
INFO-445: Advanced Database Design, Management, and Maintenance 1 | 6
Implementation Activity: A01
Spring 2013
Due: 05/01 @ 12 noon

Activity 1 – Workflow Model and API

Please note: You may do this activity alone or in groups of two.

Objective
The goal of this activity is to develop your knowledge for the relational database model, the
PostgreSQL DBMS, and your skills for back-end SQL development.

Preliminary steps

The information you need to complete this individual assignment can be found in the INFO-
445 Studio Workbook on the course website.

(1) The first step for completing this activity is to install PostgreSQL on your UW student

server account or course server:
Machine: dante.u.washington.edu
Net ID: your UW Net ID
Password: your UW Net ID password

If for some reason you are unable to install PostgreSQL on your UW student server
account or other server you can use this database which has been created for you:

 Machine: homer.u.washington.edu
 Port: 45678
 DB User ID: your UW Net ID
 DB password: pass

(2) The second step is to review the topics in the workbook. Once you’ve done these two

things you are ready to begin.

INFO-445: Advanced Database Design, Management, and Maintenance 2 | 6
Implementation Activity: A01
Spring 2013
Due: 05/01 @ 12 noon

Conceptual model
In many situations it is useful to be able to computationally model a workflow. The following
is an example of a workflow, modeled as an activity diagram in UML.

 Figure 1. An example workflow model (taken from www.uml-diagrams.org).

This notation for representing activity diagrams consists of the following symbols:

 Symbol Meaning
 1 Start The starting point for the workflow
 2 Activity An activity to be completed
 3 Decision diamond A choice must be made or flow of control comes together
 4 Guard label A rule about which path to follow
 5 Fork The workflow is to follow two paths simultaneously
 6 Join Two or more concurrent paths back into one path
 7 Document A document is passed along in a workflow
 8 Finish The finishing point for the workflow

Implementation aim

You are to implement a front-end and back-end API for creating and working with workflows.

Note: You will likely reuse this API in your class project, so good work on A01 will pay off on
your project.

INFO-445: Advanced Database Design, Management, and Maintenance 3 | 6
Implementation Activity: A01
Spring 2013
Due: 05/01 @ 12 noon

Front-end scripting API
The front-end API will implement the scripting commands shown in table 1. You will
implement these functions by extending a PHP framework, available on the course website.
Conceptually, these commands will provide an API for implementing many different kinds of
workflow applications.

Table 1. Front-end workflow scripting commands. These commands use a number of
standard parameters and data types (see Table 2).
Command Meaning
workflow create –n <workflow name>

 ‐i <info>

Creates a workflow named <workflow name>,
including a short informational message <info>. When
a workflow is created a start and a finish node are
automatically added to the workflow.

workflow delete –n <workflow name> Deletes the workflow named <workflow name>.
When a workflow is deleted all nodes and links are
also deleted.

workflow list Lists all workflows that have been created.
node add –wf <workflow name>

 ‐sn <node short name>

 ‐t <node type>

 ‐n <node name>

Add a node named <node short name> to the
workflow <workflow name>. The node type can be
either “A” for activity node; “F” for fork node; or “J”
for joiner node; “S” for starting node; or “E” for
finishing node. The <node name> is a human-
readable label for the node.

node list –wf <name> List all nodes in a given workflow.
link start –wf <workflow name>

 –to <node short name>

 ‐g <guard label>

Link the start node to a given node named <node
short name> with the guard <guard label>.

link finish –wf <workflow name>

 –from <node short name>

 ‐g <guard label>

Link a given node named <node short name> to the
finish node with the guard <guard label>.

link –wf <workflow name>

 –from <node short name>

 ‐to <node short name>

 ‐g <guard label>

Link two nodes with the guard <guard label>.

link children ‐wf <workflow name>

 –sn <node short name>

List all the children nodes and link information for a
node, identified by <node short name>.

 Table 2. Parameters and data types for the workflow scripting commands

Parameter Data type
<workflow name> A short string without spaces
<info> A text field with spaces
<node short name> A three character string without spaces
<node type> A domain comprising {A,F,J,S,E}
<node name> A string with spaces
<guard label> A string with spaces

INFO-445: Advanced Database Design, Management, and Maintenance 4 | 6
Implementation Activity: A01
Spring 2013
Due: 05/01 @ 12 noon

Back-end API
To implement the above scripting commands you will need to implement a back-end API. The
back-end API will implement the functions shown in Table 3. To design and implement this
back-end API you will need to do three things:

(1) Design a database model for modeling the workflow data (workflows, nodes, and
links).

