

2. Strongly consistent reads

10

5/24/2013

Updates and Concurrency Control

¢ “Lost update” problem

¢ Two possible solutions:
— Conditional write

— Atomic counter

11

Alternative Data Models —
Toward NoSQL (continued ...)

5/24/2013

CAP Theorem*

Consistency — Availability — Partition Tolerance
Distributed systems requiring always-on, highly
available operation cannot guarantee the
illusion of coherent, consistent single-system
operation in the presence of network partitions,
which cut communication between active
servers.

*Bailis, P. and Ghodsi, A. (2013). Eventual consistency today. Comm. of the ACM, 58(5), 55-63.

Eventual Consistency
If no additional updates are made to a given

item, all reads to that item will return the same
value

10

Two Properties of Distributed Systems

¢ Safety property — A guarantee that “nothing
bad happens.”

Liveness property — A guarantee that
“something good eventually happens.”

5/24/2013

Key Questions

* How eventual is eventual consistency? (How
long will it take for writes to become visible by
readers?)

¢ How should one program under eventual
consistency?

¢ Is it possible to provide strong guarantees
than eventual consistency without losing its
benefits?

How eventual is eventual consistency?

¢ Given a workload measure the time to
propagate writes

* Research shows that eventual consistency is
often strongly consistent ...

How to program eventual consistency?

¢ You assume that the value for a given data
item is correct

— BUT, if you find out later that it is not you
compensate to correct things

5/24/2013

ATM Example
Transaction —T1 in USA Transaction — T2 — China
Timel — Balance $500.00 Balance $500.00
Time2 — Withdraw $400.00 Withdraw $400.00
Time3 — Balance $100.00 Balance $100.00
ATM Example
Transaction — T1 in USA Transaction — T2 — China
Timel - Balance $500.00 Balance $500.00
Time2 — Withdraw $400.00 Withdraw $400.00
Time3 - Balance $100.00 Balance $100.00

Oh no! But who wins in the
end?

How to Handle this?

* A socio-technical system which
Maximze B —-RC

B — Benefit of weak consistency
(availability and low latency)

R — Rate of anomalies
C — Cost of each anomaly

5/24/2013

Application-Specific

¢ Too many overdrafts might cause customers to
leave the system

* Propagating status updates slowly might cause
users to leave a social network site

* Application logic for handling the

inconsistencies needs to be written and may
be difficult

Is it possible to provide strong
guarantees than eventual consistency
without losing its benefits?

¢ Probably coming soon ...

Some System Assumptions

¢ Query model
— Simple read and write
— State in binary objects identified by a key

¢ ACID (Atomicity, Consistency, Isolation,
Durability)

— Full ACID properties are given up
* Efficiency

5/24/2013

Data Model

* No Schema!

Primary Key

1. Hash Type Primary Key
2. Hash and Range Type Primary Key

For the power data what would be the primary
keys?

5/24/2013

Data Types
* Scalar data types
— Number
— String
— Binary
¢ Multi-valued types
— String set
— Number set
— Binary set
In Summary
1. Tables
— Create / update / delete tables
2. Items

— Add / update / delete items
3. Attributes

Query Read and Consistency

¢ Multiple items of each item are kept
¢ Two kinds of reads:

1. Eventually consistent reads

2. Strongly consistent reads

5/24/2013

Updates and Concurrency Control

¢ “Lost update” problem

¢ Two possible solutions:
— Conditional write

— Atomic counter

	nosql01
	nosql02

