
DB2 goes hybrid: Integrating
native XML and XQuery with
relational data and SQL

&

K. Beyer

R. Cochrane

M. Hvizdos

V. Josifovski

J. Kleewein

G. Lapis

G. Lohman

R. Lyle

M. Nicola

F. Özcan

H. Pirahesh

N. Seemann

A. Singh

T. Truong

R. C. Van der Linden

B. Vickery

C. Zhang

G. Zhang

Comprehensive and efficient support for XML data management is a rapidly increasing

requirement for database systems. To address this requirement, DB2 Universal

Databasee (UDB) now combines relational data management with native XML

support. This makes DB2t a truly hybrid database management system with first-class

support for both XML and relational data processing as well as the integration of the

two. This paper presents the overall architecture and design aspects of native XML

support in DB2 UDB and its integration with the relational data-flow engine. We

describe the new XML components in DB2 UDB and show how XML processing

leverages much of the infrastructure which is used for relational data.

INTRODUCTION

XML is the de facto standard for exchanging data

between different systems, platforms, applications,

and organizations. XML first became a W3C**

(World Wide Web Consortium) Recommendation in

February 1998, as a standard way to delimit text

data.
1

It has emerged in the industry as the pre-

dominant mechanism for representing and ex-

changing structured and semistructured information

across the Internet, between applications, and

within an intranet. Virtually every industry is

working to standardize XML representations for

their common business objects. As one industry

analyst put it, ‘‘Hundreds of vertical schemas, in

fields as diverse as government, biology, finance,

and travel, are publicly available and being actively

used. Undoubtedly, there are thousands more in

private hands.’’
2

Among the key benefits of XML are its vendor and

platform independence and its high flexibility. XML

is a data model suited for any combination of

structured, unstructured, and semistructured data.

XML data is easy to extend because new tags can be

defined as needed. XML documents can easily be

transformed into ‘‘different looking’’ XML and even

into other formats such as HTML. Furthermore,

XML documents can easily be checked for compli-

ance with a schema. All this has become possible

through widely available tools and standards such

as XML parsers, XSLT (Extensible Stylesheet Lan-

�Copyright 2006 by International Business Machines Corporation. Copying in
printed form for private use is permitted without payment of royalty provided
that (1) each reproduction is done without alteration and (2) the Journal
reference and IBM copyright notice are included on the first page. The title
and abstract, but no other portions, of this paper may be copied or distributed
royalty free without further permission by computer-based and other
information-service systems. Permission to republish any other portion of the
paper must be obtained from the Editor. 0018-8670/06/$5.00 � 2006 IBM

IBM SYSTEMS JOURNAL, VOL 45, NO 2, 2006 BEYER ET AL. 271

guage Transformation), and XML Schema. They

greatly relieve applications from the burden of

dealing with the particularities of proprietary data

formats. In an era where message formats, business

forms, and services change frequently, XML reduces

the cost and time required to maintain application

logic.

With the advent of Web Services and service-

oriented architectures, it is quite common for intra-

company and intercompany interactions to be

processed by use of XML messages. In such cases,

the message is more than the transaction request; it

is also a business artifact, such as a purchase order,

an order inquiry, an invoice, and so forth. Such

messages need to be retained for many reasons,

including auditing, regulatory compliance, and

nonrepudiation (i.e., a way to guarantee that the

sender of a message (or document) cannot later

deny having sent the message and that the recipient

cannot deny having received the message). For

example, a large securities clearing house interact-

ing with member brokers using Web Services is

legally obligated to store the XML messages for

nonrepudiation. Many of these uses also require

extensive search capabilities, and the XML storage

must have very high fidelity to preserve digital

signatures as required for nonrepudiation. Thus,

although its original intent was data interchange, an

increasing amount of XML is designed for persistent

storage, and enterprises are even retaining XML

messages used for data exchange for later analysis.

Another reason for using XML as a permanent

storage format is that XML can be a more suitable

data model than a relational schema. For example,

in life-science applications the data is highly com-

plex and hierarchical and yet may contain signifi-

cant amounts of unstructured information, which is

challenging to store with a relational schema. Most

of today’s genomic data is still kept in proprietary

flat file formats, but major efforts are under way to

move to XML.
3

Many industries rely heavily on existing relational

databases and applications to run their businesses

and on SQL (Structured Query Language) to

manipulate them. Much of the information within

XML documents is generated from these databases,

and much of the information from XML documents

is stored in them. Integration of this well-structured

relational information with self-describing XML data

is an important evolutionary advance in the data

industry.

There are three key factors that led us to build a

hybrid relational and native XML database system:

1. XML and relational data coexist and complement

each other in enterprise solutions. Some types of

data are best modeled and stored in a relational

format; other types are best suited for XML.

Although XML data can be normalized into

relational tables, it may not be appropriate to do

so. For example, if XML data comes from a

multiplicity of schemas, the aggregate size of the

relational schema to model all the data may be

unacceptable given the usage; for example, an

organization may have 1500 electronic forms and

require over 30,000 relational tables to represent

this data, despite the fact that most forms are

seldom used. If XML data has a highly variable

schema with respect to time, the impact of

changing the corresponding relational schema

frequently may make it impractical to model the

data in a relational database. This is particularly

pronounced when the corresponding schema

change would require normalization, such as

making a single-valued attribute into a multi-

valued attribute. If XML data contains many

sparse attributes that are only accessed in the

context of the parent object, the cost of normal-

ization may be prohibitive and denormalization

may be impractical because of limits on the

maximum width of a row or the maximum

number of columns in a table.

2. A successful XML repository requires much of the

same infrastructure that already exists in a

relational database management system. Such a

repository must support all the traditional data-

base properties, such as transactional (ACID)

properties, availability, scalability, reliability,

usability, manageability and installability. The

data must be quickly and efficiently updatable

with existing, well-understood isolation levels

(i.e., the degree to which concurrent transactions

in a database management system can affect each

other) and semantics. It must have performance

characteristics similar to a relational system. For

high-performance bulk processing of XML data, it

is important to have an underlying model that is

based on a set-at-a-time processing (i.e. applying

an operation to a set of rows), as also argued by

BEYER ET AL. IBM SYSTEMS JOURNAL, VOL 45, NO 2, 2006272

Jagadish et al. in Reference 4. Relational database

engines are highly scalable as a result of many

years of research and tuning. The XML data must

be indexable for both parametric and full-text

search predicates, and it must be stored in a way

that avoids unnecessary joins. This is especially

true for common operations like full document

retrieval. Furthermore, well-known query rewrite

and optimization techniques can be applied to

XQuery. The database community has years of

innovation in this area, and the database industry

has a large investment in systems that solidly

support these characteristics. In a hybrid system,

much of the infrastructure that supports these

characteristics can be reused.

3. XML query languages have considerable concep-

tual and functional overlap with SQL. XQuery
5

and SQL/XML
6

are the two industry-standard

languages that have emerged to query business

artifacts encoded in XML. XQuery provides a rich

query language that supports the hierarchical

structure of XML. SQL/XML extends the rela-

tional model with an XML data type, constructs

for querying this new data type in conjunction

with relational data, and functions for converting

between relational and XML data. Despite the

slightly different focus of these two languages,

they include many similar concepts, including

set-based processing, sequence-based processing

(i.e., processing an ordered set of items), joins,

selections (i.e., returning a subset of a table’s

rows), projections (i.e., returning a subset of a

table’s columns), and quantification. Regrettably,

they are not directly convertible,
7,8

but a signifi-

cant portion of a relational data-flow engine is

directly applicable to the processing of XML

query operations. The principal difference is the

introduction of intradocument structure-depen-

dent operations due to the hierarchical nature of

XML data. The potential for such extensibility has

already been proven through the integration of

object capabilities in SQL. We further demon-

strate the extensibility of such systems with

navigational support for XML.

The other consideration that shaped the overall

design and architecture of the system was the need

to support schema evolution. A repository must

support schema evolution to minimize the impact of

changes to applications and existing XML data.

Schemas for data represented as XML must be very

flexible and can be highly volatile over time. XML is

increasingly used to represent actual business

artifacts, such as derivatives contracts, mortgages,

and legislative and legal documents. Most of these

artifacts have very long retention requirements:

decades (for derivatives contracts), centuries (for

mortgages or insurance forms), or indefinitely (for

legal and legislative documentation). Therefore, it is

critical that an XML repository respond seamlessly

to schema changes. This evolution is either im-

practical or impossible in more rigidly structured

relational systems because XML documents must

retain their original structure, schema, and content

to preserve their digital signatures. Although an

individual document typically has an associated

schema when it is inserted, a large collection of

documents is unlikely to conform to a single

schema.

In this paper, we present the native XML features of

the upcoming version of DB2* Universal Database*

(UDB) and DB2 for z/OS* and describe the under-

lying architecture and design concepts. We discuss

examples illustrating the XML capabilities as well as

the integration of XML with SQL and relational data

management. (Throughout this paper, unless oth-

erwise indicated, DB2 refers to DB2 UDB.)

Overview of DB2 with native XML support

A high-level view of DB2 with native XML support is

shown in Figure 1. The DB2 storage component

manages both conventional relational data storage

and the new native XML storage. Both types of

storage are accessed by the DB2 engine, which

processes SQL/XML and XQuery queries in an

integrated manner. DB2 unifies new XML native

storage, indexing, and query processing with exist-

ing relational storage, indexing, and query process-

Figure 1
Integrating XML and relational data in DB2 UDB

Relational

CLIENT
SQL/XML

XQuery

DB2
Engine

Relational
Interface

XML
Interface

DB2 Storage:

XSR and
Catalogs

DB2 Client /
Customer
Client
Application

XML

IBM SYSTEMS JOURNAL, VOL 45, NO 2, 2006 BEYER ET AL. 273

ing. Additionally, DB2 provides an XML Schema

repository (XSR) to register and maintain XML

schemas, and uses those schemas to validate XML

documents. Finally, database utilities are enhanced

with XML import and export capabilities, as well as

with a new graphical XQuery builder.

The addition of native XML support has no impact

on existing SQL applications. A client application

can continue to use SQL to communicate with the

DB2 server through the relational APIs (application

programming interfaces) to access and manipulate

data in the relational data store. The SQL/XML

extensions allow publishing of relational data in

XML format and full document retrieval from the

native XML storage. Additionally, the new SQL/XML

querying functions provide SQL applications with

subdocument-level search and extract capabilities,

by embedding XQuery statements into SQL state-

ments.

An XML application can interact with the DB2 server

through the XML interface by using the XQuery

language, which is supported as a stand-alone query

language independent of SQL. XQueries can op-

tionally contain SQL statements to combine and

correlate XML data with relational data. Application

support and API enhancements for XML are

discussed in the section ‘‘XML API and application

support.’’

Because an update language for XML is not yet close

enough to standardization, the DB2 server supports

full document updates for now. A stored procedure

that provides applications with a flexible interface

for subdocument level updates is available for XML

updates. Currently, this procedure rewrites the full

document, but eliminates the need to send docu-

ments for update from the DB2 server to the client

and back.

DB2 treats both SQL and XQuery as primary query

languages. Both operate on their respective data

models and can be used independent of each other.

However, database applications can benefit im-

mensely from the integration of the two languages

that DB2 supports. Because many applications deal

with existing relational data and XML simultane-

ously, queries need to combine and correlate these

two types of data. In particular, DB2 has separate

parsers for SQL and XQuery statements, but uses a

single integrated query compiler for both languages.

No translation from XQuery to SQL is performed.

DB2’s compiler and optimizer are extended to

handle SQL and XQuery in a single modeling

framework.
9

Queries enter the system through either language

and are then compiled into an execution plan, as

described in the section ‘‘XQuery compilation.’’

After parsing, the distinction between SQL/XML and

XQuery is discarded in favor of a unified internal

representation. The query is modeled as a query

graph, using an extended query-graph model.
10

We

exploit rich data-flow modeling to perform powerful

cross-language optimizations. We extend traditional

rewrite optimizations to work with the extended

query model and introduce some rewrites specific to

the XML query languages. After the rewrite phase,

the portions of the query that can be answered by an

XML index are detected. This is significantly more

challenging than for relational indexes. The query

then enters our enhanced cost-based optimizer to

plan the new XML index and navigation operators.

Once the execution plan is generated, the query can

be evaluated by the combined relational-XML

runtime engine, which is a relational runtime

extended with XML navigation and indexing capa-

bilities.

The XML data type

At the heart of DB2’s native XML support is the XML

data type. This is a first-class data type in DB2, just

like any other SQL type. SQL/XML aligns the XML

data type with the XQuery Data Model,
11

which

closes the algebra and allows XML values to be

passed back and forth between SQL/XML and

XQuery. (An algebra is closed under a data model if

every operation takes as input and produces as

output an instance of the data model.) By building a

hybrid system, DB2 enables seamless flow of XML

data from SQL applications into an XQuery pro-

cessor and vice versa.

The XML data type can be used in a ‘‘create table’’

statement to define one or more columns of type

XML, as shown in Figure 2. Since XML has no

different status than any other type, tables can

contain any combination of XML columns and

relational columns. Each column of type XML can

hold one well-formed XML document for every row

of the table. Though every XML document is

logically associated with a row of a table, XML and

relational columns are stored differently. The rela-

BEYER ET AL. IBM SYSTEMS JOURNAL, VOL 45, NO 2, 2006274

tional columns are stored in traditional row struc-

tures, whereas the XML data is stored in hierarchical

structures. The two are closely linked for efficient

cross-access. Native XML storage is described in the

section ‘‘Native XML storage.’’

