INFO-445/Spring 2013 (Version 04; Updated: April 8, 2013)

INFO-445 Studio Workbook: Getting
Started with PostgreSQL

For INFO-445/Spring 2013 we will be working with PostgreSQL 9.2.4 a very good database management
system if not as popular as MySQL or other commercial systems:
http://www.postgresgl.org/about/

PostgreSQL is open source. It is compliant with international standards. It has a rich set of data types. It is
robust, highly extensible, quite fast, and very expressive. It has terrific documentation. And, whatever you
learn about PostgreSQL is readily transferable to other databases including MySQL, Oracle, DB2, or
Microsoft SQL Server.

Here’s the documentation (don’t print it — it’s over 2,500 pages long):
http://www.postgresql.org/files/documentation/pdf/9.2 /postgresql-9.2-US.pdf

And online:
http://www.postgresgl.org/docs/9.2/static/index.html

This workbook is designed to get you started with PostgreSQL and basic web development.

Topics

How to install PostgreSQL on the UW student servers

How to use the PostgeSQL command line

How to work with a SQL script

How to create a simple PHP application for querying a database
Managing PostgreSQL.: Using the pgAdmin 111 client
Front-end development: Using Microsoft Expression Web 4
PHP pgSql API: Very brief introduction

PL/pgSQL - SQL Procedural Language

IOMMUO®>

INFO-445/Spring 2013 (Version 04; Updated: April 8, 2013)

Some Key Resources

PostgreSQL
Documentation
http://www.postgresgl.org/docs/9.2/interactive/index.html

The command line
http://www.postgresqgl.org/docs/9.2 /static/app-psql.html (copy & paste link)

SQL command reference

http://www.postgresqgl.org/docs/9.2/static/sql-commands.html (copy & past link)
PL/pgSQL - SQL Procedural Language
http://www.postgresql.org/docs/9.2 /interactive /plpgsql.html

Other resources
http://www.postgresgl.org/about/

Web Programming
Introduction
http://code.google.com/edu/submissions/uwspr2007 webprogramming/listing.html

PHP Language Reference
http://www.php.net/manual/en/langref.php

PostgreSQL API Reference
http://us3.php.net/manual/en/book.pgsql.php

Miscellaneous
Linux command line basics

http://linuxcommand.org/learning the shell.ph

Source control — git
http://git-scm.com/
https://bitbucket.org/
http://sixrevisions.com/resources/git-tutorials-beginners/

INFO-445/Spring 2013 (Version 04; Updated: April 8, 2013)

Preliminaries

The Linux command line

I assume that you know the basics of the command line in Linux. If the Linux command line is new to you

or if you are rusty you should review the basics here:
http://code.google.com/edu/tools101/linux/basics.html

You will also need to be able to edit text files on Linux. You can learn about the Pico editor here:
http://code.google.com/edu/tools101/linux/basics.html#create _new file

Some reminders of some very simple Linux commands:

List the contents of a directory
>ls -las

Print the name of the current directory
> pwd

Go down into a directory (that is, go into public_html)
> cd public_html

Go up to the parent directory
>cd..

Go to your home directory
>cd~

Go to an absolute directory location — note those forward slashes (/blah/blah)
>cd /rc11/d99/i445g02 /public_html

To create (or make) a new directory, called fred
> mkdir fred

To delete (or remove) a directory
> rmdir fred

Very Useful = The Tab and Up Arrow and Down Arrow keys

1. Use the Tab key to complete a file name or directory name
2. Use the Up Arrow and Down Arrow keys to move through previous commands

Basic web programming
I assume that you know basic web programming. You should, for example, feel comfortable with the
material in this course:

http://code.google.com/edu/submissions/uwspr2007 webprogramming/listing.html

SSH: Secure Shell and File Transfer
e You will need a secure shell terminal and file transfer program -- Tera Term VT and FileZilla
work well enough
e For more information on SSH see
http://www.washington.edu/itconnect/web/publishing/ssh.html

INFO-445/Spring 2013 (Version 04; Updated: April 8, 2013)

A. How to install PostgreSQL on the UW student servers

You can install PostgreSQL on your UW student account, and use it with PHP or other apps directly from
students.washington.edu.

(UW does not provide official directions for installing PostgreSQL. That said, the instructions for installing
MySQL may be of some use: http://www.washington.edu/computing/web/publishing/mysal-install.html)

Comment: While the following steps for installing PostgreSQL are highly simplified and quite carefully
specified, they give the flavor of what a Database Administrator might normally do on behalf of a software
developer or development team.

Some students, because of prior experience, will find these steps almost trivial and will finish this
installation in 20 minutes while watching TV. For other students, it may take several hours. If you get stuck
stop, step aside, ask for some help, and then come back to it.

Database Administrators serve a highly technical role. Not only do they have to deal with a lot pressure —
when things go wrong they come to the rescue — they also need to know a lot about the theory of databases
and data access, about the specific design and implementation details of the installed database. And, they
must be skilled system administrators and know a good deal about hardware and network configuration.
To get a sense of some the tasks that are involved in administrating a PostgreSQL database you may want
to briefly browse this Server Administration documentation
http://www.postgresql.org/docs/9.1/static/admin.html

To install PostgreSQL follow these steps:

INFO-445/Spring 2013 (Version 04; Updated: April 8, 2013)

To install PostgreSQL follow these steps:

1. Connect with Connect via SSH Tera Term to homer.u.washington.edu using these credentials:

UW NetID: i1445513x

Unix system: homer.u.washington.edu

Web domain: http://courses.washington.edu/i445s13x/
password: password for i445s13x to be given out

When you log in check for files and directories by typing
> 1s

Check that the webserver is working by changing your directory to public_html
> cd public_html

Next edit the file index.html and save your changes.