(2) Write create table statements to implement the database model.
(3) Design, implement, and install a set of PL/pgSQL functions into your database.

Once these functions are implemented you will be able to create a manage workflows as
demonstrated by this very simple SQL script:

 // Create a workflow
 select dtw.Create_workflow('work', 'Simple test of the workflow module');

 // Add three nodes to the workflow
 select dtw.Add_node('work', 'A', 'Document submitted', 'A');
 select dtw.Add_node('work', 'B', 'Document being reviewed', 'A');
 select dtw.Add_node('work', 'C', 'Document approved', 'A');

 // Link up the nodes
 select dtw.Link_from_start('work','A', '');
 select dtw.Link_between('work','A', 'B', 'Need to assign document');
 select dtw.Link_between('work','B','C','Need to approve document');
 select dtw.Link_to_finish('work','C', '');

 // Get the children of the workflow
 select dtw.Get_children('work','A');

 // Access information about the workflow nodes
 select dtw.Get_node_by_id(233);

 select dtw.Get_node('A');

 // Drop the workflow

 select dtw.Drop_workflow('work');

INFO-445: Advanced Database Design, Management, and Maintenance 5 | 6
Implementation Activity: A01
Spring 2013
Due: 05/01 @ 12 noon

Table 3. Back-end PL/pgSQL functions.
PL/pgSQL Function Purpose
Create_workflow () Used to create an empty workflow.
Drop_workflow () Used to delete a workflow.
Get_workflows () Used to get a list of all workflows that have been

created.

Add_node () Used to add a new node to a workflow.
Get_nodes () Used to get a list of all nodes in a workflow.

Link_between () Used to add an link between two nodes
Link_from_start ()

Used to link from the special start node to the first
node in the workflow

Link_to_finish ()

Used to link from the last node in the workflow to the
special finish node in the workflow.

Get_children () Used to get information on the children of a node.
Notes: (1) The parameters for each of these functions are not shown; (2) You may decide to
implement additional functions.

Hooking up the front-end to the back-end

Once you’ve implemented the back-end (or at least some of the back-end functions) you will
need to hook up the front-end PHP scripting framework to the back-end API. Once you’ve
done this you will be able to test your backend code and implement a range of front-end
applications.

INFO-445: Advanced Database Design, Management, and Maintenance 6 | 6
Implementation Activity: A01
Spring 2013
Due: 05/01 @ 12 noon

The deliverables
You should submit a PDF report and a website. Aim for conciseness, precision, and clarity.

The Report Structure: What to Include?

0.0 Title page (page 1). Include a title, your name(s), link to your website, etc.
1.0 Introduction (page 2). You briefly introduce the goals of this project in your own words.

Target this writing to an employer who knows about data systems but not this particular
assignment.

2.0 Architecture (page 3). Present a drawing of the three-tier architecture for your system.
Include as much detail as possible, including:

a. All the technologies that you are using at the front-end, the back-
end, and in the middle tiers;

b. How the software you have developed is divided into layers at the
front-end and the back-end;

c. How the front-end and the back-end communicate;
d. How the architecture could be extended by other developers.

Include a caption that concisely describes the architecture.
3.0 Logical model (page 4). Present the logical model for your system. Include a caption

that concisely describes the model.
4.0 Discussion (page 5-6). (a) Summarize the progress that you’ve made on this project;

(b) Briefly discussion any limitations; and (c) Provide some brief reflections on what you
have learned.

The Website: What to Include?

1. A simple title page to the assignment
2. A link to the report
3. A link to the command shell that can be used test your application
4. A clear demonstration of your implementation
5. Links to all code used in your application.

Grading rubric

1. Overall neatness and attention to detail; Absence of spelling and grammatical errors;
Clear organization and concise writing and visual expression.

2. All diagrams are clear and include a full caption.

3. The PHP and SQL code is clearly written and included on the website.

4. The ER model shows the entities, attributes, attribute types, relationships, and

cardinality and participation constraints. The model uses a standard ER modeling
notation rigorously and correctly. The model does not contain M-M relationships,
generalization/specialization relationships, or ternary relationships.

5. The three-tier system architecture shows all technologies used and the structure of the

system.

6. The front-end and back-end APIs are implemented as specified and you provide a simple,

efficient way to check the implementation. The PHP and SQL code is easily accessed.