An XML schema is not required in order to define an

XML column or to insert or query XML data. An

XML column can hold schema-less documents as

well as documents for many different or evolving

XML schemas. Schema validation is optional and

may be performed on a per-document basis. Thus,

the association between schemas and documents is

per document and not per column, providing

maximum flexibility.

The XML type has no length associated with it. The

XML storage and processing architecture imposes no

limit on the size of an XML document. Currently,

only the client-server interfaces limit XML docu-

ments to 2 GB per document.

Values of type XML are processed in an internal

representation that is not a string and not directly

comparable to strings. Rather, SQL/XML defines a

set of functions that consume or produce the XML

data type. One such function, XMLSERIALIZE,

converts an XML value into a string value, which is

the textual representation of the same XML docu-

ment. Another function, XMLPARSE, converts a

string value that represents an XML document into

the corresponding XML value.

The XML type can be used not only as a column type

but also as a data type for host variables or

parameter bindings in languages such as C, Java**,

and COBOL. The section ‘‘XML API and application

support’’ provides details on this extension to the

DB2 APIs. The XML type is also allowed as a

parameter and as variables in SQL stored proce-

dures, user-defined functions (UDFs), and external

stored procedures written in C and Java. This is

important for flexible application development.

NATIVE XML STORAGE

The amount and nature of XML data can be quite

variable, depending on the application. Small XML

documents often do not exceed 3000 bytes, but the

largest XML documents can be multiple gigabytes in

length. Small collections of documents have a few

thousand documents, but large collections have

billions. Some applications retrieve the entire docu-

ment; others select only a small portion. Some of

these documents, once created, are strictly read

only, while others are frequently updated.

Designing a storage system for such widely varying

workloads is challenging. Documents must be able

to span disk pages, and even a single text node could

be larger than a page. It is not feasible to traverse

every node of a gigabyte document to retrieve a

small subtree. Therefore, the system must support

direct node access and XQuery’s node reference

semantics in a concurrent system under all of SQL’s

isolation levels, and it must support rollback and

recovery.

To meet these requirements, DB2 introduces a new

native XML storage format to store XML documents

as instances of the XQuery Data Model in a

structured, type-annotated tree. By storing the

binary representation of type-annotated XML trees,

repeated parsing and validation of the document is

avoided. The binary representation maintains the

salient features of the document, however, so that

any digital signatures on it are preserved. As each

node in every document contains its type informa-

tion, our storage supports schema evolution fairly

easily. Because type information is on the document

level, rather than on the column level, each docu-

ment in a column can conform to a different

schema, or to different versions of an evolving

schema. Furthermore, every node contains pointers

to its parent and children to support efficient

Figure 2
Table with a column of type “XML”

deptID . . . deptdoc

create table dept (deptID char(8),..., deptdoc xml);

“PR27” <dept> . . .
<emp>. . .</emp>
</dept>

DB2 Storage

. . .

.

IBM SYSTEMS JOURNAL, VOL 45, NO 2, 2006 BEYER ET AL. 275

navigational queries. Path expressions are evaluated

directly for the native format on buffered pages

without copying or transforming the data.

To insert XML data into the database, client

applications send XML documents in their textual

representation to the DB2 server. The server uses a

SAX (Simple API for XML) parser to check that

incoming documents are well-formed and to per-

form optional validation. The SAX events are

converted into a hierarchical representation of the

XML document. For the sample document in

Example 1, this hierarchy looks like the document

tree in the upper part of Figure 3.

Example 1

,dept loc¼ "CA".

,employee id¼"901".

,name.John Doe,/name.

,phone.408 555 1212,/phone.

,office.344,/office.

,/employee.

,employee id¼"902".

,name.Peter Pan,/name.

,phone.408 555 9918,/phone.

,office.216,/office.

,/employee.

,/dept.

Replacing tags with StringIDs, as shown in Figure 3,

not only reduces memory consumption but also

contributes to higher performance for navigational

queries. With StringIDs, operations such as node

comparisons now operate on integers instead of

strings. The mapping table is used for all XML

columns in the database, not only to achieve even

greater compression, but also, which is more

important, to allow the system to easily perform

navigation on a mixed set of nodes from several

XML columns. Whenever XML nodes or documents

are returned as query results, the nodes are

serialized back to their text form, including name-

spaces.

The document tree in the lower part of Figure 3 is

similar to the format in which inserted documents

are stored on disk pages. Extra information is stored

with each node, such as the type annotation if the

document was validated. Each element node has a

set of child slots for its associated attribute and

ordered children. These child slots have hints within

them to give an indication of what the child

represents. This allows fast navigation across a

context node’s set of children to find potentially

qualifying children without actually visiting each

child node. This is important because a child node

may be on another page and require additional I/Os.

For example, when looking for an employee with a

child having a specific name, the ‘id’ attributes of

the employee element and all children without the

hint of the target name can be skipped. A unique

identifier gives each node both a logical and a

physical addressability that can be used in indexing

and query evaluation.

If a document tree is too large to fit on one page, it

is split into regions, as shown in Figure 4. At any

level of the document a subtree of nodes can be cut

off and become a region. The regions of a document

can be stored on separate pages, which do not have

to be in physically consecutive order. Our general

optimization approach is to keep the number of

regions per document as small as possible. Multiple

regions can be stored on one page, especially if

documents are much smaller than a page and each

document is a single region. Nodes with large

content can be ‘chunked’ across multiple pages, and

nodes with a large fan-out of children can be

‘continued’ across multiple pages.

If a document spans multiple pages, its regions are

connected by the regions index. A regions index is a

system index that is created automatically for every

table that contains one or more XML columns. In

Figure 4, the document tree is split into three regions

shown in gold, orange and green. The gold and the

orange regions occupy a full page each. The green

region is smaller and fits on a page already

containing another small region.

The use of regions and the indirection through the

regions index provide important advantages over

other approaches, such as the use of physical links

between nodes on different pages. From the regions

index, DB2 can efficiently prefetch regions for large

documents. Since the logical node identifiers are

independent of physical node locations, it is much

easier to insert, update, and delete nodes or subtrees

and to perform document or page reorganization if

needed.

The XQuery language uses node reference semantics

in its results to allow additional navigation. This is

BEYER ET AL. IBM SYSTEMS JOURNAL, VOL 45, NO 2, 2006276

achieved by versioning. As a document is updated,

its regions are versioned, leaving multiple versions

of a node in the regions index. Only the current

version is available in the XML value indexes; new

readers thus always find the latest version. Readers

that have already qualified a node continue to see a

consistent version of the document. Old region

versions are removed when there are no references

to them; this is detected by checking the oldest

reader of the table.

The paged storage of XML documents leverages

existing components in DB2, such as the buffer pool

manager, the table space layer, the lock manager,

and the log manager. Reuse of existing relational

engine services for transactions, concurrency, scal-

ability, and recoverability simplifies the implemen-

tation and is essential for coexistence with relational

data. Buffer pool services keep active pages in

memory. Record management services handle the

placement of nodes within a given page, and the

logging of nodes or sets of nodes enables failure

recovery.

XML INDEXES

XML applications that manage millions of XML

documents are not uncommon. As a result, indexing

support for XML data is required to provide high

query performance. However, the rich structure of

XML introduces new challenges. The obvious

interpretation of an index on a relational column is

that the values of the column are organized so that

the system can quickly locate the rows that satisfy

range predicates on the column. The meaning of

creating an index on an XML column depends on the

Figure 3
StringIDs in XML storage

dept

employee

name

id

phone

office

loc

.

String table Tag names and namespace URIs
get replaced by unique StringIDs

John Doe 344408-555-1212

0

4

1

5

2

3

6

. . .

0

3215=901

46 = ‘CA’

Peter Pan 216408-555-9918

3215=902

4

John Doe 344408-555-1212

dept

officephonenameid=901

employeeloc = ‘CA’

Peter Pan 216408-555-9918

officephonenameid=902

employee

IBM SYSTEMS JOURNAL, VOL 45, NO 2, 2006 BEYER ET AL. 277

class of XML index that is created. We consider three

classes:

1. Structural indexes, which map distinct node

names, paths, or tag-based path expressions to all

matching node instances (see, for example,

Reference 12). They may also map node identi-

fiers to nodes instances (e.g., the regions index).

2. Value indexes, which allow quick retrieval of

nodes based upon the node’s data value.

3. Full-text indexes, which map tokens (e.g., words)

to the nodes that contain them.

Each of these index classes is useful for some

queries, but we believe that value indexes are

significantly more useful than structural indexes for

our expected query workloads. For example, in a

query workload on employee records, a query to

find employees with any recorded interests is much

less likely than a query to find employees interested

in nanotechnology. The relational analogy is the

likelihood of queries to find records with a particular

value in some column versus queries looking for

null values. Nevertheless, our value indexes do

support some structural predicates.

Because our XML data is commingling with existing

relational data and will be used by future versions of

existing applications, we require our value indexes

to support all the features of the existing relational

system. This includes transactions, concurrency,

recovery, scalability, fast insertion, efficient update,

reorganization, backup and restore, and import/

export.

As with relational systems, applications typically

cannot afford to index every item. XML compounds

this issue because of the sheer quantity of items that

can be indexed. For example, a range predicate can

be found on not only any simple node in the

document (the ‘‘leaf’’ elements and attributes), but

also the processing instructions, the comments, the

text nodes (which differ from their containing

element), and the interior nodes (such as the

concatenation of all text nodes below a node). If we

only supported indexing every item in the XML

document, the index storage would be many times

Figure 4
Interlinked document regions

page page page

Document tree delivered
by the XML parser
gets broken into regions

Regions
index

BEYER ET AL. IBM SYSTEMS JOURNAL, VOL 45, NO 2, 2006278

larger than the original document. Moreover, the

number of I/Os required to transactionally maintain

the indexes would be prohibitively expensive.

Therefore, DB2 supports path-specific value indexes

on XML columns so that elements and attributes

frequently used in predicates and cross-document

joins can be indexed. XML value indexes are

described in the following section.

As a semistructured data model, XML is a bridge

between the rigid structural world of relational

systems and the free-form world of text documents.

Thus, DB2 also supports XML-aware full-text in-

dexing.

XML value indexes

The following series of examples describe how XML

data can be indexed. The following example shows

the simplified CREATE INDEX Data Definition

Language (DDL) for XML value indexes:

ddl ::¼ CREATE INDEX index-name

ON table (xml-column)

USING 0xmlpattern0 AS type

xmlpattern ::¼ namespace-decls?
((/ j //) axis? (name-test j kind-test))þ
axis ::¼ @ j child:: j attribute:: j self::
j descendant:: j descendant-or-self::

name-test ::¼ Qname j * j nsprefix:* j *:ncname
kind-test ::¼ node() j text() j comment()
j processing-instruction(ncname?)

The following statement defines an XML value index

on all employee names in all documents in the XML

column deptdoc, based on the sample table and

document in Example 1:

create index idxl on dept(deptdoc) generate key

using xmlpattern 0/dept/employee/name0

as sql varchar(35)

The xmlpattern path identifies the XML nodes to be

indexed. It is called xmlpattern and not XPath

because only a subset of the XPath language is

allowed in index definitions. For example, wildcards

(//,*) and namespaces are allowed, but XPath

predicates such as /a/b[c¼5] are not supported.

Because we do not require a single XML schema for

all documents in an XML column, DB2 may not

know which data type to use in the index for a given

xmlpattern. Thus, the user must specify the data

type explicitly in the as sql ,type. clause. The

following types can be used: VARCHAR(n) (for

nodes with values of a known maximum length),

VARCHAR HASHED (for nodes with values of

arbitrary length; in this case, the index contains

hash values of the actual strings; such an index can

be used for equality predicates but not for range

predicates), DOUBLE (for nodes with any numeric

type), and DATE and TIMESTAMP (for nodes with

corresponding XML values).

Because the SQL type system is not exactly the same

as the XML type system, special mechanisms

compensate for key differences. For example, the

DB2 index manager has been enhanced to explicitly

handle special values from the XML type system,

that is, þ0, �0, þINF, �INF, and NaN (i.e., not a

number). The reuse of the existing relational index

manager introduces a few minor restrictions on the

supported XML data: for example, we cannot index

arbitrarily large XML strings unless the strings are

hashed. Also, the way XQuery treats

xdt:untypedAtomic data is challenging for indexing.

The general comparisons (¼, ., etc.) dynamically

cast an untyped operand based upon the type of the

other operand, which implies that untyped data

must be indexed in every data type that it can be cast

to. For example, is the untyped value ‘1234’ a

character string, a number, or a hexadecimal binary

string? The answer could be any of these, depending

on how any particular query treats the value. To

avoid casting untyped data to every possible data

type, the index requires a specific target data type.

Ultimately, an index is created on the cast of the

node to the indexed type, taking into consideration

the type annotation of the node as derived during

validation. This implies that some string-valued

nodes appear in a numeric index and that all

matching nodes appear in a string index. These

semantics are critical when we determine index

eligibility. We carefully considered the proper action

to take for a node that matches the pattern but

cannot be cast to the index type and decided not to

create any index entry for it because the node might

never be cast to that type during an actual query.