Check that your changes worked by viewing the page in the webserver:
http://courses.washington.edu/i445s13x/

Now, return to the root directory with this command
> cd ~

2. Download PostgreSQL 9.1.3 source (mostly written in C), using this command
> wget http://ftp.postgresql.org/pub/source/v9.2.4/postgresql-9.2.4.tar.gz

3. Un-compress the file using this command
> tar xzvf postgresql-9.2.4.tar.gz

4. Navigate to the postgresql-9.2.4 directory and build the source code. First you’ll need to specify a
directory for the PostgreSQL server. This should be a subdirectory of your home directory on the
server.

Use the pwd command to get the directory of your home server. In this example the user name is
i445902. For example

>cd ~

> pwd

/rc11/d99/i445g02

Now change your directory to
> cd postgresql-9.2.4
make

If your home directory is /rc11/d99/i445¢g02 and you want to install PostgreSql to the subdirectory
named postgresqgl, you should enter the following command

> ./configure --prefix=/rc11/d99/i445g02 /postgresql --with-libxml --with-libxslt

Comment: The flags --with-libxml and --with-libxslt are used so that PostgreSQL builds
with support for XML.

INFO-445/Spring 2013 (Version 04; Updated: April 8, 2013)

Next, after the configure command is finished, enter the following command
> make && make install

Comment: After this command finishes successfully, you have downloaded the source code
(wget), uncompressed the source code (tar xzvf), configured the compiler with system-
specific settings (configure), and setup the directory structures and compiled the source
code (make).

The PostgreSQL database management system (that is, the database server) is ready to run
but before you can use PostgreSQL you need to complete several configuration steps. We
turn to those next.

5. Now, you’ll need to create a new data file (or database cluster) for your databases. Navigate to the
directory that you just created: postgresql. Then, navigate to the bin subdirectory. You will find a
number of database commands in this subdirectory. To list these commands type

> c¢d ~/postgresql/bin
> 1s

Comment: If at some point you need to learn more about these commands consult the
documentation. Each command is described in great detail there.

Use the initdb command to create a new database cluster. We recommend installing it into the
postgresql/data directory. This is the command

> ./initdb ../data

6. You’ll need to set a port on which the PostgreSQL database management system runs. This port will
receive communication connections from your database clients, including programs that run in PHP,
pgAdmin 111 (a GUI for managing PostgreSQL databases), and so forth. This port should be a number
between 1024 and 65000 and must be a port that no one else is currently using. That is, you won’t be
able to use your friend’s port number, for example — you will need your very own port number.

In this step we will find a port for your server to use. Think of a random number between 1024 and
65000, and then type in this command, replacing XXX with the number you thought of:

> telnet localhost XXX

(1) If it says "Connection Refused", then you have a GOOD number. Write this number down
and continue to the next step — note: you need to remember this port number.

(2) If it says something ending in "Connection closed by foreign host," then there is already a
server running on that port, so you should choose a DIFFERENT number and test it with the
above telnet command. (3) Repeat (1) until you get a GOOD port number.

7. Now, you need to edit the file postgresql/data/postgresqgl.conf. This is where you tell PostgreSQL to
listen on the port that you just discovered. Uncomment the port line, and change the port number to
your very own port number.

You should look for the first line and change it to the second where XXX is the port number you found
in the previous step (step #6)

#port = 5432 # (change requires restart)
port = XXX # (change requires restart)

Note: The # sign is used to indicate that what follows is a comment. You must
remove this comment.

INFO-445/Spring 2013 (Version 04; Updated: April 8, 2013)

Also uncomment the following and set the 1isten_addresses variable to a star (‘*”) as in
listen_addresses = ¢*°

8. You also need to edit the PostgreSQL client authentication configuration file, located at
~/postgresql/data/pg_hba.conf

pg_hba.conf is very important because it tells PostgreSQL who is allowed to connect to the server —
not much works if authentication records are incorrectly specified.

Add the following two lines. The first line allows the UW webservers to connect to your database. This
will allow your PHP scripts to make a connection with your database. The second line allows all users
to connect to your database from any machine with password authentication.

TYPE DATABASE USER ADDRESS METHOD
host all all 172.28.0.0/16 trust
hast all all 128.95.0.0/16 trust

This is often an effective permissions scheme — it allows the user xxx to make a connection to the

database from any network:
hast all XXX 0.0.0.0/0 trust

Note: If you experience database connection problems it is probably because
something is wrong with this file and the context in which you are trying to
connect to the database.

9. You can now start the database. To start PostgreSQL, go to the postgresql/bin directory and enter
> ./pg_ctl start -D ../data

Note: Use this to record errors in a logfile
(> ./pg_ctl start -D ../data -1 ../data/logfile)

Note: you may need to present the Enter key twice. If you get a message like this the database is
running! It will continue running forever unless you tell it stop, an operator kills the process, the power

fails, etc. Good work. You are almost there.
LOG: database system was shut down at 2012-02-27 21:43:33 PST
LOG: autovacuum launcher started
LOG: database system is ready to accept connections

Note: If PostgreSQL complains about a port already in use, you’ll need to change
the port that PostgreSQL uses. In this case, go back to step #6 and step #7 and
then try again.

