
Ling/CSE 472:

Introduction to Computational Linguistics

5/7: Dependency parsing



Overview

• Grammatical dependencies


• Dependency grammar


• Dependency treebanks


• Dependency parsing


• Reading questions (with headers)


• Questions about milestone 2



Grammatical Dependencies

• Relate words in the sentence to each other


• A labeled with the type of dependency


• Are typically represented as graphs (sometimes trees)


• Where each node is a word in the sentence


• Where word in the sentence is (usually) a node







Dependency Grammar

• Theoretical foundations: Tesnière 1959, Mel’čuk 1988, Hudson 1984, Sgall et 
al 1986


• Focus not on grammaticality (“What’s a possible sentence?”) but on 
grammatical structure, given a string



Dependency Treebanks: Universal Dependencies

• https://universaldependencies.org/


• Builds on: 


• Stanford dependencies (LFG-inspired transformation of CFG 
representations for English from the Stanford parser)


• Theoretical work on dependency grammar


• “Universal” POS tagset developed initially for cross-linguistic error analysis 
(McDonald and Nivre 2007)

https://universaldependencies.org/


What is needed for UD to be successful?

(from universaldependencies.org/introduction.html)

• The secret to understanding the design and current success of UD is to realize that the design is 
a very subtle compromise between approximately 6 things:


• UD needs to be satisfactory on linguistic analysis grounds for individual languages.


• UD needs to be good for linguistic typology, i.e., providing a suitable basis for bringing out 
cross-linguistic parallelism across languages and language families.


• UD must be suitable for rapid, consistent annotation by a human annotator.


• UD must be suitable for computer parsing with high accuracy.


• UD must be easily comprehended and used by a non-linguist, whether a language learner or 
an engineer with prosaic needs for language processing. We refer to this as seeking a 
habitable design, and it leads us to favor traditional grammar notions and terminology.


• UD must support well downstream language understanding tasks (relation extraction, 
reading comprehension, machine translation, …).


• It’s easy to come up with a proposal that improves UD on one of these dimensions. The 
interesting and difficult part is to improve UD while remaining sensitive to all these dimensions.

http://universaldependencies.org/introduction.html


Dependency Treebanks outside UD

• Richer grammatical formalisms such as HPSG can be ‘boiled down’ to 
dependency representations


• Syntactic OR semantic dependencies (Ivanova et al 2012)



DM v. UD



Dependency Parsing

• Transition-based v. graph-based


• Feature templates v. neural


• Source of training data



Transition-Based Dependency Parsing



Transition-Based Dependency Parsing



Learning transition scores



Graph-based parsing



Reading questions

• Is a good way of thinking of Projectivity to compare it to the syntax notion of 
dominance? (I think that's the right term but the notion that a sister of a head 
dominates everything it's other sister dominates? If that's even how it works - 
it's been a while)


• Projectivity is kind of hard for me to conceptualize, at least in the way 
diagrams are presented in this chapter. I'm more familiar with traditional 
syntax trees than dependency parses, so what would the equivalent of 
projectivity be in a syntax tree? Is it like c-commanding, or some other idea 
entirely that isn't discussed in typical syntax? 


• The concept of projective and non-projective arcs/trees: How exactly do they 
differ? Also, is it possible to visualize the distinction with typical syntax trees?



Non-projectivity

• J&M: “An arc from a head to a dependent is said to be projective if there is a 
path from the head to every word that lies between the head and the 
dependent in the sentence.” (Ch 18, p.4)



Reading questions

• Are sentences themselves inherently projective/non-projective, or does it 
depend on how the tree is drawn?


• The book mentions that widely used English treebanks always generate 
projective trees. Does this imply the same sentence could be used to 
construct both projective and non-projective trees?



Reading questions

• Is there a direct relationship between the level of flexibility of a language's 
word order vs if its trees are projective or not? For example, can projective 
trees ever be used to represent languages with flexible word order?


• Is dependency parsing or constituency parsing better at handling ambiguity?



Reading questions

• Which word is the head in the LEFTARC vs RIGHTARC transitions? 
"LEFTARC: Assert a head-dependent relation between the word at the top of 
the stack and the second word; remove the second word from the stack." 
Does this mean that the word at the top is the head and we remove the 
second, dependent word? 


• Also, when we "postpone dealing with the current word, storing it for later 
processing," when do we come back it? How is the dependency relationship 
assigned thereafter?



Dependency Parsing



Reading questions

• What exactly do the edge scores for graph-based parsing represent? Do they 
represent how "correct" a certain dependency is?



Reading questions

• In the graph-based parsing, we have a way to assign scores between words 
and we have ways to use these scores to decide which one to included. 
However, the non-greedy version of the transition-based parsing, i.e. the 
version it can compare between different parses does not have a clear way to 
get the score matrix from? Can we use method described in graph-based 
parsing to do that? If not, is there developed method on computing these 
scores using the principle of transition-based parsing?



Reading questions

• Which method of showing dependency parcing is more widely used? 
Because at least to me, I feel like I have a better understanding of how the 
words are linked together in the normal sentence forms with the arcs rather 
than that graph with just a bunch of lines pointing to things.



Reading questions

• The textbook mentions that graph-based dependency parsing often utilizes 
the Cho and Liu and Edmonds algorithm to find the maximum spanning tree, 
which runs with a time complexity of O(mn) - equivalent to O(n3). Would it be 
possible to perform this same operation with the more common Kruskal's 
MST algorithm, which instead runs in O(m log(m)) time? While Kruskal's finds 
minimum spanning trees, we could potentially negate the edge weights to 
find the maximum tree.



Milestone 2, due 5/12 

• Submit an update on how your project is doing, and what needs to change 
from your original plan to be successful clear. This update should include:


• A detailed description of project, according to the M2 specification for 
your selected project type.


• A description what needs to change from your original proposal, and a 
rationale.



NLP/compling in the news

• https://www.theguardian.com/technology/2023/may/04/bernie-sanders-elon-
musk-and-white-house-seeking-my-help-says-godfather-of-ai


• https://www.vice.com/en/article/wxjdg5/scary-emergent-ai-abilities-are-just-
a-mirage-produced-by-researchers-stanford-study-says

https://www.theguardian.com/technology/2023/may/04/bernie-sanders-elon-musk-and-white-house-seeking-my-help-says-godfather-of-ai
https://www.theguardian.com/technology/2023/may/04/bernie-sanders-elon-musk-and-white-house-seeking-my-help-says-godfather-of-ai
https://www.vice.com/en/article/wxjdg5/scary-emergent-ai-abilities-are-just-a-mirage-produced-by-researchers-stanford-study-says
https://www.vice.com/en/article/wxjdg5/scary-emergent-ai-abilities-are-just-a-mirage-produced-by-researchers-stanford-study-says