Unlike indexes on relational data, a single document

may contain zero, one, or multiple nodes that match

the xmlpattern and thus create a corresponding

number of index entries for a single row in the table.

The following statement defines a unique index of

all employee ID attributes. Uniqueness is enforced

IBM SYSTEMS JOURNAL, VOL 45, NO 2, 2006 BEYER ET AL. 279

within a document and across all documents in the

XML column.

create unique index idx2 on dept(deptdoc)

generatekeyusingxmlpattern 0/dept/employee/@id0

as sql double

In some applications it is difficult to predict which

elements or attributes will be searched. For such

cases, the following index definitions can be used to

index all text nodes and all attributes, respectively, if

needed. In this example we are prepared for

elements with arbitrary-length values and expect

attributes to be numeric:

create index idx3 on dept(deptdoc) generate key

using xmlpattern 0//text()0 as sql varchar(hashed)

create index idx4 on dept(deptdoc) generate key

using xmlpattern 0//@*0 as sql double

To match and index nodes in a particular name-

space, the xmlpattern path can contain namespace

declarations and namespace prefixes:

createindexidx5ondept(deptdoc)generatekeyusing

xmlpattern 0declare namespace

m¼"http://www.me.com/";
/m:dept/m:employee/m:name 0

as sql varchar(45)

To reduce the size of index entries, each unique path

in the documents of an XML column is represented

by an integer PathID (path identifier). This is similar

to the concept of StringIDs for tags described in the

section ‘‘Native XML storage’’. The so-called path

index maps each distinct reverse path (revPath) to a

generated PathID. A reverse path (revPath) is a list

of node labels from leaf to root, compressed into a

vector of StringIDs. The path index is cached for

performance and is typically small because only

unique paths are registered.

Each entry in a value index includes the PathID that

identifies the path of the indexed node, the value of

the node cast to the index type, a RowID, and a

NodeID. The RowIDs identify the rows containing

the matching documents, similar to regular rela-

tional indexes. The NodeIDs identify the matching

nodes and regions within the documents. Index

entries are ordered by PathID and value. Placing the

PathID first allows for quick retrieval of specific path

queries. For example, if an index on //name were

created, which might match many paths, then a

query on /book/author/name would still access

consecutive index entries. A disadvantage of this

placement is that a query like //name¼0Maggie0 needs

to examine every location in the index per matching

path (i.e., for every path that ends in /name).

Typically, indexes are defined with xmlpatterns

that identify atomic nodes. A node is atomic if it is

an attribute, a text node, or an element that has no

child elements and exactly one text node child.

However, it is also possible to define indexes on

nonatomic nodes. In our example, the XML pattern

/dept/employee would be considered nonatomic

because each employee element has three child

elements with one text node each. This results in a

single index entry for each employee element. The

value of such an entry is the concatenation of all text

nodes in the subtree under ‘employee’. This

complies with the XML data model. If the intention

is to index all employee names, offices, and phone

numbers as separate values, then the xmlpattern

path /dept/employee/*/text() or three separate

create index statements should be used. Nonatomic

indexes are rarely useful for data-centric XML, but

can be useful for mixed content in text-oriented

XML.
13

A given index can be used to evaluate an XPath

predicate only if the data type used in the predicate

matches the one in the index and if the XPath

qualifies a subset of the indexed nodes. In the

previous example, index idx3, could be used to

evaluate the predicate /dept//name[text()¼"Joe"].

However, idx2 could not be used to evaluate the

predicate //@id-"A167" for two reasons: (1) idx2 is

a numeric index, but the predicate asks for a string

comparison, and (2) the predicate searches for @id

attributes anywhere in the document, but idx2 only

covers those under /dept/employee. Details are

given in the section ‘‘Index eligibility.’’

XML full-text indexes

Full-text search is a common operation in

document- and content-centric XML applications.

The existing text-search capabilities of DB2 have

been extended to work with the new XML column

type. Full-text indexes with awareness of XML

document structures can be defined on any native

XML column. The documents in an XML column can

be fully or partially indexed. The latter is useful if it

BEYER ET AL. IBM SYSTEMS JOURNAL, VOL 45, NO 2, 2006280

is known in advance that only a certain part of each

document will be subject to full-text search, such as

a ‘‘description’’ or ‘‘comment’’ element. Corre-

spondingly, text-search expressions can be applied

to specific paths in a document.

The following statement defines a text index that

fully indexes the documents in the XML column

deptdoc in the table dept in the database

personneldb:

create index myIndex for text on dept (deptdoc)

format xml connect to personneldb

The following query exploits this index but restricts

the search to a specific element. The query retrieves

all documents where the element /dept/comment

contains the word Brazil:

select deptdoc from dept where

contains (deptdoc, 0sections ("/dept/comment")

"Brazil" 0) ¼ 1

Text search in specific parts of documents is a

critical feature for many applications. Standard text

search features are also available, such as scoring

and ranking of search results as well as thesaurus-

based synonym search. For best performance of

insert, update, and delete operations, the text index

is maintained asynchronously, that is, not within the

context of a DML (Data Manipulation Language)

transaction but after the transaction has ended (this

is known as a ‘‘lazy’’ update). An ‘‘update index’’

command is available to explicitly force synchroni-

zation of the text index.

QUERYING XML

DB2 supports the two industry-standard languages

for querying XML data: XQuery and SQL/XML.

XQuery is a powerful language defined by the W3C,

that queries both structured and semistructured

data. It provides path-expressions
14

to navigate

through XML trees and extract XML fragments, as

well as expressions to create, sort, aggregate,

combine, and iterate over sequences (i.e., examine

or manipulate each item in a sequence), and

construct new XML data. XQuery is a reference-

based language; therefore, subsequent expressions

on the result of a path expression may traverse the

document in both forward and reverse directions.

SQL/XML, which is standardized by ANSI (Ameri-

can National Standards Institute) and ISO (Interna-

tional Organization for Standardization), defines a

new XML data type. SQL/XML defines second-order

query functions such as XMLQUERY, XMLTABLE, and

XMLEXISTS that take an XQuery statement as input

and execute it over the XML values passed from

SQL. SQL/XML also includes functions to construct

new XML data and to convert XML to relational data

types and vice versa.

The XQuery data model is based on the notion of

sequences, which are ordered collections of zero or

more items. SQL/XML aligns the XML data type with

the XQuery data model, which closes the algebra

and allows XML values to be passed back and forth

between SQL/XML and XQuery. By building a

hybrid system, DB2 enables seamless flow of XML

data from SQL applications into an XQuery pro-

cessor and vice versa.

Relational tables can define columns that use the

new XML data type. This enables existing SQL

applications to augment their current relational

database designs with additional XML data and

provides an evolutionary path for XML support.

The following subsections describe how XML and

relational data can be queried with XQuery, SQL, or

a combination of the two. Throughout this discus-

sion our examples will refer to the following two

tables, and we assume that the XML column

deptdoc contains documents like the one shown in

Example 1.

create table

dept(deptID char(8) primary key, deptdoc xml)

create table

unit(IDchar(8),namechar(20),managerchar(20))

Querying XML data with XQuery

In DB2, XQueries can operate on XML documents in

one or more XML columns, as well as documents

passed as runtime arguments. Access to XML data

stored in relational columns is provided by two DB2

input functions: db2-fn:xmlcolumn and

db2-fn:sqlquery. The db2-fn:xmlcolumn function

takes as input a string literal that identifies an XML

column and returns an XML sequence that consists

of all document nodes in the specified column. If a

column value is null, then there is nothing in the

resulting XML sequence for that row. The following

example shows how this function is used:

IBM SYSTEMS JOURNAL, VOL 45, NO 2, 2006 BEYER ET AL. 281

for $e in db2-fn:xmlcolumn("DEPT.DEPTDOC")

/dept/employee

where $e/office ¼ 344
return $e/name

The db2-fn:xmlcolumn function can be used multi-

ple times in a single XQuery to reference different

XML columns in the same or separate tables, or to

reference the same XML column several times. This

is a very common usage scenario. However, it may

at times be desirable to restrict the input to an

XQuery based on conditions placed on relational

columns in the same or related tables. This can be

accomplished with the function db2-fn:sqlquery,

which accepts any select statement that returns a

single XML column. The following query is an

example where the set of input documents to

XQuery is filtered by using a join and a predicate on

another relational table.

for $e in db2-fn:sqlquery (0select deptdoc

from dept, unit

where dept.deptID¼unit.ID and

unit.manager¼ "Jim Qu"0)/dept/employee

where $e/office ¼ 344
return $e/name

This highlights the power of integrating XQuery and

SQL. Users can leverage all of their existing rela-

tional data and indexes to qualify XML documents

for XQuery processing.

An XQuery and one or multiple embedded SQL

queries are compiled into a single execution plan

and comprise a single statement. SQL isolation

levels and security privileges apply to the entire

statement as a single unit, just as they do to any

regular SQL statement.

The result returned by an XQuery statement is

treated as a table with a single column of type XML.

Each row returned represents an item from the XML

sequence that is the result of the XQuery. Thus,

existing DB2 mechanisms, which are available for

SQL/XML, can also be used to declare and open

cursors for XQuery queries (a cursor is a database

element that controls record navigation, update-

ability of data, and the visibility of changes made to

the database by other users). The mechanisms can

also fetch items from the XML sequence returned by

XQuery and close cursors. Note that these items can

be anything from XML documents to atomic values

such as integers or strings.

Querying XML data with SQL/XML

It is often desirable to use or extend SQL statements

to retrieve XML data, because database users are

familiar with SQL and because existing relational

applications are frequently augmented with XML

data. Because XML is a regular SQL data type, full

documents can be retrieved from an XML column

with a simple select statement, such as:

select deptdoc from dept where deptID LIKE ‘‘PR%’’;

Additionally, DB2 supports most of the new SQL/

XML functions and predicates, including XMLQUERY,

XMLEXISTS, XMLTABLE, XMLVALIDATE, XMLPARSE, and

XMLCAST. These are described in detail in Reference

6; here, we highlight some of the most useful ways

of deploying these functions.

XMLEXISTS is a Boolean predicate, which tests

whether an XML document matches given criteria. It

returns a value of either ‘true’ or ‘false’ for every

row. The following sample query returns full

department documents as in the previous example

but uses XMLEXISTS for additional filtering: only

those rows where the department document con-

tains an employee in office 344 are returned. The

passing clause establishes the binding between the

SQL and the XQuery context.

select deptID, deptdoc

from dept d

where deptID LIKE "PR%" and

XMLEXISTS(0$deptdoc/dept/employee[office¼344]0

passing d.deptdoc as "deptdoc")

Apart from document filtering, it is also desirable to

extract and return partial XML documents, such as

subtrees or atomic attribute and element values.

This is achieved with the XMLQUERY function. It

evaluates an XQuery expression and returns the

actual result as an XML sequence to the SQL

application. The query in the following example

selects the deptID for all Public Relations depart-

ments, and the XMLQUERY function extracts the

employee names for all Public Relations employees

in office 344. The by ref option avoids copying the

XML value when returning from XQuery to SQL.

BEYER ET AL. IBM SYSTEMS JOURNAL, VOL 45, NO 2, 2006282

select deptID,

XMLQUERY(0for $e in $deptdoc/dept/employee

where $e/office ¼ 344
return $e/name0

passing d.deptdoc as "deptdoc"

returning sequence)

from dept d

where deptID LIKE "PR%";

The XMLTABLE function is useful in converting XML

data or the result of an XQuery into tabular format,

as shown in the following example. XMLTABLE

receives one dept document at a time from the

deptdoc table and evaluates the FLWOR (For, Let,

Where, Order by, and Return) expression. For each

matching employee, a row is returned, containing

the employee ID and room number as integers and

the name as a character array of length 25.

select T.EmpId , T.Name, T.Room

from dept d,

XMLTABLE(0for $e in $deptdoc/dept/employee

where $e/office ¼ 344
return $e0

passing d.deptdoc as ‘‘deptdoc’’

columns

"EmpId" integer path 0/@id0,

"Name" char(25) path 0/name0,

"Room" integer path 0/office0) as T

XQUERY COMPILATION

Figure 5 gives an overview of the hybrid query

compiler. We have implemented a new component,

the XQuery parser, and extended all other compo-

nents in the compiler to process the XQuery data

model and the XML query languages. First, an SQL

statement or an XQuery expression is compiled into

an internal data flow graph. Next, rewrite trans-

formations are applied to normalize, simplify, and

optimize the data flow. The optimizer uses this

graph to generate a physical plan, which is

translated by code generation into executable code.

In this section, we describe each component and

discuss trade-offs that led to the current design.

Two major decisions were critical in the compiler

design. First, DB2 does not implement static typing.

XQuery has both static and dynamic semantics,

depending on when type checking is enforced. Static

typing is too restrictive for schema evolution, as

each document insertion or change in schema may

result in recompilation and even rewriting of

applications. Because DB2 does not require that all

XML documents in an XML column conform to a

single schema, or to a collection of conforming

schemas, nonconforming changes may occur be-

tween schema versions. For example, optional fields

may become mandatory. In addition, because DB2

does not support the schema import feature of

XQuery, user-defined data types are not accessible

for querying. Although DB2 does not implement

static typing, it still exploits type information

wherever possible.