To stop PostgreSQL, you can type the following. But, for now there is no need to stop your database
> ./pg_ctl stop -D ../data

To restart PostgreSQL, you can type the following:
> ./pg_ctl restart -D ../data

Note, further, that if you started PostgreSQL with “-1 ../data/logfile” then the file data/logfile
contains a log of server operations.

INFO-445/Spring 2013 (Version 04; Updated: April 8, 2013)

10. PostgreSQL provides a default database, named postgres. You can connect to this database using the
psqgl command line tool. First, make sure that PostgreSQL is running. You check if it is running with
this command

> ./pg_ctl status -D ../data

Now, go to the postgresql/bin directory and type the following (remember that XXX is the port
number that you discovered in step #6)

> ./psql -p XXX -d postgres

You should see a command line for entering SQL commands! If so, good work — take a break.

psql (9.1.3)
Type "help" for help.

postgres=#

To leave the command line type
\q

11. You should create a PostgreSQL user ID and password. At the Unix command prompt in the
PostgreSQL bin directory type the following command
./createuser -d -e -s -P -p XXX dave

These parameters indicate that databases can be created (-d), that the underlying SQL be echoed (-e),
that a password should be prompted for (-P), that the connections should be made on the port XXx (-
p), and that the user is named dave.

Enter password for new role:

Enter it again:

Shall the new role be a superuser? (y/n) y

Shall the new role be allowed to create more new roles? (y/n) n

CREATE ROLE dave PASSWORD 'md5f1df1253ad33459069dc8da6éd2ab4cd6’ NOSUPERUSER
CREATEDB NOCREATEROLE INHERIT LOGIN;

Comment: For more about the create user command see the documentation here:
http://www.postgresql.org/docs/9.1/static/app-createuser.html

12. Start the psql and type the following command to alter your default db user name password
alter user your_user_id encrypted password 'pass’;

Killing the server. Sometimes you need to be able to kill the server process. Here is how:

Use the following command to find the process ID of the postgreSQL server:
> ps -ef | grep xxx (Where xxx is the name of the login account)

If you need to delete a process use the following command:
> kill -9 process_ID (Where process_ID is the id of the process — see ps command)

Acknowledgements: Shaun Kane — a superb teaching assistant — originally developed these instructions in
2009. These instructions were revised substantially in 2012. Tony Grosinger helped improve these
instructions in 2012.

INFO-445/Spring 2013 (Version 04; Updated: April 8, 2013)

B. How to use the PostgeSQL command line

The command line interface for interacting with the PostgreSQL database management system can
be very efficient and very powerful. Often times you will use the command line to check something,
to add a little data, to test the syntax for a comment, to make a quick change, or any number of other
things. You can find help on the PostgeSQL command line here:
http://www.postgresgl.org/docs/9.1/static/app-psql.html

It is often very helpful to know your command line. This said, like playing a musical instrument - or
any kind of expert performance - it takes practice and time to learn. To get started, here is a very
brief tour of a few things that you should know.

(1) Start the command line interface with this command (note your database needs to be running):
> ./psql -p XXX -d postgres (XXX is the port on which your db is running)

(2) To get a list all the PostgreSQL SQL commands type
\h

(3) To leave the PostgreSQL command shell type
\q

(4) To get help with a particular SQL command type this kind of thing the command line will show
you a syntax diagram for the command - often faster than going to the documentation

\h create schema

\h select

(5) To find out what tables (that is, relations) are in your database type
\d

(6) To list the system tables you can type
\ds

(7) The commands that begin with \ (backslash) are called meta-commands because they provide
information or otherwise enable you to run SQL commands. To find a list of all the available shell
commands type

\?

Notice all the commands that begin with \d , also known as the describe command. These various
describe commands can be very useful for determining what is in your database.

(8) We will now turn to a small number of the other shell commands, mostly to give you a flavor of
what can be achieved. You can see all the commands that you have recently typed into the shell with
the following command

\s

(9) Even better you can write those commands to a file, called my_recent_cmds.txt, with
\w my_recent_cmds.txt

(10) You can also issue operating system commands from the PostgreSQL command shell. For
example, to change your directory up one level you can type

\cd ..

INFO-445/Spring 2013 (Version 04; Updated: April 8, 2013) 10

(11) You can issue any operating system command with the \! command. For example, this sequence
of three commands prints or current directory location, makes a directory, and changes to that new
directory

\! pwd
\! mkdir working_data
\! cd working_data

(12) Now, let’s do a little SQL. Type the following into the command line to create a schema called
‘play’ and a table called ‘test.” Where is the table located? Where is the schema located? Note: SQL
statements always end with a semi-colon (;).

CREATE SCHEMA play;
CREATE TABLE play.test (id SERIAL, name varchar(64), size integer);

(13) Now let’s put two tuples into the table

INSERT INTO play.test (name, size) VALUES ('Bicycle', 100);
INSERT INTO play.test (name, size) VALUES ('Tricyle', 40);

(14) To query the table we can type in select statements such as

SELECT * from play.test;
SELECT * from play.test where name = 'Bicycle’;

Rather than having to type commands over and over again you can press the “up arrow” to see the
recently entered commands. Then, find the command that you need, modify it by moving the cursor
and make edits, and then press enter. Try, for example, to issue some more INSERT commands.