Second, DB2 does not normalize
15

the XPath

expression into explicit FLWOR blocks, where

iteration between steps and within predicates is

expressed explicitly. Instead, path expressions that

consist solely of navigational steps are expressed as

a single expression and are evaluated by our

powerful navigation runtime (see the section ‘‘Query

runtime’’). This impacts query modeling, rewrites,

and optimization and is discussed in the following

sections.

XML query modeling

In DB2, we represent XQuery with an internal query

graph model (QGM), which is a semantic network

that represents the data flow in a query. Although it

is fine-tuned for efficient relational query process-

ing, the data flow graph is more generic than

relational algebra. As QGM is designed to be

extensible,
16

it is fairly easy to add new entities and

capture multiple data models. Note that we are not

translating XQuery into relational algebra or into

SQL. On the contrary, we are augmenting our

internal data flow model with native constructs that

are specific to XML and that represent complex

navigation of XPath and XQuery.

Code generation++

Figure 5
Hybrid SQL/XQuery compiler

Semantics++

Rewrite++

Optimizer++

XQuery ParserSQL/XML Parser

Query
Plan

QGMX

IBM SYSTEMS JOURNAL, VOL 45, NO 2, 2006 BEYER ET AL. 283

In its simplest form, a QGM graph consists of

operations and arcs that represent the data flow

between operations. XQuery provides similar con-

structs to iterate over XML data and apply predicates

to join and sort data. We represent these XQuery

operations with the existing QGM entities and

introduce new entities to represent path expressions

and sequences.

To coalesce the relational and XML data models, we

first needed to decide how to represent XQuery

sequences within the context of a relational engine.

SQL/XML
6

introduces XML as a column in a

relational table and is based on the XQuery data

model. To accommodate this new SQL data type, we

decided to represent an XQuery sequence as a

column value in the QGM. Some XQuery expres-

sions consume a sequence as a whole, and others

iterate through the items in a sequence. We decided

to provide an operation which ‘‘unnests’’ the items

in a sequence for set processing and another

operation that aggregates a stream of items into a

sequence.

The focus of earlier work on XML processing was on

efficient representation and execution of path

expressions. On one side of the spectrum were fine-

grained approaches, in which each axis and name

test on a single path step was represented as a

selection. As a result, a complex path expression

required a series of selections and a complex

multiway join operation. Although this approach

was designed for a system in which the XML data

was shredded into relational tables (i.e., XML data

was converted to relational format and stored in a

set of tables) in order to compose navigation steps

with element construction, it turned out to be

incapable of handling large queries and representing

the full XQuery language. In particular, it implied an

order of execution for navigation. On the other side

of the spectrum was the coarse-grained approach,

wherein many binding path expressions were

represented in a pattern tree, such as generalized

tree patterns.
17

Such systems, however, only dealt

with single FLWOR blocks. In DB2, we take a

medium-grained approach and represent each path

expression as a pattern tree in which there is only

one bound variable. In this way, we represent each

data flow (e.g., each variable) explicitly, so that

semantics and rewrite analysis, which are built on

explicit data flow representation, can handle the

query more efficiently. In addition, this approach

allows us to represent not only path expressions as

binding patterns but also other FLWOR expressions.

It also allows us to support full compositionality of

XQuery (i.e., the ability of any XQuery expression to

be used within any other XQuery expression).

However, as we explain in the section ‘‘XQuery

rewrite transformations,’’ after query rewrite we try

to consolidate all navigation within a query block

into a single pattern tree representation.

Query rewrite transformations
The QGM graph output by the XQuery parser needs

to capture the full compositionality of the XQuery

expressions. As a result, it may not be the most

compact or efficient representation of the query. The

goal of the rewrite transformations is twofold: First,

the data flow is optimized by consolidating some

operations, eliminating redundant computation, and

applying several logical transformations. Second,

the QGM representation is normalized so that the

query optimizer gets the same graph as input for

semantically equivalent queries and has maximal

flexibility.

To support schema evolution, we decided not to

apply any schema-based transformations.
18,19

Such

transformations may require frequent recompilation

and rewriting of queries and applications as

schemas evolve. For example, a schema change that

converts a single-valued attribute or element into a

multivalued attribute invalidates the query plan if

such schema-based transformations are applied.

By building XML processing on top of a robust

relational engine, we are able to exploit many

sophisticated rewrite transformations. These trans-

formations optimize the data flow, and hence, some

are also applicable to XQuery. For example, rewrites

that merge nested query blocks or eliminate unused

variables are directly applicable. A hybrid system

also enables query rewrite transformations across

language boundaries by seamless compilation

(compilation with a single compiler in a single pass)

of the XML querying functions of SQL/XML (i.e.,

XMLQUERY, XMLEXISTS and XMLTABLE)
6

into a single

query graph.

In addition, we have developed several transforma-

tions specific to XQuery and XML navigation.

Specifically, we push navigation down closer to the

base data access to avoid navigating intermediate or

constructed XML fragments and to exploit XML

indexes. We also consolidate all path expressions in

BEYER ET AL. IBM SYSTEMS JOURNAL, VOL 45, NO 2, 2006284

a single FLWOR block into one pattern tree that is

annotated with several flags. These flags represent

whether a path is a FOR vs a LET path, whether an

empty sequence needs to be created when there is

no qualifying node (i.e., a node that is returned as a

result of an XQuery), whether duplicates should be

eliminated, and so forth. This pattern tree computes

multiple bindings. Another important rewrite

pushes down predicates in the where clause into

binding path expressions, enabling XML index

matching for value and general comparisons.

Index eligibility
An index is eligible for use during query evaluation

if it can be proven that the index contains a superset

of the results required for the query. We adapted the

XPath containment algorithm described in Reference

20 to identify the indexes that are able to answer a

part of a query. At a high level, this includes

showing the following:

1. The query implies a predicate of the form: $col/

,path-expr. ,cmp. ,expr., where cmp is a

comparison.

2. The indexed column is used in a FOR binding. LET

quantification is not particularly useful because

the entire result is required when the predicate is

satisfied; that is, either all the results or none of

the results are returned.

3. The path expression must produce the same set

or a subset of the indexed nodes.

4. The data type of the comparison must match the

data type of the index. The data types are not

required to be identical; for example, all numeric

comparisons match the double index. However,

the comparison performed by the index must

imply the required comparison. We perform type

inferencing on the query graph to determine the

type of the comparison based on the types of its

arguments. Even with schema evolution, type

inferences can be made. For example, literals,

casts, arithmetic, and type tests all establish data

types of parts of the query.

Example 2

for $dept in db2-fn:xmlcolumn(0DEPT.DEPTDOC 0)/

dept[@loc¼0CA0],

$emp in $dept//employee

where $emp/@id . 901

return ,empInfo.

f$emp/@id, $emp/nameg
,/empInfo.

For the sample XQuery in the preceding example,

we may create the following indexes:

create index I1 . . .0/dept/@loc0

as sql varchar(hashed)

create index I2 . . .0//@id0

as sql double

create index I3 . . .0/dept/employee/@id0

as sql double

create index I4 . . .0/dept//employee/@id0

as sql varchar(40)

Indexes I1 and I2 are eligible for the query

in Example 2: (1) The predicates

$doc/dept//employee/@id . 901 and

doc/dept/@loc ¼ 0CA0 match the required form; (2)

the indexed column (i.e. DEPT.DEPTDOC) is used in a

FOR binding; (3) the path expression defining the

index implies the path expressions in the predicates;

and (4) the data types of the comparisons match.

Index I3 cannot be used because the data might

include /dept/sub-dept/employee/@id, which is

not indexed, and I4 cannot be used because a

numeric comparison is not compatible with a string

index.

Physical plan generation

Physical plan generation is the phase in which the

optimizer scans a QGM graph containing relational

and XML entities and produces alternative execution

plans. The optimizer utilizes data statistics to build a

cardinality model, which is then used to estimate

costs for the execution plans. Intermediate plans can

be pruned, based on costs and plan properties such

as the order of input data. The final plan with the

cheapest cost is chosen for execution.

A physical plan is a model of query evaluation at

runtime. Each physical operator models a runtime

operation. Physical operators can be chosen at

different granularities. They can be modeled at a

primitive level, so that a complex runtime operation

is composed by using a tree of these primitive

operators. Alternatively, a complex runtime oper-

ation can be modeled by using one physical

operator. The choice of physical operator affects

cardinality and cost modeling. In DB2, new navi-

gation and index runtime operations are introduced

to support native XML processing; correspondingly,

new physical operators are needed to model them.

Our decision was to use one operator to model each.

IBM SYSTEMS JOURNAL, VOL 45, NO 2, 2006 BEYER ET AL. 285

One of the reasons for this coarse-grained approach

is that the complex new runtime operations cannot

be broken down to trees of primitive operations, and

it is not necessary to model the runtime operations

in fine detail because there is no alternative in

reordering the primitives at runtime. Modeling

runtime operators in a coarse-grained manner also

enables runtime operations to be flexible and

adaptive, based on information available during

execution.

We model the XML navigation runtime operation

with the physical operator XML Scan (XSCAN,

analogous to the relational table scan), and we

model the index runtime operation with the physical

operator XML Index Scan (XISCAN, analogous to

relational index scan). A third new physical operator

that we introduced is XANDOR, which models XML

index ANDing and ORing. Figure 6 shows an

example that illustrates the execution plan gener-

ated for the query in Example 2.

Much of the relational optimizer infrastructure is

reused, including rule-based plan generation, join

enumeration, join-order and join-method selection,

computation and propagation of properties, and the

cardinality and costing framework used to cost and

prune plans. In particular, by using the extensible

rule-based plan-generation mechanism
21

and ex-

tensible operator and plan data structures, plans

with the new XML operators (XSCAN, XISCAN, and

XANDOR) are created by simply incorporating new

rules. Because DB2 allows seamless compilation of

XQuery and SQL into a single query graph, the

optimizer is able to generate plans with mixed

relational and XML operators and interchange them

to produce alternative plans with different execution

orders.

QUERY RUNTIME

To evaluate queries over XML data, DB2’s relational

query runtime was extended to support the XQuery

and SQL/XML operators. There are two major

components added for processing queries over XML:

(1) XML index runtime and (2) XML navigation. In

addition, several adaptations of existing relational

runtime operators were required to support the new

XML data type.

One issue that influences all aspects of the XML

runtime is the dynamic nature of the XML data type.

In the relational setting, all the types are known at

compilation time. The types of the columns are

specified at DDL time and are unambiguous. XML

data might have no schema associated with it, a

schema that has ambiguous type definitions (e.g.,

XML Schema
22

union construct), or in the extreme

case, each XML element can be annotated with a

basic type using the xsi:type attribute. To accom-

modate such uncertainty, the runtime support for

XQuery relies on dynamic type dispatch.

XML index runtime

The XISCAN operator finds XML nodes that satisfy a

predicate using an XML index. The general form of

the predicate is start-val � path-expr � stop-val,

which represents a range scan on the values of

nodes with a path that matches the nonbranching

path expression path-expr. Internally, this results in

two or three implicit nested-loop join operations.

First, the path index is used to find the set of paths

that match the path expression by scanning the

range of revPath values for the ‘‘known’’ tail of the

path expression. Subsequently, the revPath value is

matched against the full pattern. For the path

expression //dept//name, all revPath values be-

tween name and namf are scanned and then checked

for a dept element.

For each matching path, the value index is then

probed with value.pathId ¼ path.pathId, and the

bounds specified by setting start-val and

stop-val. However, in our data model, the bounds

themselves can be sequences, because cells in an

SQL/XML table and LETs in XQuery represent

sequences. For equality predicates, this results in

XANDOR

Figure 6
A physical plan for index ANDing

FETCH XSCAN

NLJOIN

IOA

SORT

XISCAN XISCAN

/dept/@loc=’CA’

/dept[@loc=’CA’]/
 employee[@id >
901]/@id!, name!

/dept//employee/@id > 901

BEYER ET AL. IBM SYSTEMS JOURNAL, VOL 45, NO 2, 2006286

one scan of the value index per matching pathId

and per item in the start-val sequence. For range

predicates, only the minimum (or maximum) value

of the start (or stop) value is required.

The XANDOR operator combines the nodes that are

output from multiple XISCAN operations and

implements branching path expressions through

AND and OR operations, using only the XML

indexes. Because we use node identifiers, we access

only the nodes with predicates (‘‘leaf’’ steps) and

avoid accessing the large number of branching

nodes (which do not have a predicate). The details

of the XANDOR operation are beyond the scope of

this paper, but the operation is similar in spirit to

holistic twig joins.
23

XML navigation
The XML navigation (XNAV) runtime module

evaluates paths and predicate constraints for the

native XML store by traversing the XML storage,

following the parent-child relationship between the

nodes. It returns node references (logical node

identifiers) and atomic values to be further manip-

ulated by other runtime operators. XNAV is repre-

sented in the optimizer plan by XSCAN operators, as

shown in the example of Figure 6. Similar to the

relational SCAN operator, XSCAN can also apply

query predicates to reduce the size of the data

returned by the operator. However, an XML docu-

ment can correspond to one or several prejoined

relational records, or even a whole database. This

makes the XSCAN operator more complex in terms

of query features as well as robustness.

Design principles

XNAV provides efficient processing of the pattern

trees generated by the compiler. In XQuery language

terms, it roughly corresponds to a FLWOR block,

binding several variables. Unlike other approaches

in which every XPath step is modeled as a separate

operator,
24,25

a single XNAV operator can evaluate

multiple steps from multiple XPath expressions in a

query. This reduces the number of operators in the

query plan and eliminates the overlap in the

evaluation of the individual steps. Internally, XNAV

breaks input query steps into path groups, each of

which is evaluated by using a one-pass algorithm

similar to the one described in Reference 26. As with

the relational SCAN operator, XNAV interfaces with

the rest of the runtime using a ‘‘tuple based’’

interface (i.e., reading or manipulating data on the

tuple level, one record at a time) and returns tuples

of bindings. Each binding has the XML data type and

can be a singleton or a sequence of items, each item

being a reference or an atomic value. During the

traversal of a document, XNAV skips the nodes that

will not affect the result of the query. Finally, XNAV

uses limited memory and paged data structures for

the intermediate results.

XNAV trees

Path evaluation in XNAV is driven by the use of an

XNAV tree, a runtime query tree representation.

XNAV trees are produced during the threaded code

generation phase of the QGM representation of the

query. Figure 7 shows the XNAV tree for the XSCAN

operator in the query plan of Figure 6.

XNAV trees have structural and predicate parts. The

structural part contains the XPath steps of the

connected paths and has a query root node. Each

node can have attached predicates. Predicate oper-

ator nodes can point back to the structural part of

the XNAV tree when a structural node is an

argument of an operator. In the example, XNAV

reevaluates the predicates evaluated by the index to

ensure the correctness of the result. In Figure 7,

predicate operators are shown as oval nodes. The

output of this example of an XNAV tree is tuples of

the id and name bindings of the qualifying employ-

ees. These two nodes are the extraction points

indicated in the figure by gold rectangles.

Tuple construction and buffer management

During navigation, nodes that could be part of the

result or are needed for predicate evaluation are

collected into node buffers. These buffers can

contain a reference to a node or its atomic value,

depending on the use of the node and the size of its

atomic value. XNAV applies several techniques to

reduce the number of buffer entries required.

Figure 7
Example of an XNAV tree

root

deptF

employeeFloc

name

=

id

CA >

901

IBM SYSTEMS JOURNAL, VOL 45, NO 2, 2006 BEYER ET AL. 287

When the result of XNAV is a tuple with multiple

bindings, buffers for each of the extraction points

(i.e., element and attribute nodes in an XML

fragment that are extracted by XPath expressions)

are put together into tuples with an algorithm that

performs a variant of a merge-join operation over

the node identifiers of the ancestors.

Multipass processing

The single-pass algorithm has several advantages: it

preserves document order, uses predictive traversal,

and often minimizes the number of visited nodes.

However, there are several cases where the one-pass

algorithm as described previously is not suitable.

Although several branches usually can be evaluated

in one pass, in some cases, the query might have

branches that force navigation in different direc-

tions. For example, considering the query //a[.//b

. ../c] from an a element node, we need to

navigate both through the descendants of a and

upward toward its parent. In such cases, the XSCAN

operator builds a set of correlated XML navigations,

each evaluating a group of XPath steps with a one-

pass algorithm. Packaging more than one XNAV into

one operator avoids the expense of the operator

invocation and allows for the sharing of latched (or

locked) storage pages across all the groups within a

single operator.

XML SCHEMA SUPPORT

DB2 supports optional XML schema validation of

documents during insert, update, and query oper-

ations. In addition, there is limited support for DTDs

(Document Type Definitions) and external entities.

The type annotations produced by the validation are

stored together with the document for use during

query execution. DB2 conforms to the XQuery

standard,
5

the XML Schema standard,
22

and the

XML standard
1

for these operations.

XML schema registration and validation

Before XML schemas can be used for validating

documents, they need to be registered with the

database. If validation is used, then the database

relies on the XML schemas, stores type-annotated

documents on disk, and compiles execution plans

with references to the XML schemas. Additionally,

stable and high performance access to schemas is

required for efficient validation in XML insert,

update, or query operations. These stability and

performance requirements can only be met by

storing the schemas in the database itself. Hence,

DB2 provides an XML schema repository (XSR).

Internally, the schema repository consists of several

new database catalog tables. These tables store the

original XML schema documents that comprise an

XML schema as well as a ‘‘binary representation’’ of

the schema for fast reference during validation of a

document. Users can retrieve information from the

XSR as from any other catalog table. They can query

the XSR tables for schema documents, target

namespace, schema location, schema identifier, and

other attributes. For example, they can write SQL

queries that retrieve the identifier of the schema that

was used to validate a stored document and process

it accordingly.

Registration of XML schemas is done with DB2

commands, stored procedures, or language-specific

APIs. The following is an example of registering a

simple schema. Its schema URI (Uniform Resource

Identifier) is http://my.dept.com, the file that

contains the schema document is dept.xsd, the

schema identifier in the database is deptschema, and

it belongs to the relational database schema

departments. Note that the namespace URI is

deduced from the schema document itself.

register xmlschema http://my.dept.com

from dept.xsd

as departments.deptschema complete

Documents can be validated in SQL statements with

the XMLVALIDATE function. The schema to be used

for validation either can be specified explicitly, or it

can be deduced from the schemaLocation hints in

the instance documents. A schema can be explicitly

referenced by its schema URI or by its schema

identifier. The following example shows two insert

statements, which validate the input document

against the previously registered schema

deptschema. Both statements specify the schema

explicitly, by schema URI and by schema ID,

respectively.

insert into dept(deptdoc) values

xmlvalidate(? according to

xmlschema uri 0http://my.dept.com0)

insert into dept(deptdoc) values

xmlvalidate(? according to

xmlschemaiddepartments.deptschema)

BEYER ET AL. IBM SYSTEMS JOURNAL, VOL 45, NO 2, 2006288

These statements illustrate that XML Schema vali-

dation in DB2 is performed on a per-document

rather than a per-column basis. Each inserted

document can potentially be validated against a

different XML schema, demonstrating the flexibility

of the DB2 XML store. This flexibility is necessary

for document-centric applications, where organiza-

tion and classification of documents is more

important than homogeneity.

The following example shows an insert statement

where no schema is referenced explicitly in the

XMLVALIDATE function. In this case, DB2 tries to

deduce the schema from the input document and

find it in the repository.

insert into dept(deptdoc) values xmlvalidate(?)

Documents that include or refer to DTDs or external

entities can also be inserted, but the DTD is used

only to resolve entity references and to add default

attributes and elements.

XML schema evolution and flexibility
The DB2 schema repository is based on two main

design principles. First, the repository should not

require users to modify a schema before it is

registered or to modify XML documents before they

are inserted and validated. In addition, once docu-

ments have been inserted and validated, they should

never be invalidated and should never require

updates to remain valid. Because XML applications

often deal with large numbers of documents, bulk

updates to make them compliant with a non-

compatible schema change are almost always

infeasible.

The second design principle for the DB2 XML

schema repository is to enable schema evolution.

Schema evolution is a sequence of changes in an

XML schema over the course of its lifetime. Such

changes usually occur due to new or evolving

business needs, such as changing or introducing

new services, products, or business processes.

How best to accomplish schema evolution has been

a much debated topic, and there is currently no

standard for evolving schemas. Fortunately, most

applications do not need a solution to the general

schema evolution problem; instead, they sufficiently

constrain the problem so that relatively simple

solutions are possible. Therefore, flexibility of the

schema repository is of paramount importance. In

practical terms, this means that DB2’s schema

repository does not require the namespace or the

schema URI of each registered schema to be unique

& A single XNAV operator can
evaluate multiple XPath
expressions in an XQuery &

because the user might not have control over that.

The user does have control over the database-

specific schema identifier, which must be unique.

The schema repository does not prescribe a specific

way to perform schema evolution.

For the general schema evolution problem, one

option is to allow the old and new schemas to exist

side by side under different names. One can freely

mix documents that conform to the old schema with

documents that conform to the new schema in the

same column of a table. Queries can also be written

for that table to process only documents that

conform to the old schema, to the new schema, or to

both. To enable the application to perform more

complicated version-aware operations, DB2 supplies

a function to identify the schema that was used to

validate a particular document. The following query

returns the schema identifier of the schema that was

used for validation of the XML document for

department PR27.

select deptid, xmlxsrobjectid(deptdoc) from dept

where deptid ¼ "PR27"

ANNOTATED SCHEMA DECOMPOSITION

Even though the DB2 native XML store can insert

and query any XML document, there are cases

where it is appropriate to shred XML documents into

relational rows and columns. In certain usage

scenarios, XML is used only to transport data to the

database, and the XML structure is irrelevant once

the data is integrated with existing relational data.

For example, if an application extracts all relevant

data from a Web Services message and decomposes

that data into existing tables, then the original XML

message might not be needed anymore. Shredding

may also be required because many existing tools

for data mining and business intelligence work only

on the relational format of the data. Also, the

performance of queries on relational data may be

IBM SYSTEMS JOURNAL, VOL 45, NO 2, 2006 BEYER ET AL. 289

superior to queries on XML data if the schema is

sufficiently simple.

DB2 offers an improved decomposition product that

maps XML data into relational tables. The decom-

position process is driven by annotations inside the

XML Schema, similar to schema-annotated map-

pings in MS-SQL Server
27

and Oracle.
28

These

annotations are added to the schema by the user and

describe the mapping of XML elements and attri-

butes to tables and columns.

DB2 automates the decomposition process by using

the annotated schema as input. The following is an

example of an annotation. When a document is

inserted and decomposed according to this part of

an annotated schema, the value of the salary

element under the payroll element is inserted into

the salary column in table T. The DB2 decomposi-

tion annotations are in their own namespace and

use the namespace prefix db2-xdb.

,xsd:element name¼"payroll".

,xsd: complexType.

,xsd:sequence.

,xsd:elementname¼"salary"type¼"xsd:string"
db2-xdb:rowSet¼"T"
db2-xdb:column¼"salary"/.

,xsd:elementname¼"bonus"type¼"xsd:integer"
db2-xdb:rowSet¼"T"
db2-xdb:column¼"bonus" /.

,/xsd:sequence.

,/xsd:complexType.

,/xsd:element.

The annotations enable the user to control the

decomposition process in great detail: the data can

be normalized and its white space manipulated, or

the data can be manipulated in an expression or

truncated before insertion; the data can be inserted

conditionally (e.g., only values matching certain

criteria should be decomposed into the table-column

pairs); foreign key relationships can be described;

the same element or attribute can be inserted into

multiple table-column pairs; and multiple elements

or attributes can be inserted into the same table-

column pair.

Because XML is a first-class data type in DB2,

decomposing an XML document can include insert-

ing part or all of a document as an XML value into

an XML column. Effectively, this allows an appli-

cation to break an XML document into several

pieces and to store only the required pieces in one or

more XML columns.

XML API AND APPLICATION SUPPORT

Although the XML data type is stored and manip-

ulated as a hierarchical data type, it is currently only

externalized as a serialized XML string to applica-

tions. Each of the major database interfaces is

optimized to make use of the XML data type natively

and manages XML data with a focus on preservation

of encoding information. Each interface supports

inserting and retrieving serialized XML string data

by using existing character and binary application

data types.

The new types help avoid unnecessary code page

conversions, which can occur when existing char-

acter types are used. By default, all XML data

accessed through the application interfaces are

returned with an XML declaration, including an

encoding attribute. Most interfaces provide config-

uration options to override the default if required.

Applications can bind various language-specific data

types for input and output of XML columns or

parameters. These existing language-specific data

types allow the user to work with XML data only as

character or binary types. In order to use XML

efficiently and seamlessly, new language-specific

XML types are added to the existing client interfaces.

These new XML types enable the database to be

more efficient and to supply a richer API.

By making XML explicit in the application, the

database avoids unnecessary and unwanted code

page conversions. XML documents have an internal

encoding declaration that makes all transcoding but

that of the XML parser unnecessary. Transcoding an

XML document without carefully modifying the

XML encoding declaration might make the XML

document invalid.

All of the major database interfaces support the XML

type natively; that is, they treat XML data as XML,

not as a character type. In the following subsections,

we discuss XML type support in JDBC**, ODBC,

.NET, and embedded SQL.

Java Database Connectivity

Java Database Connectivity (JDBC) has been

enhanced to make XML data compatible with

BEYER ET AL. IBM SYSTEMS JOURNAL, VOL 45, NO 2, 2006290

strings, byte arrays, and streams, so that XML

columns and parameters can be bound to any of

these types. IBM is working on standardizing a JDBC

XML type. In the meantime, a proprietary XML type

com.ibm.db2.DB2Xml is available to enable an

application to migrate seamlessly to the future

standard JDBC type.