(14) To determine what schemas are being used (also called name spaces) type
\dn

(15) To determine what'’s in a schema type
\dn play.*

(16) It is often very helpful to be able to copy the data from a relation to a text file. The copy
command can be used to do that

\copy (select id, name, size from play.test) to my_test_table.txt

(17) This created a new text file called my_test_table.txt. Now, let’s drop the relation play.test with
this command

DROP TABLE play.test;

(18) With the text file we can re-create the table quite quickly with these two commands

CREATE TABLE play.test (id SERIAL, name varchar(64), size integer);
\copy play.test from my_test_table.txt

(19) You can confirm that the data is back into the table with this command
SELECT * from play.test;

(20) Let’s delete all of our work. A clean way to delete everything is the following
DROP SCHEMA IF EXISTS play CASCADE;

(21) If this command seems odd check out the documentation - a good page to bookmark:

http://www.postgresal.org/docs/9.1 /static/sgl-commands.html

(22) It can be very useful to create a short SQL script and then execute the whole script. First, quit
the command line interface with

INFO-445/Spring 2013 (Version 04; Updated: April 8, 2013) 11

\q

(23) Now, create a file called my_sql_script.sql with the following SQL lines
/* filename: my_sql_script.sql */

/*
* Create blank schema for holding this simple example
*/

DROP SCHEMA IF EXISTS play CASCADE;

CREATE SCHEMA play;

/*
* Create a simple table
*/

CREATE TABLE play.test (
1d SERIAL,
name varchar(64),
size integer);

/*

* Load some data into the table

*/
INSERT INTO play.test (name, size) VALUES ('Bicycle', 100);
INSERT INTO play.test (name, size) VALUES ('Tricyle', 40);

/*
* Show that the table can be queried
*/

SELECT * from play.test;

SELECT count(*) from play.test;

(24) After you've created this script you can read the input from a file and it will execute as if it had
been typed on the keyboard. First, start the command line interface with

> ./psql -p XXX -d postgres

(25) Then type in this command
\i my_sql_script.sql

(26) One final approach that is often quite helpful. From the Linux command line you can type the
following to have SQL script executed

./psql -p 4567 -d postgres < my_sql_script.sql

This says run a psql program on port # 4567 with the database named postgres (a default database
which is created automatically for you) and redirect the SQL statements that are found in the file
my_sql_script.sql as input. The output of the SQL statements will be presented on the terminal. To
have the output redirected into a file, here called output.txt, use the command (Note: be sure to
chance the port 4567 to your port):

./psql -p 4567 -d postgres < my_sql_script.sql > output.txt

INFO-445/Spring 2013 (Version 04; Updated: April 8, 2013) 12

C. How to work with a SQL script

Consider the following database application, which creates a schema for holding the application,
creates a single relation, defines a function with PL/SQL, and inserts four tuples into the relation. Go
ahead and run this code in PostgeSQL.

You can find the code here:
http://courses.washington.edu/i445g02 /INFO-445 /front door.html

Once the SQL script below has been executed by PostgreSQL, the relation can be queried and updated
with new data. For example we could enter the following queries:

select * from play.snack;

select * from play.howManySnacks();

The SQL script:
/* filename: snacks.sql */

/*

* The system that we will be using plpgsql scripts
*/

create or replace language plpgsql;

/*

* Create blank schema for holding this simple example
*/

DROP SCHEMA IF EXISTS play CASCADE;

CREATE SCHEMA play;

/*
* Create a simple table
*/
CREATE TABLE play.snack (
id SERIAL PRIMARY KEY,
name varchar(64) UNIQUE NOT NULL,
calories integer CHECK (calories > 0),
price numeric(8,2)
);
/*
* Returns the number of snacks in the database
*/

CREATE OR REPLACE FUNCTION play.howManySnacks ()
RETURNS INTEGER AS ‘'
DECLARE
num integer;
BEGIN
select into num count(*) from snacks;
return num;
END;
' LANGUAGE plpgsql;

/*

* Load some data into the table

*/

INSERT INTO play.snack (name, calories, price) VALUES ('Chips', 200, 3.50);
INSERT INTO play.snack (name, calories, price) VALUES ('Cheezees', 200, 3.50);
INSERT INTO play.snack (name, calories, price) VALUES ('Bar', 300, 2.00);
INSERT INTO play.snack (name, calories, price) VALUES ('Fries', 500, 4.25);

INFO-445/Spring 2013 (Version 04; Updated: April 8, 2013) 13

D. How to create a simple PHP application for querying a
database

Once you have executed the snacks.sql script and the snack relation has been created in your
database you are ready to create a PHP application. The PHP application will consist of a small
number of files, including:

font_door.html

DBVars.php

show_snaks.php

In your web development directory create a directory called snack_app
> mkdir snack_app

You will access your application in your browser with the following http request
http://courses.washington.edu/i445g02/snacks_app/show_snacks.php

The first file, front_door.html, is very simple
<html>
<head>
<title>Snacks: Front door</title>
</head>
<body>
<h3>Snacks application</h3>
<p>

<1li> Show snacks

</body>
</html>
It simply shows a web page with a link to a PHP script.