The DB2 XML interface has a number of methods

that make working with XML data easy. In the

following example, a column is retrieved as a DB2

XML object. Then the getDB2String method returns

the serialized representation of the XML value

(without an XML declaration) as a string object. The

getDB2XMLBinaryStream(‘‘UTF-16’’) method then

returns a binary stream with the XML value encoded

in UTF-16 (Unicode Transformation Format with 16-

bit encoding), including a matching XML declara-

tion.

com.ibm.db2.jcc.DB2Xml.xml1¼
(com.ibm.db2.jcc.DB2Xml) rs.getObject

("xml_stuff");

String s¼xml1.getDB2String();
InputStreamis¼xml2.getDB2XMLBinaryStream("UTF-16");

Call Level Interface
The DB2 Call Level Interface (CLI), a superset of

ODBC, has been enhanced to support XML by

providing a new SQL type, SQL_XML. Since there is

no native XML type in C, the new SQL type can only

be used in CLI/ODBC API calls to mark XML values

as XML typed. In all other ways, access to serialized

XML string data is identical to using a character

array. The advantage is that the DB2 client and

server know that this is XML data and can avoid

unnecessary or unwanted code page conversions.

Here is an example of inserting XML data into an

XML-typed column:

char.xmlBuf[10240];

SQLExecDirect(hStmt,"Insert intot1values(?)",

SQL_NTS);

SQLBindParameter(hStmt, 1, SQL_PARAM_INPUT,

SQL_C_CHAR, SQL_XML, xmlBuf, &xmlBufLen);

.NET Support

The goal of the DB2 .NET support is to integrate DB2

as thoroughly as possible with the .NET APIs. In this

example, an XML document is extracted from DB2,

and the application can use the standard .NET

interface, XmlReader, to manipulate the result.

DB2Command cmd¼ DB2Connection.CreateCommand();
cmd.CommandText ¼ "select c1 from T";

cmd.CommandType ¼ CommandType.Text;
DB2DataReader dr ¼ cmd.Execute();
dr.Read();

// retrieve the column as an XML reader

XmlReader xml ¼ dr.GetXmlReader(0);

Embedded SQL
The SQL standard

6
defines new host variable

declarations for XML types, and DB2 is using this in

its implementation, as shown in the following

example:

EXEC SQL BEGIN DECLARE;

SQL TYPE IS XML AS CLOB(10K) xmlBuf;

EXEC SQL END DECLARE SECTION;

EXEC SQL SELECT xmlCol INTO :xmlBuf from myTable

where id ¼ 00010;

NATIVE XML SUPPORT IN DB2 FOR Z/OS
As XML technology is increasingly embraced by

enterprises for their on-demand e-business applica-

tions, management of XML data in mainframe

databases becomes a necessity. DB2 for z/OS on the

powerful IBM mainframe systems is the leading

member of the DB2 family and plays a central role in

data processing for many of the largest enterprises

around the world. In this section, we briefly describe

the main features of native XML support in DB2 for

z/OS.

The initial functionality of native XML support in

DB2 for z/OS is largely a compatible subset of that of

DB2 UDB for the Linux**, Unix**, and Windows**

platforms. It supports native storage of the hier-

archical XQuery data model, indexing, efficient

search of XML documents, and composition of new

documents using SQL/XML functions. It supports

most of the SQL/XML functions with embedded

XPath queries and a limited set of types from the

XQuery data model. XML schema validation is

supported through a DB2-supplied user-defined

function, although the type annotation is dropped

when storing XML documents (i.e., the persistent

XML documents are untyped).

All the utilities of DB2 for z/OS support the XML

type. The XML type is also supported for non-

Unicode tables and partitioned table spaces and in

the data-sharing environment. More XQuery con-

structs, full XML schema support, and stand-alone

XQuery are to be delivered in future releases.

IBM SYSTEMS JOURNAL, VOL 45, NO 2, 2006 BEYER ET AL. 291

As DB2 for z/OS is targeted at enterprise customers,

special attention is given to its performance and

scalability. The following is a list of some major

design features enhancing the high performance of

the native XML support:

1. A custom-made XML parser provided by the z/OS

operating system is used for parsing. The parser

provides a more efficient buffered token stream

interface, instead of a SAX-like interface, to

reduce event-handling overhead.

2. Well-tuned segmented table spaces (i.e., the

universal table spaces) are used as the storage

infrastructure for persistent XML data. Instead of

using one record for each node, each record

stores a packed subtree or subtrees of nodes in an

internal table, significantly reducing the per-node

cost. Nodes within each page (as described for

DB2 UDB for Linux, Unix, and Windows) are

stored within a record for DB2 for z/OS, and

a node ID index plays the role of a regions

index.

An internal table space is created for each XML

column in a base table. The internal table space

contains a table with three columns (DocID,

minNodeID, XMLData), where the XMLData column

is a SQL VARBINARY type that contains packed

XML data. Each XMLData column contains a

single subtree or a sequence of subtrees that

share a common parent node. The parent node is

the context node for the record, containing the

absolute node ID in the record header among

other context information. Each node contains a

relative node ID.

3. An optimal QuickXScan algorithm is used for

streaming XPath evaluation. QuickXScan elimi-

nates the combinatorial explosion of matching

states commonly seen in streaming XPath algo-

rithms and achieves linear scalability. The

QuickXScan algorithm is also customized for

even faster XML index key generation.

4. New access methods based on XML value indexes

are used, similar to what has been described

previously for DB2 UDB for Linux, Unix, and

Windows.

5. A next-generation XML schema-validating parser

based on parser-generator techniques is used for

XML schema validation and annotated schema-

based decomposition.

For more details, see Reference 29.

XML UTILITIES AND TOOLS

Standard DB2 utilities have been upgraded to work

with the new XML type. For example, XML type

column data is supported by DB2’s ‘‘backup and

restore’’ and by DB2’s high-availability data repli-

cation for failover and fault tolerance.

The IMPORT and EXPORT functions offer a flexible

way to insert or extract data to or from database

tables. A single IMPORT command can populate any

combination of relational and XML columns in a

table. The IMPORT utility can read and import XML

documents from any number of separate XML files

in the file system. Alternatively, DB2 can import

XML documents that are concatenated in a single

large input file. Similarly, the EXPORT utility can

write XML documents to separate files or concate-

nate them into a single file.

The IMPORT and EXPORT functions give the user

fine-grained control of the XML parsing and

validation options. These options are similar to the

SQL/XML functions XMLPARSE and XMLVALIDATE.

Validation of documents during import is optional. If

validation is used, all imported documents can be

validated against a single schema, or schemas can

be specified on a per-document basis. Also, it is

possible to validate some but not all documents

during import. When XML data is exported, a flat

file is written in addition to the XML data. This flat

file may contain relational data that may have been

part of the export. It also contains references to the

exported XML documents. Optionally, a schema

identifier is included for each exported document

that was validated at the time of data insertion.

Thus, the relationship between documents and

schemas can be exported along with the actual data

and can be used for validation when the data is

imported into a database again.

XQuery is a functional query language that enables

users to query XML data sources, including XML

columns. Novice users may find the language fairly

complex and difficult, even for simple queries. To

alleviate this problem, DB2 provides a GUI-based

XQuery builder. The XQuery builder exposes the

XQuery language functionality as sets of grid,

enabling the user to build fairly complex queries.

The tool interprets users’ GUI actions and generates

the corresponding queries, greatly assisting in the

construction and manipulation of XQuery syntax.

The DB2 Developer Workbench provides GUI

BEYER ET AL. IBM SYSTEMS JOURNAL, VOL 45, NO 2, 2006292

support for defining XML indexes, XML schema

annotations for decomposition, and basic tasks like

defining XML columns in tables or viewing XML

documents.

RELATED WORK

In recent years, many different approaches have

been proposed for XML data management, in both

academia and industry. They can be classified into

two groups: native XML management systems and

systems that reuse an underlying relational DBMS.

In relational-based approaches, the core storage and

processing model for XML is the relational model,

and a mapping between the XML data model and the

relational data model is required. In contrast, a

native XML database uses an XML data model, for

example, the XML Infoset or the XQuery data model,

as the core data model for the processing and

storage of XML data. XML is not treated as text, and

it is not mapped to a different data model. The data

is represented as XML even with respect to its

physical storage on disk.

Relational-based approaches either shred the XML

documents into relational tables using some sort of

encoding
8,30–32

or use a LOB (large object) column

to store the XML document as text.
33–35

The main

advantage of the relational-based approach is that it

requires no modification to existing engines, while

exploiting their maturity, extensive tuning, proven

scalability, and sophisticated optimizers.

Shredding XML to relational tables is expensive at

insertion time due to costly XML parsing
29

and

multitable inserts, which require access to many

database records. Once XML is broken into rela-

tional scalar values, queries and updates in plain

SQL can be run with high performance. One

important disadvantage of shredding-based methods

is their inefficiency for retrieval of the whole or a

subpart of the XML document, as well as their

inflexibility regarding support of schema evolution.

The required multiway joins required for recon-

structing XML documents can be expensive when

dealing with large amounts of data.
36

Shredding-based approaches need to translate an

XQuery into SQL for evaluation. As Reference 7

argues, due to the semantic mismatch between

XQuery and SQL, not all XQuery expressions are

translatable into SQL, or they may translate into

inefficient SQL statements. A more comprehensive

review of methods for XML-to-SQL query translation

and their limitations is beyond the scope of this

paper and can be found in Reference 37.

Generally, LOB-based storage allows fast insertion

and retrieval of full document and full schema

flexibility, since any XML document, irrespective of

its schema, can be stored. But this approach suffers

from poor search and extraction performance due to

XML parsing at query execution time. Search

performance can be improved if indexes are built at

insertion time. Although this incurs XML parsing

overhead, it may speed up queries for documents

that match given search conditions. Compared to

LOB-based approaches, DB2 enjoys a similar fast

retrieval of full documents, as it stores the entire

document together, but does not suffer from

inefficient search, because it uses a directly tra-

versable, parsed structured-tree format.

The second alternative to XML data management is

to build a native XML database. Examples of native

systems include TIMBER,
38

Niagara,
39

and Natix.
40

Systems such as Niagara and TIMBER break the

XML document into nodes and store the node

information in a ‘‘Bþ tree’’ (a tree structure

commonly used for relational database indexes)

with all document nodes stored in order at the leaf

level. This allows for efficient document or subtree

reconstruction by a simple scan of the leaf pages of

the tree. All the native XML systems deal only with

XML data and do not support SQL or relational

storage.

Relational databases have been offering support for

storage, manipulation, search, and retrieval of XML

data.
41–43

In Oracle 10g XML documents can be

stored with indexing support as CLOBs (character

large objects), shredded to object-relational tables,

or a combination of these functions.
28

Microsoft SQL

Server 2005 stores XML documents in a parsed,

tokenized format as byte sequences in BLOB (binary

large object) columns.
44

A primary XML index can

be defined to avoid parsing the XML BLOBs at query

time.
28,44

Additionally, secondary XML indexes can

be defined to further increase query performance.

This is somewhat different from DB2’s XML storage

and indexing approach described in the sections

‘‘Native XML storage’’ and ‘‘XML indexes.’’ In DB2,

XML parsing is never required at query time, and

indexes can be defined on specific paths.

IBM SYSTEMS JOURNAL, VOL 45, NO 2, 2006 BEYER ET AL. 293

Finally, there are many XQuery implementations in

both academia and industry. A comprehensive list of

public XQuery implementations and links can be

found on the home page of the W3C XQuery

working group (http://www.w3.org/XML/Query).

SUMMARY AND CONCLUSIONS

DB2 Universal Database has been enhanced with

comprehensive native XML support to overcome the

limitations inherent in mapping XML to relational

tables or CLOBs. XML documents are stored as type-

annotated trees on disk pages, indexed with path-

specific indexes, and queried with XQuery, SQL/

XML, or a combination of both. Schema validation is

optional and performed on a per-document basis,

which allows for flexibility and schema evolution.

Enhancements to the major database APIs provide

client applications with the required functionality to

exploit new XML capabilities in the DB2 server. The

native XML solution in DB2 includes XML support in

utilities such as XML import and export and a visual

XQuery design tool.

We have described the architecture and overall

design of native XML in DB2, a hybrid relational and

XML data-management system. To the best of our

knowledge, this is the first truly hybrid system to

support both relational and XML data. We believe

such a system is essential to the evolution of

enterprise data-management solutions, as XML and

relational data will coexist and complement each

other.

A hybrid system enables easier incorporation of more

traditional data management tools, such as triggers

and materialized views, into XML data management.

The DB2 XML system allows us to leverage more

than 20 years of data-management research to

advance XML technology to the same sophistication

expected from mature relational systems.

ACKNOWLEDGMENTS
We would like to thank and recognize the large

number of engineers at the IBM Toronto Lab, IBM

Silicon Valley Lab, IBM Almaden Research Center,

IBM Portland Lab, and IBM Thomas J. Watson

Research Center for their contributions to integrating

native XML support into DB2. We would also like to

thank Sriram Padmanabhan for his valuable feedback

and suggestions in the preparation of this paper.

*Trademark, service mark, or registered trademark of
International Business Machines Corporation.

**Trademark, service mark, or registered trademark of
Massachusetts Institute of Technology, Sun Microsystems,
Inc., Linus Torvalds, The Open Group, or Microsoft Corpo-
ration in the United States, other countries, or both.