The DBVars.php script looks like this. This script simply creates some global variables that are used
in other scripts. You will need to carefully edit this script so that it is configured for your database
server.

<?php

/*

*filename: DBVars.php

*/

$gDB_host = "homer.u.washington.edu";

$gDB_name = 'postgres';

$gDB_port = '45673';

$gDB_user = 'i445g@2’;

$gDB_password = "pass";

$gDB_conn_string = ‘'host=' . $gDB_host .
' dbname=' . $gDB_name .
' port=' . $gDB_port .
' user=' . $gDB_user .

password=" . $gDB_password .
3

?>

INFO-445/Spring 2013 (Version 04; Updated: April 8, 2013) 14

The second PHP script, show_snacks.php, does the interesting pieces. This script makes a
connection to your database, as configured in DBVars.php. Then, it creates a simple SQL query.
Then, the query is run. The results are then presented. Finally, the script cleans up the results and
closes the connection.

<html>
<head>
<title>Snacks: ProstgreSQL Database Test</title>
</head>
<body>
<?php
// include key database variables for connection string
include 'DBVars.php';
echo "\nConnection string >" . $gDB_conn_string . "<" . "\n<p>\n";

// Try to make a connection
$db = pg_connect($gDB_conn_string);
if (!$db) {

die("Error in connection:
}

. pg_last_error());

// Create and run a query
$sql = "SELECT * FROM play.snack";
echo "The SQL query >" . $sql . "<\n<p>\n";
$result = pg_query($db, $sql);
if (!$result) {

die("Error in SQL query: " . pg_last_error());
}

// Show some snacks
while ($row = pg_fetch_array($result)) {
echo "Snack " . $row[@] . " (" . $row[1] . ") has " . $row[2] . " calories!

\n";
}

// wrap up
pg_free_result($result);
pg_close($db);
?>
</body>
</html>

After the script runs it generates HTML that will look something like this

<html>
<head>
<title>Snacks: ProstgreSQL Database Test</title>
</head>
<body>

Connection string >host=homer.u.washington.edu dbname=postgres port=45673 user=i445g02<
<p>

The SQL query >SELECT * FROM play.snack<

<p>
Snack 1 (Chips) has 200 calories!

Snack 2 (Cheezees) has 200 calories!

Snack 3 (Bar) has 300 calories!

Snack 4 (Fries) has 500 calories!

Snack 5 (Popcorn) has 200 calories!

Snack 6 (Pop) has 400 calories!

</body>
</html>

INFO-445/Spring 2013 (Version 04; Updated: April 8, 2013)

15

A very simple approach for implementing this application is to use Notepad++ as your editor. When
you are happy your code use FileZilla to copy your files from the local development directory to the

web server.

This development strategy is simple but slow. We will introduce a more robust solution below.

FileZilla for Copying Files to
your Server

T e

THle a4 View Toamfe Sever Sockmaria Help

-1/ TR e s PSR TA
Heat: ST Userame: FHIg01 Passord: ereeEseRsees Part: @l;‘
Loca st | CrLsers hereky Documenty_Teachng_CLASSES BNFO- #4510 ~ [Remote s ISt _o
Flename Fiion Fietype Lt rccfifnd B
2 e
[T T— N PP SoripeFile NIONI 1AM = ?“:“L
& thant_doorhtmi 2 HIMLDocum.. 2282012 101333,
B shiw sk phe W PP Seiprfile NRWANE 100843 Flewmnt L e N———e——
B snachasgl L5 SQLFe AT IR
T DRV e W PP Serpt . DIW0IZ 124
& troms_dose himi 2 WIMLDoc. 1IN
Bl shw_snacks.ghp 40 PP Sergt .. 2OSINN21EM
4 e Totalsize: 1280 bytes 3 . Total iz 217 bytes

Serves/Local file Cirecsion Remote file

Sae Prienty St

Queued fles | Fabed barwiees | Suceessild mansters (41)

S e ety

Notepad++ for Editing
Files

[l im0 itz ot e

INFO-445/Spring 2013 (Version 04; Updated: April 8, 2013)

E. Managing PostgreSQL: How to use pgAdmin III

pgAdmin Il is a client application that runs on your desktop computer and allows you to control your
PostgreSQL database server. It is often much easier to use a client application for controlling the
server. Here is a 10 minute video on its use

http://www.enterprisedb.com /resources-community /webcasts-podcasts-

videos/videos/how-create-postgres-database-using-pgadmin

The pgAdmin II application can be downloaded here

http://www.pgadmin.org/index.ph
You should install this application on your development machine - you will find it to invaluable.

ol D=y poreiag
Fr Lt Cuery Gewuster Maces iew b

SOU tebtar | Gragheal Query Bukder

e |
Dats Dutpul | Exciar Messages | sty

W neme calories pece
Imbeger character varpmglid) imteger mumenciiz)

If you run into connection errors it is probably because of a misconfiguration in
~/postgresql/data/pg_hba.conf

Debugging this configuration file can be difficult. Here are some steps that you can take:

Work together with other students and debug each other’s setups;
Confirm that PostgreSQL is running;
Confirm that you can access PostgreSQL from the command line with psql;
Confirm that you have a user role defined and a password for that user role --
See CREATE USER ...and ALTER USER ...
5. Open pg_hba.conf and careful inspect each line and confirm that you have the correct access

B W=

records:
TYPE DATABASE USER ADDRESS METHOD
host all all 140.142.0.0/16 trust
host all all 0.0.0.0/0 md5

o

Make sure that the connection properties in pgAdmin III are correct;
7. Make sure that you've connected through the iSchool VPN (or that the network address is
otherwise correctly stated).

Incidentally, a good number of PostgreSQL GUI tools are available. See, for example:

http://wiki.postgresqgl.org/wiki/Community Guide to PostgreSQL GUI Tools

16

INFO-445/Spring 2013 (Version 04; Updated: April 8, 2013)

F. Front-end development: Using Microsoft Expression
Web 4

In INFO-445 you will need to create basic user-interfaces to test and demonstrated your back-end
database design work. Many development tools exist for this purpose including Eclipse, NetBeans,
Dreamweaver, Visual Studio and so forth.

For INFO-445 we’ll be using Microsoft Web Expressions which appears to be a good, relatively simple
tool for creating front-end code. You are likely to find it to be far more efficient to use than
NotePad++.

File Edit View Inu e
A-EE-EO@E- ?- : =l

Folaer List % Site View sher .phg | DEVarsphp* = Togibox | Snippets =

Scss
| Doctypes
[=TE0

[0 mreta Tags
| Javasenpt
| Fpury
=110

B mysnippets

FEDR_huet _

. $40B_riame .
Tag Properties = C33 Froperties - 3 * par . SuDE_port . o3 Manage Styles - * x
BEUU_user .
. SgDB_password .

washingtan. edu’ ;

e so™Me|o|e Hd 26w w|« TR0 |

Before you start using Web Expressions to create front-end applications you will need to set up some
things.

(1) Find the location of notepad++.exe and write down the path to this executable. We will use
this editor for editing SQL scripts. On my machine the location is "C:\Program Files
(x86)\Notepad++\notepad++.exe"

(2) Download the PHP binary (PHP 5.4) for Windows from this site:
http://windows.php.net/download/

Place the file containing the binary in a directory. Unzip the file.
Locate the file php.ini-development
Copy and rename this file to php.ini
Edit php.ini and make sure that
i. The extension_dir variable is set to extension_dir = "ext
ii. The following two extensions are uncommented
extension=php_pdo_pgsql.dll
extension=php_pgsql.dll

ae o

17

INFO-445/Spring 2013 (Version 04; Updated: April 8, 2013)

(3) Download the snacks_app.zip file from the course website and unzip it into a working
directory. When you unzip it the directory structure will look something like this:

..\info-445\code\snacks_app\
..\info-445\code\snacks_app\back_end
..\info-445\code\snacks_app\back_end\snhacks.sql
..\info-445\code\snacks_app\front_end\DBVars.php
..\info-445\code\snacks_app\front_end\front_door.html
..\info-445\code\snacks_app\front_end\show_snacks.php
..\info-445\code\snacks_app\front_end\simple_test_of_php.php

(4) Now, we are ready to do the setup. First, we need to create a site for the code. Follow these
steps:
(1) Open Web Expressions 4
(2) On the top menu, click on Site > New Site ...
(3) Select Empty Site and select a directory location for your site
(4) Add the back_end and front_end folders to that location.

You should now see those folders and files in the Folder List panel on the left.

(5) Next, we assign a file editor to files with the SQL extension. To do this, select the back_end
folder and right click on the snacks.sql file. Change the open program to Notepad++. (You
found the path earlier, in one of the above steps.)

(6) Next, we will set up Web Expressions so that we can preview PHP files. This step will greatly
reduce your development effort because you want have to move files up to your server every
time you need to debug your code. On the top menu, click on Site > Site Settings... and then
click on the Preview tab. Click the radio buttons as you see below and give the path to the
file php-cgi.exe. (You downloaded the PHP binary earlier.)

Site Seftings 9. e |

H ‘Genera\l Preview |Advanced Publishing

Use Microsoft Expression Development Server:
@) For only PHP and ASP.MNET web pages
_) For all web pages
Path to PHP executable for previewing PHP pages in this website:

‘C: Wsers\dhendry\Downloads\php-5.4.0-nts-Win32-VC9-x86\php-cai.exe Browse...

") Use the PHP executable set in the Application Options
(@) Use a PHP executable for only this website

More Information

_) Preview using custom URL for this website

o) (o) Cam)

Once you set up the path to the php-cgi.exe you can preview PHP pages in the browser. (Note
that Web Expressions allows you to easily compare page across web pages.)

18

INFO-445/Spring 2013 (Version 04; Updated: April 8, 2013)

(7) Next, we will set up Web Expressions so that your site can be easily published to the server
machine. To do this click on the Publishing tab. Then, click on the Add... button. As you
can see in this dialog, you need to enter a name for your connection, select the Secure Shell
File Transfer Protocol, your location, and credentials:

I

Narme: UV Server

Connection Type: ISFFP -
The remote site server supports Secure Shell File Transfer Protocol
(SFTP/55H).

Location

Location: sftp:/fhomer.u.washington.edu -
| |

Directory: [public_htmi fsnacks_app

Credentials

User name: |\445g02

Password: [ssnesasaseasan

Settings
Mandmum simultaneous connections: [4 2 (1-10)

Save Cancel

Once you've set up this settings you can select the menu item Publish All Files to “My UW
Server” and similar publishing items.