CITED REFERENCES
1. M. Birbeck, M. Kay, S. Livingstone, S. F. Mohr,

J. Pinnock, B. Loesgen, S. Livingston, D. Martin, N. Ozu,
M. Seabourne, and D. Baliles, Professional XML, Wrox
Press, John Wiley and Sons, Hoboken, NJ (2000).

2. R. P. Bourret, personal communication.

3. Bioinformatics, O’Reilly XML.com, http://www.xml.
com/pub/rg/Bioinformatics.

4. H. V. Jagadish, L. V. S. Lakshmanan, D. Srivastava, and
K. Thompson, ‘‘TAX: A Tree Algebra for XML,’’ Proceed-
ings of the International Workshop on Data Bases and
Programming Languages (DBPL 2001), in LNCS 2937,
Springer-Verlag, Berlin (2002), pp. 149–164.

5. XQuery 1.0: An XML Query Language, S. Boag,
D. Chamberlin, M. Fernandez, D. Florescu, J. Robie, and
J. Simeon, Editors, W3C Candidate Recommendation
(November 2005), http://www.w3.org/TR/xquery.

6. Information Technology—Database Language SQL—Part
14: XML-Related Specifications (SQL/XML), International
Organization for Standardization (ISO), ANSI/ISO/IEC
9075-14:2005 draft under development (March 11, 2006).

7. I. Manolescu, D. Florescu, and D. Kossmann, ‘‘Answering
XML Queries on Heterogeneous Data Sources,’’ Proceed-
ings of the 27th International Conference on Very Large
Data Bases (VLDB 2001), Morgan Kaufmann, San
Francisco, CA (2001), pp. 241–250.

8. D. DeHaan, D. Toman, M. P. Consens, and T. Özsu, ‘‘A
Comprehensive XQuery to SQL Translation Using Dy-
namic Interval Encoding,’’ Proceedings of the 22nd
International ACM SIGMOD Conference on Management
of Data (SIGMOD 2003), ACM Press, New York (2003),
pp. 623–634.

9. K. S. Beyer, R. Cochrane, V. Josifovski, J. Kleewein,
G. Lapis, G. M. Lohman, B. Lyle, F. Özcan, H. Pirahesh,
N. Seemann, T. C. Truong, B. Van der Linden, B. Vickery,
and C. Zhang, ‘‘System RX: One Part Relational, One Part
XML,’’ Proceedings of the 24th International ACM
SIGMOD Conference on Management of Data (SIGMOD
2005), ACM Press, New York (2005), pp. 347–358.

10. H. Pirahesh, J. M. Hellerstein, and W. Hasan, ‘‘Exten-
sible/Rule Based Query Rewrite Optimization in Star-
burst,’’ Proceedings of the 1992 ACM SIGMOD
International Conference on Management of Data
(SIGMOD 1992), ACM Press, New York (1992), pp. 39–
48.

11. XQuery 1.0 and XPath 2.0 Data Model (XDM), M. F.
Fernandez, A. Malhotra, J. Marsh, M. Nagy, and N.
Walsh, Editors, W3C Candidate Recommendation (No-
vember 2005), http://www.w3.org/TR/
xpath-datamodel/.

12. R. Kaushik, P. Bohannon, J. F. Naughton, and H. F.
Korthet, ‘‘Covering Indexes for Branching Path Queries,’’
Proceedings of the 21st International ACM SIGMOD
Conference on Management of Data (SIGMOD 2002),
ACM Press, New York (2002), pp. 133–144.

13. M. Nicola and B. Van der Linden, ‘‘Native XML Support
in DB2 Universal Database,’’ Proceedings of the 31st
International Conference on Very Large Data Bases (VLDB

BEYER ET AL. IBM SYSTEMS JOURNAL, VOL 45, NO 2, 2006294

2005), Morgan Kaufmann, San Francisco, CA (2001), pp.
1164–1174, http://www.vldb2005.org/program/paper/
thu/p1164-nicola.pdf.

14. XML Path Language (XPath) 2.0, A. Berglund, S. Boag,
D. Chamberlin, M. Fernandez, M. Kay, J. Robie, and
J. Simeon, Editors, W3C Candidate Recommendation
(November 2005), http://www.w3.org/TR/xpath20.

15. XQuery 1.0 and XPath 2.0 Formal Semantics, D. Draper,
P. Fankhauser, M. Fernandex, A. Malhotra, K. Rose,
M. Rys, J. Simeon, and P. Wadler, Editors, W3C
Candidate Recommendation (November 2005), http://
www.w3.org/TR/xquery-semantics/.

16. L. M. Haas, W. Chang, G. M. Lohman, J. McPherson,
P. F. Wilms, G. Lapis, B. Lindsay, H. Pirahesh, M. J.
Carey, and E. J. Shekita, ‘‘Starburst Mid-Flight: As the
Dust Clears,’’ IEEE Transactions On Knowledge and Data
Engineering 2, No. 1, 143–160 (1990).

17. Z. Chen, H. V. Jagadish, L. V. S. Lakshmanan, and
S. Paparizos, ‘‘From Tree Patterns to Generalized Tree
Patterns: On Efficient Evaluation of XQuery,’’ Proceedings
of the 29th International Conference on Very Large Data
Bases (VLDB 2003), Morgan Kaufmann, San Francisco,
CA (2003), pp. 237–248.

18. M. F. Fernandez and D. Suciu, ‘‘Optimizing Regular Path
Expressions Using Graph Schemas,’’ Proceedings of the
Fourteenth International Conference on Data Engineering
(ICDE 1998), IEEE Computer Society Press, J. Wiley,
Hoboken, NJ (1998), pp. 14–23.

19. G. Grahne and A. Thomo, ‘‘Algebraic Rewritings for
Optimizing Regular Path Queries,’’ Theoretical Computer
Science 296, No. 3, 453–471 (2003), http://portal.acm.
org/citation.cfm?id¼782741&dl¼ACM&coll¼GUIDE.

20. A. Balmin, F. Özcan, K. Beyer, R. J. Cochrane, and
H. Pirahesh, ‘‘A Framework for Using Materialized XPath
Views in XML Query Processing,’’ Proceedings of the 30th
International Conference on Very Large Data Bases (VLDB
2004), Morgan Kaufmann, San Francisco, CA (2004), pp.
60–71.

21. G. M. Lohman, ‘‘Grammar-like Functional Rules for
Representing Query Optimization Alternatives,’’ Proceed-
ings of the ACM SIGMOD Conference on Management of
Data (SIGMOD 1998), ACM Press, New York (1998),
pp. 18–27.

22. XML Schema, W3C Architecture Domain, http://www.
w3.org/XML/Schema.

23. N. Bruno, N. Koudas, and D. Srivastava, ‘‘Holistic Twig
Joins: Optimal XML Pattern Matching,’’ Proceedings of the
ACM SIGMOD Conference on Management of Data
(SIGMOD 2002), ACM Press, New York (2002), pp. 310–
321.

24. D. Florescu, C. Hillery, D. Kossmann, P. Lucas,
F. Riccardi, T. Westmann, M. J. Carey, and A. Sundar-
arajan, ‘‘The BEA/XQRL Streaming XQuery Processor,’’
VLDB Journal 13, No. 3, 294–315 (2004).

25. J. Shanmugasundaram, J. Kiernan, E. J. Shekita, C. Fan,
and J. Funderburk, ‘‘Querying XML Views of Relational
Data,’’ Proceedings of the 27th International Conference
on Very Large Data Bases (VLDB 2001), Morgan
Kaufmann, San Francisco, CA (2004), pp. 261–270.

26. V. Josifovski, M. Fontoura, and A. Barta, ‘‘Querying XML
Streams,’’ VLDB Journal 14, No. 2, 197–210 (2005).

27. SQLXML in MS SQL Server 2000, http://msdn.microsoft.
com/sqlxml.

28. Oracle XML DB 10g, http://www.oracle.com/
technology/tech/xml/xmldb.

29. G. Zhang, ‘‘Building a Scalable Native XML Database
Engine on Infrastructure for a Relational Database,’’
Proceedings of the Second International Workshop on
XQuery Implementation, Experience and Perspectives
(XIME-P 2005), ACM Press, New York (2005),
http://www.geocities.com/zhanggene/pub/
ScalableNativeXMLDB.pdf.

30. M. Nicola and J. John, ‘‘XML Parsing: A Threat to
Database Performance,’’ Proceedings of the 12th Interna-
tional Conference on Information and Knowledge Man-
agement (CIKM 2003), ACM Press, New York (2003),
pp. 175–178.

31. M. F. Fernandez, Y. Kadiyska, D. Suciu, A. Morishima,
and W. C. Tan, ‘‘SilkRoute: A Framework for Publishing
Relational Data in XML,’’ ACM Transactions on Database
Systems 27, No. 4, 438–493 (2002), http://www.cs.
washington.edu/homes/suciu/file07_paper.pdf.

32. D. Florescu and D. Kossmann, ‘‘Storing and Querying
XML Data Using an RDBMS,’’ IEEE Data Engineering
Bulletin 22, No. 3, 27–34 (1999).

33. J. Shanmugasundaram, K. Tufte, C. Zhang, G. He, D. J.
DeWitt, and J. F. Naughton, ‘‘Relational Databases for
Querying XML Documents: Limitations and Opportuni-
ties,’’ Proceedings of the 25th International Conference on
Very Large Data Bases (VLDB 1999), Morgan Kaufmann,
San Francisco, CA (1999), pp. 302–314.

34. L. Ennser, C. Delporte, M. Oba, and K. Sunil, Integrating
XML with DB2 Extender and DB2 Text Extender, IBM
Redbooks (2000), http://www.redbooks.ibm.com/pubs/
pdfs/redbooks/sg246130.pdf.

35. Microsoft TechNet: SQL Server 2000, http://www.microsoft.
com/technet/prodtechnol/sql/2000/default.mspx.

36. S. Pal, I. Cseri, O. Seeliger, G. Schaller, L. Giakoumakis,
and V. Zolotov, ‘‘Indexing XML Data Stored in a
Relational Database,’’ Proceedings of the 30th Interna-
tional Conference on Very Large Data Bases (VLDB 2004),
Morgan Kaufmann, San Francisco, CA (2004), pp. 1146–
1157, http://www.vldb.org/conf/2004/IND5P2.PDF.

37. R. Krishnamurthy, R. Kaushik, and J. F. Naughton,
‘‘XML-to-SQL Query Translation Literature: The State of
the Art and Open Problems,’’ Proceedings of the 1st
International XML Database Symposium (XSym), in
LNCS 2824, Springer-Verlag, Berlin (2003), pp. 1–18,
http://www.cs.wisc.edu/;sekar/research/
xmltosqlsurvey.pdf.

38. H. V. Jagadish, S. Al-Khalifa, A. Chapman, L. V. S.
Lakshmanan, A. Nierman, S. Paparizos, J. M. Patel,
D. Srivastava, N. Wiwatwattana, Y. Wu, and C. Yu,
‘‘TIMBER: A Native XML Database,’’ VLDB Journal 11,
No. 1, 274–291 (2002), http://www.eecs.umich.edu/db/
timber/files/timber.pdf.

39. A. Halverson, J. Burger, L. Galanis, A. Kini, R.
Krishnamurthy, A. N. Rao, F. Tian, S. Viglas, Y. Wang,
J. F. Naughton, and D. J. DeWitt, ‘‘Mixed Mode XML
Query Processing,’’ Proceedings of the 29th International
Conference on Very Large Data Bases (VLDB 2003),
Morgan Kaufmann, San Francisco, CA (2003), pp. 225–
236.

40. T. Fiebig, S. Helmer, C.-C. Kanne, J. Mildenberger,
G. Moerkotte, R. Schiele, and T. Westmann, ‘‘Anatomy of
a Native XML Base Management System,’’ VLDB Journal
11, No. 4, 292–314 (December 2002).

41. K. S. Beyer, F. Özcan, S. Saiprasad, and B. Van der
Linden, ‘‘DB2 XML: Designing for Evolution,’’ Proceed-
ings of the 2005 International ACM SIGMOD Conference
on Management of Data (SIGMOD 2005), ACM Press,
New York (2005), pp. 948–952.

IBM SYSTEMS JOURNAL, VOL 45, NO 2, 2006 BEYER ET AL. 295

42. R. Murty, Z. H. Liu, M. Krishnaprasad, S. Chandrasekar,
A.-T. Tran, E. Sedlar, D. Florescu, S. Kotsovolos,
N. Agarwal, V. Arora, and V. Krishnamurthy, ‘‘Toward
an Enterprise XML Architecture,’’ Proceedings of the 2005
International ACM SIGMOD Conference on Management
of Data (SIGMOD 2005), ACM Press, New York (2005),
pp. 953–957.

43. Michael Rys, ‘‘XML and Relational Database Management
Systems: Inside Microsoft SQL Server 2005,’’ Proceedings
of the 24th International ACM SIGMOD Conference on
Management of Data (SIGMOD 2005), ACM Press, New
York (2005), pp. 958–962.

44. S. Pal, I. Cseri, O. Seeliger, M. Rys, G. Schaller, W. Yu,
D. Tomic, A. Baras, B. Berg, D. Churin, and E. Kogan,
‘‘XQuery Implementation in a Relational Database Sys-
tem,’’ Proceedings of the 31st International Conference on
Very Large Data Bases (VLDB 2005), Morgan Kaufmann,
San Francisco, CA (2005), pp. 1175–1186, http://www.
vldb2005.org/program/paper/thu/p1175-pal.pdf.