19

INFO-445/Spring 2013 (Version 04; Updated: April 8, 2013)

G. PHP pgSql API: Very brief introduction

The follow pgSQL API code examples comes from
http://us3.php.net/manual/en/book.pgsgl.php

You should feel comfortable with each of these functions and the code snippets below.

pg_connect — Used to create a connection with the database
http://us3.php.net/manual/en/function.pg-connect.php

$dbconn3 = pg_connect("host=sheep port=5432 dbname=mary user=1lamb password=foo");

pg_query — Used to execute a query to a database
http://us3.php.net/manual/en/function.pg-query.php

$conn = pg_pconnect("dbname=publisher");
if (!'$conn) {

echo "An error occured.\n";

echo

exit;

}

$result = pg_query($conn, "SELECT author, email FROM authors");
if (!$result) {

echo "An error occured.\n";

echo pg_last_error($conn);

exit;

}

while ($row = pg_fetch_row($result)) {

echo "Author: $row[@] E-mail: $row[1]";

echo "
\n";

}

<?php

$conn = pg pconnect("dbname=publisher");

// these statements will be executed as one transaction

$query = "UPDATE authors SET author=UPPER(author) WHERE id=1;";

$query .= "UPDATE authors SET author=LOWER(author) WHERE id=2;";
$query .= "UPDATE authors SET author=NULL WHERE id=3;";

pg_query($conn, $query);

?>

20

INFO-445/Spring 2013 (Version 04; Updated: April 8, 2013) 21

pg_escape_string — This correct escapes strings so that they can be stored in tables
http://us3.php.net/manual/en/function.pg-escape-string.php
<?php
// Connect to the database
$dbconn = pg_connect('dbname=foo');

// Read in a text file (containing apostrophes and backslashes)
$data = file_get_contents('letter.txt');

// Escape the text data
$escaped = pg_escape_string($data);

// Insert it into the database

pg_query("INSERT INTO correspondence (name, data) VALUES ('My letter',
‘{$escaped}')");

?>

pg_fetch_row — Used to access a row from a result set
http://us3.php.net/manual/en/function.pg-fetch-array.php

<?php

$conn = pg pconnect("dbname=publisher");
if (!$conn) {

echo "An error occured.\n";

exit;

}

$result = pg_query($conn, "SELECT author, email FROM authors");
if (!$result) {

echo "An error occured.\n";

exit;

}

$arr = pg_fetch_array($result, 0, PGSQL_NUM);
echo $arr[@] . " <- Row 1 Author\n";
echo $arr[1] . " <- Row 1 E-mail\n";

// As of PHP 4.1.0, the row parameter is optional; NULL can be passed instead,
// to pass a result_type. Successive calls to pg_fetch_array will return the
// next row.

$arr = pg_fetch_array($result, NULL, PGSQL_ASSOC);

echo $arr["author"] . " <- Row 2 Author\n";

echo $arr["email"] . " <- Row 2 E-mail\n";

$arr = pg_fetch_array($result);
echo $arr["author"] . " <- Row 3 Author\n";
echo $arr[1] . " <- Row 3 E-mail\n";

?>

pg_fetch_object — Used to create a PHP object out of a tuple
http://us3.php.net/manual/en/function.pg-fetch-object.php

<?php
$database = "store";

$db_conn = pg_connect("host=1localhost port=5432 dbname=$database");
if (!$db_conn) {

INFO-445/Spring 2013 (Version 04; Updated: April 8, 2013)

echo "Failed connecting to postgres database $database\n";
exit;

}

$qu = pg_query($db_conn, "SELECT * FROM books ORDER BY author");

while ($data = pg_fetch_object($qu)) {
echo $data->author . " (";

echo $data->year . "): ";

echo $data->title . "
";

}

pg_free_result($qu);
pg_close($db_conn);

?>

22

INFO-445/Spring 2013 (Version 04; Updated: April 8, 2013) 23

E. PL/pgSQL - SQL Procedural Language

PostgreSQL provides a way for extending SQL with application-specific functions. PL/pgSQL is one
language that can be used to write these functions (other languages include Tcl, Perl, and Python).

PL/pgSQL provides a fairly rich set of control structures (if .. then, case, while .. end loop, for
. in .. loop, etc.) and language constructs for querying and updating databases. For details, see
http://www.postgresgl.org/docs/9.1/interactive/plpgsql.html

Example 1
1 /%
2 * Add a device type
3 */
4 CREATE OR REPLACE FUNCTION uwm.Add_device_type (
5 p_id int, // the device ID
6 p_descr text // the description of the device
7)
8 RETURNS void AS '
9
10 DECLARE
11 row RECORD;
12
13 BEGIN

14 select into row * from uwm.device_type where p_id=id;
15 IF NOT FOUND THEN

16 INSERT INTO uwm.device_type (id, descr)
17 VALUES (p_id, p_descr);

18 END IF;

19 END;

20 ' LANGUAGE plpgsql;

Shown above is function written in PL/pgSQL. Functions are declared with the statement create or
replace function and a list of parameters. Parameters are named and typed. Any type in PostgreSQL
can be used. Lines 5-6 show two parameters, an integer and a text.

Line 8 says that the function returns void, that is, it does not return any value. The body of the function is
written within a string. In the DECLARE section you declare the variables that you will be using in the
function. Unlike PHP and other scripting languages, you must declare all variables and their types in this
section. Line 13 indicates that the code for the function is to begin and the procedure continues until the
final end (line 19). The last line indicates that the string that makes up the procedure should be treated as
plpgsql. Line 14 performs a query and puts the results into the variable row. If the select statement does
not find a record then an insert statement is executed and the procedure finishes; otherwise, the insert
statement is not executed and the procedure finishes.