Accepted for publication January 17, 2006.

Kevin Beyer
IBM Almaden Research Center, 650 Harry Road, San Jose,
California 95120-6099 (kbeyer@us.ibm.com). Dr. Beyer is a
research staff member at the IBM Almaden Research Center in
San Jose, California. He is a member of the DB2 XML project
team and a leader of the design and implementation of the
XML indexing infrastructure. Prior to his work on XML, Dr.
Beyer investigated materialized views and OLAP technologies.

Roberta Cochrane
IBM Software Group, 294 Route 100, Somers, New York 10589
(bobbiec@almaden.ibm.com). Dr. Cochrane is a Senior
Technical Staff Member in IBM’s Software Group Strategy
division. She is a leader in the delivery of advanced query
technology to IBM’s database products, providing many new
advanced features over the last 15 years, including material-
ized views, triggers, and constraints. She has conducted
extensive research in active database systems and played a
major role in the definition of the SQL3 standard for triggers
and constraints. Dr. Cochrane is a member of the IBM
Academy of Technology, a Master Inventor, and was one of
IBM’s 2002 YWCA TWIN awardees, honoring women in
industry. She received a B.S. degree in computer science and
mathematics from James Madison University, Virginia and a
Ph.D. degree in computer science from the University of
Maryland at College Park. The work described in this paper
was done under her leadership as a manager of XML Database
Technologies in the Exploratory Database department at IBM
Almaden Research Center.

Michael Hvizdos
IBM Software Group, 8200 Warden Ave., Toronto Lab,
Markham, ON L6G 1C7, Canada (hvizdos@ca.ibm.com). Mr.
Hvizdos is an advisory software developer at the IBM Toronto
lab, responsible for the design and implementation of the DB2
CLI/ODBC and embedded SQL application interfaces to XML
data and XQuery. He has over seven years of experience
supporting, maintaining, and enhancing DB2 application
interfaces and has contributed to numerous editions of the
IBM DB2 UDB Family Fundamentals and Application Devel-
opment certification examinations. He received a Bachelor of
Science degree in electrical engineering in 1998 from the
University of Calgary. Mr. Hvizdos continues to enhance the
functionality, reliability, and usability of the DB2 application
interfaces with particular focus on XML efficiency.

Vanja Josifovski
Yahoo! Research, 701 First Avenue, Sunnyvale, California
94089 (vanjaj@yahoo-inc.com). Dr. Josifovski is a senior
research scientist at the Yahoo Research Laboratory where he
is a member of the group exploring search and advertisement
technologies for the Internet. Previously, Dr. Josifovski was a
research staff member at the IBM Almaden Research Center,
working on several projects in database runtime and
optimization, federated databases, and enterprise search
projects. He earned an M.Sc. degree from the University of
Florida at Gainesville and a Ph.D. degree from the Linkoping
University in Sweden. His technical interests include scalable
infrastructure for search, incremental indexing of semistruc-
tured and unstructured data, and advanced search technolo-
gies for improved result relevance.

Jim Kleewein
Microsoft Corporation, 1 Microsoft Way, Redmond,
Washington 98052 (jimk@microsoft.com). Mr. Kleewein has
spent roughly the last 20 years working on the design and
implementation of data management systems, working on
projects ranging from row-level locking on DB2/MVSe,
sysplex data sharing, and data federation to geospatial data
management. He recently joined Microsoft’s unified commu-
nications group.

George Lapis
IBM Silicon Valley Laboratory, 553 Bailey Avenue, San Jose,
California 95141 (lapis@almaden.ibm.com). Mr. Lapis is a
technical manager at IBM’s Silicon Valley Lab, managing the
DB2 XML compiler development team. He has worked in
database software for more than 25 years. He was a member
of the R* and Starburst research projects at IBM’s Almaden
Research Center in San Jose, California. He also was a
member of the compiler development team for several
releases of DB2 Universal Database. His expertise is mostly in
compiler technology and implementation. For the last several
years he has led the compiler development team at IBM’s
Silicon Valley Laboratory in San Jose, California, working on
SQL, XML, and XQuery for DB2 Universal Database.

Guy Lohman
IBM Almaden Research Center, 650 Harry Road, B1-434, San
Jose, California 95120 (lohman@almaden.ibm.com). Dr.
Lohman is manager of Advanced Optimization in the
Advanced Database Solutions department at IBM Research
Division’s Almaden Research Center in San Jose, California.
He has over 23 years of experience in relational query
optimization. He is the architect of the optimizer for the DB2
Universal Database for Linux, UNIX, and Windows, and was
responsible for its development in Versions 2 and 5, as well as
for the invention and prototyping of Visual Explain. During
that period, Dr. Lohman also managed the overall effort to
incorporate into the DB2 UDB product the Starburst compiler
technology that was prototyped at the Almaden Research
Center. More recently, he was a co-inventor and designer of
the DB2 Index Advisor (now part of the Design Advisor), and
cofounder of the DB2 Autonomic Computing project, part of
IBM’s company-wide Autonomic Computing initiative. In
2002, Dr. Lohman was elected to the IBM Academy of
Technology. His current research interests involve query
optimization, self-managing database systems, and problem
determination.

Robert Lyle
IBM Software Group, 555 Bailey Ave., Silicon Valley
Laboratory, San Jose, California 95141 (blyle@us.ibm.com).
Mr. Lyle is a member of the DB2 XML project team and a
leader of the design and implementation of the XML indexing

BEYER ET AL. IBM SYSTEMS JOURNAL, VOL 45, NO 2, 2006296

Published online April 27, 2006.

infrastructure. He has worked in database software for over 17
years. Prior to his work on XML, Mr. Lyle worked on
introducing OLAP functions into the DB2 Universal Database
for Linux, UNIX, and Windows. Before that, he spent 11 years
working on DB2 for z/OS, where he was the technical lead
and owner of the indexing component and led the develop-
ment of the type-2 index manager.

Matthias Nicola
IBM Software Group, 555 Bailey Ave., Santa Teresa Lab, San
Jose, California 95141 (mnicola@us.ibm.com). Dr. Nicola is
the technical lead for XML database performance at IBM’s
Silicon Valley Lab. His work focuses on all aspects of XML
performance in DB2, including XQuery, SQL/XML, and all
native XML features in DB2. Dr. Nicola works closely with the
DB2 XML development teams as well as with customers and
business partners who are using XML, assisting them in the
design, implementation, and optimization of XML solutions.
Prior to joining IBM, Dr. Nicola worked on data warehousing
performance for Informix Software. He also worked for four
years in research and industry projects on distributed and
replicated databases; he received his doctorate in computer
science in 1999 from the Technical University of Aachen,
Germany.

Fatma Özcan
IBM Almaden Research Center, 650 Harry Road, B1-434, San
Jose, California 95120 (fozcan@almaden.ibm.com). Dr. Öz-
can has been a research staff member at IBM’s Almaden
Research Center since 2001. She is a member of the DB2 XML
compiler team and a technical leader in the area of XML query
languages, XQuery semantics, and rewrite optimization. She
received a Ph.D. degree in computer science from the
University of Maryland at College Park in 2001. Her research
interests include XML query languages and query optimiza-
tion, integration of heterogeneous information systems, and
software agents. She is a member of ACM SIGMOD and co-
author of the book Heterogeneous Agent Systems.

Hamid Pirahesh
IBM Almaden Research Center, 650 Harry Road, B1-434, San
Jose, California 95120 (pirahesh@almaden.ibm.com). Dr.
Pirahesh is an IBM fellow and a senior manager responsible
for the Exploratory Database department at the Almaden
Research Center in San Jose, California. He also has direct
responsibilities for various aspects of IBM information
management products. He received a Ph.D. degree from the
University of California at Los Angeles in the area of database
systems. Dr. Pirahesh is an IBM Master Inventor and a
member of the IBM Academy. He has served as an associate
editor of ACM Computing Surveys and has served on the
program committee of major computer conferences. He was a
principal member of the original team that designed the query-
processing architecture of the IBM DB2 Universal Database
relational DBMS and delivered the product to the marketplace.
He has made major contributions to query-language industry
standards. His research areas include OLAP and aggregate
data management, query optimization, data warehousing,
service-oriented architecture, management of semistructured
(XML) and unstructured data, and information integration in
Web-based federated and distributed systems. He also serves
as a consultant to various IBM divisions, including IBM
Software Group and IBM Global Services.

Normen Seemann
IBM Software Group, 555 Bailey Ave., Santa Teresa Lab, San
Jose, California 95141 (normsee@us.ibm.com). Mr. Seemann
is an advisory software engineer in IBM’s Silicon Valley
Laboratory. He is a member of the DB2 XML compiler team,
focusing on XQuery semantics and modeling, XPath, and
XQuery rewrite transformations. He received an M.Sc. degree

in computer science from the University of Rostock, Germany
and joined the IBM Software Group in 2000.

Ashutosh Singh
IBM Almaden Research Center, 650 Harry Road, San Jose,
California 95120 (ashutosh@almaden.ibm.com). Mr. Singh is
an advisory engineer in the Advance Database Solutions
department. He received a Masters degree from the University
of Wisconsin at Madison and joined IBM Research in 1999.
Mr. Singh’s eight years in the IT industry include research,
design, and development in the area of relational database
systems. He has contributed to the design and development of
XML as well as relational technology in the DB2 Universal
Database for Linux, UNIX and Windows. His areas of interest
include sampling technology in databases, database perfor-
mance, high availability, query optimization, data and
application integration, text search, and data mining. Prior to
joining IBM, he was responsible for the architecture and
implementation of the stored procedure execution module for
the PARADISE database server at the University of Wisconsin
at Madison and later at the NCR Corporation.

Tuong Truong
IBM Software Group, 555 Bailey Ave., Santa Teresa Lab, San
Jose, California 95141 (tctruong@us.ibm.com). Mr. Truong is
a senior software engineer and manager, managing the XML
Query Runtime department. His team is responsible for
extending the DB2 runtime relational engine to support the
evaluation of the XQuery language. Mr. Truong received a B.S.
degree in computer science in 1990 and an M.B.A. degree in
1998, both from San Jose State University. He joined the IBM
Software Group in 1991. Mr. Truong’s 15 years experience in
the database industry includes the architecture, design, and
implementation of systems in technology areas such as
relational databases, business intelligence, data replication,
massively parallel systems, and XML databases.

Robbert C. Van der Linden
IBM Software Group, 555 Bailey Ave., Santa Teresa Lab, San
Jose, California 95141 (robbert@us.ibm.com). Mr. Van der
Linden joined IBM in 2001 to work on the XML project in DB2
as one of the early architects. He came to IBM from a startup
company, Propel, where he led the design and implementation
of the distributed and fault-tolerant middleware which hosted
a scalable e-commerce application. Before that Mr. Van der
Linden worked for many years at Tandem Computers on
NonStop SQL, a database that runs many critical applications
in the financial industry.

Brian Vickery
(bvickery@acm.org). Mr. Vickery has spent roughly the last 10
years working on the design and implementation of data
management systems, at various companies, including BEA,
IBM, Propel, Tandem, and elsewhere. His contribution to the
work described in this paper was done while he was working
at the IBM Silicon Valley Laboratory as a member of the DB2
XML team. Mr. Vickery designed and implemented the XML
storage layer for DB2 XML.

Chun Zhang
Cosmix Corporation, 444 Castro Street, Suite 700, Mountain
View, California 94041 (chunz@kosmix.com). Dr. Zhang is
currently a member of the technical staff at Cosmix
Corporation in Mountain View, California. Her contribution to
the work described in this paper was done while she was a
research staff member at the IBM Almaden Research Center
and member of the DB2 XML team focusing on the design and
development of the query optimizer. She has extensive
experience in structured, semistructured, and unstructured
data management. Dr. Zhang’s current work involves text
mining and search engine technologies. She is also interested
in storage, query processing, and optimization. Dr. Zhang

IBM SYSTEMS JOURNAL, VOL 45, NO 2, 2006 BEYER ET AL. 297

received her Ph.D. degree from University of Wisconsin at
Madison.

Guogen Zhang
IBM Software Group, 555 Bailey Ave., Santa Teresa Lab, San
Jose, California 95141 (gzhang@us.ibm.com). Dr. Zhang is a
Senior Technical Staff Member in the development organiza-
tion of DB2 Universal Database for z/OS. He attained a B.S.
degree in computational mathematics from Hangzhou Uni-
versity in China in 1984, an M.S. degree in computer science
from Jinan University in China in 1987, a second M.S. degree
in computer science from the University of Kansas in 1994,
and a Ph.D. degree in computer science from UCLA in 1998.
He subsequently joined IBM at the Silicon Valley Laboratory
and currently is an architect responsible for XML support in
DB2 Universal Database for z/OS. He has received numerous
Outstanding Technical Achievement awards and invention
achievement awards for his contributions to DB2. Dr. Zhang is
a member of the Association for Computing Machinery and
the Institute of Electrical and Electronics Engineers. &

BEYER ET AL. IBM SYSTEMS JOURNAL, VOL 45, NO 2, 2006298