INFO-445/Spring 2013 (Version 04; Updated: April 8, 2013)

Example 2

This example shows the construction of a query in a string, then executing the string, and returning a set of
tuples.

1 CREATE OR REPLACE FUNCTION dtw.Find_docs (

1 p_doc_type dtw.doc_type_type,

2 p_offset int,

3 p_limit int

4)

5 RETURNS SETOF dtw.doc as $PROC$

6 DECLARE

7 rowl dtw.doc%ROWTYPE;

8 q text;

9 w text;

10 BEGIN

11 if (p_doc_type = 'Z' or p_doc_type = NULL) then
12 w:="";

13 else

14 w := 'where status = ' || "' || p_doc_type || '';
15 end if;

16

17 if (p_limit = -1) then

18 q := 'select * from dtw.doc ' || w || ' order by entered desc limit ALL offset $1';
19 FOR rowl IN EXECUTE q USING p_offset

20 LOOP

21 return next rowl;

22 END LOOP;

23 RETURN;

24 else

25 q := 'select * from dtw.doc ' || w || ' order by entered desc limit $1 offset $2';
26 FOR rowl IN EXECUTE q USING p_limit, p_offset
27 LOOP

28 return next rowl;

29 END LOOP;

30 RETURN;

31 end if;

32 END;

33 $PROC$ LANGUAGE plpgsql;

INFO-445/Spring 2013 (Version 04; Updated: April 8, 2013)

Example 3

This is a more complex example that illustrates some of the expressive power and additional control
structures of plpgsql.

34
35

/*
* Use this function to return the most recent readings
*/
CREATE OR REPLACE FUNCTION uwm.get_new_readings (
p_did int,
p_delta char(1),
_max int
)
RETURNS SETOF uwm.meter_reading as $PROC$
DECLARE
num int;
row uwm.meter_reading%ROWTYPE;
row2 RECORD;
q text;
time_cond text;
MAX int;
BEGIN
/*
* Check that the did is valid before trying to query
*/

SELECT into row2 D.id as did from uwm.device D where D.id=p_did;
IF NOT FOUND THEN

perform uwm.Post_Message('Get_Readings', '',

'ERROR-Invalid did-' || p_did, p_did,NULL);

RETURN;
END IF;

/*
* Check input parameters
*/
MAX := 3;
if p_max > @ then
MAX := p_max;
end if;

if (p_delta = 'A') then

time_cond := ' AND 1 =1 ';
elseif (p_delta = 'B') then
time_cond := ' AND L.timelogged < ((select max(timelogged) from uwm.work_log where
[| *did=" [] p_did || ")) *;
elseif (p_delta = 'C') then
time_cond := ' AND L.timelogged < ((select max(timelogged) from uwm.work_log
where ' || 'did=' || p_did || ') - interval ''1 day'') ';
elseif (p_delta = 'D') then
time_cond := ' AND L.timelogged < ((select max(timelogged) from uwm.work_log where
|| 'did=" || p_did || ') - interval ''1l week'') ';
elseif (p_delta = 'E') then
time_cond := ' AND L.timelogged < ((select max(timelogged) from uwm.work_log
where ' || 'did=' || p_did || ') - interval ''1 month'') ';
elseif (p_delta = 'F') then
time_cond := ' AND L.timelogged < ((select max(timelogged) from uwm.work_log
where ' || ‘'did=' || p_did || ') - interval ''1 year'') ';
end if;
q := 'select L.did as did, L.timelogged as tO, L.e_reading as er, L.e as e, ';
q :=q || 'L.interpolated as I, L.year as y, L.moy as moy, L.woy as woy, L.dow as dow';
q:=q || ' from uwm.work_log L ';
q :=q || ' where L.did=" || p_did ;
q :=q || time_cond;
q:=q]|"

order by L.timelogged desc';

/*

25

INFO-445/Spring 2013 (Version 04; Updated: April 8, 2013)

97 * Number of records read

98 */

99 num := 0;

100

101 FOR row2 IN execute q

102 LOOP

103 num := num + 1;

104 if (MAX <> @) then

105 if (num = MAX + 1) then
106 RETURN;

107 end if;

108 end if;

109

110 row.did := row2.did;
111 row.te := row2.t0;
112 row.e_reading i= row2.er;
113 row.e i= row2.e;
114 row.interpol = row2.I;
115 row.nulls = 0;

116

117 row.year := row2.y;

118 row.woy := row2.woy;

119 row.moy := row2.moy;

120 row.dow := row2.dow;

121 row.info := '';

122 RETURN NEXT row;

123 END LOOP;

124 RETURN;

125 END;

126 $PROC$ LANGUAGE plpgsql;

127

128 /*

129 * Used as a record set format for returning data -- see get_readings
130 */

131 drop table if exists uwm.meter_reading cascade;

132 create table uwm.meter_reading (

133 did int,

134 to timestamp with time zone,
135 t1 timestamp with time zone,
136 e_reading numeric(16,2),

137 e real,

138 interpol int,

139 nulls int,

140 dow int,

141 moy int,

142 year int,

143 woy int,

144 info char(16)

145);

