Introduction to Computational Linguistics

Formal beginnings
Regular expressions and Finite State Automata

Olga Zamaraeva
University of Washington
April 4, 2019
Logistics

- Section time was previously incorrectly stated on the public class website
 - It is F 2:30-3:20 at MGH 251
- break business
- Treehouse lab
 - You will receive an access code after patas access
 - J&M 2 ed. is available there!
 - 2 ed. vs. 3 ed. of J&M
 - Please read the correct ed.
 - Might be the best option for Assignment 5 (the LKB)
- Review collaboration and Plagiarism policies
- Assignment 0: due Monday
- Assignment 1: due in a week, review later today
- ** notation for slide titles (e.g. “**Formal definition...”)
 - Means you probably only need to understand the general idea
Start recording!!!
So, we will talk about: Regular Expressions

- sequence of characters that defines a (search) pattern
- \(\(([0-9]{3})\)\)\([0-9]{3}\)\([-][0-9]{4}\)
 - matches phone numbers
- You can play with regexes here:
 - https://regex101.com/
- RegEx as a tool: **Assignment 1**
- RegEx are equivalent to Finite State Automata (**Assignment 2**)
- Fun fact: Kleene developed RegEx to describe the capabilities of early neural nets **50s**
Which are directly related to: Finite State Automata

colour

\{\text{color; colour}\}

\Sigma = \{a-z\}

The two things are equivalent in that they “generate” the same set of strings
Which describe: Regular Languages

...which are part of the Chomsky Hierarchy:

- recursively enumerable
- context-sensitive
- context-free
- regular

picture from Wikipedia.
What are formal languages?

Informally, a formal language is a set of strings (over some alphabet) and a set of rules.

What about just enumerating all possible strings? Is this a language, formally?
Formal languages

\[\sum = \{a, b, c\} \text{ (alphabet)} \]
\[L = (a | b) c \text{ (regular language)} \]

- Formally, a \textit{grammar} (informally, set of rules) \textit{generates} or \textit{accepts} (describes) a \textit{language} (set of strings defined over an alphabet).

- One grammar has greater \textit{generative power} than the other if it can define a language that the other cannot.

- This is achieved by placing more or less constraints on how grammar rules can be written.
Formal languages: Definitions

- **terminal**: specific word
- **non-terminal**: generalization over a word, a class of words
- **rewrite rule (production)**: in what way can the symbols be grouped together?

\[
\begin{align*}
NP & \rightarrow \text{Det Nominal} \\
NP & \rightarrow \text{ProperNoun} \\
\text{Nominal} & \rightarrow \text{Noun} | \text{Nominal Noun} \\
\text{Det} & \rightarrow \text{the} \\
\text{Det} & \rightarrow \text{a} \\
\text{Noun} & \rightarrow \text{flight}
\end{align*}
\]
The Turing Machine (1936; Alan Turing (1912-1954))

- A reading/writing head is moving along the tape, executing instructions (program).
- “Turing equivalent” (or “Turing complete”): no restrictions as to what you can write to the tape.
- The most expressive language (can run any program, including self)
- Not actually a machine, it is a mental construct
- In fact, engineers often try to avoid Turing-complete solutions (why?)
Why need subTuring languages?

- Turing-complete languages are unbounded in power
- Why bother with SubTuring languages, then?
- “Accidentally Turing-complete”: http://beza1e1.tuxen.de/articles/accidentally_turing_complete.html
Natural language complexity

This is the malt that the rat that the cat that the dog worried killed ate.
Victor H. Yngve (1960)

- The Republicans who the senator who she voted for chastised were trying to cut all benefits for veterans. (J&M, p. 529)
- What level of complexity occurs in natural language?
- Models of natural language differ in their power with respect to levels of complexity
- What type of models do we end up using in practice?
Natural language complexity

Swiss-German:
...mer em Hans es huss hälfed aastriiche

English:
...we helped Hans paint the house

“It is generally agreed that natural languages ... are not regular, although most attempted proofs of this are widely known to be incorrect.”

- Regular?
 - No, because recursion:
 - Recall the definition: a regular language is equivalent to a finite state automaton, while recursion requires potentially infinite stack
Natural language complexity

Swiss-German:
...mer em Hans es huss hälfed aastriiche

English:
...we helped Hans paint the house

“It is generally agreed that natural languages ... are not regular, although most attempted proofs of this are widely known to be incorrect.”

▶ Context-free?
 ▶ Maybe, but maybe not, because Swiss German

▶ Context-sensitive?
 ▶ $a^m b^n c^m d^n$...
 ▶ realistically, how big are m and n?
Why try to determine language complexity?

- We know the expressive power of our models
- How adequate is model X for language Y?
 - You want your program to react to certain input (language) in a certain way;
 - If the model’s capabilities wrt this input are **limited**, better know that upfront
- Are natural languages *really* context-sensitive?
 - ...most programming languages are actually Turing-complete
 - what might this mean for natural languages?
Chomsky hierarchy and human language

What should the learner acquire?

Chomsky hierarchy and learnability

What should the learner acquire?

We will start with regular languages by looking at regular expressions as search patterns and FSA for morphology (Assignments 1-2).

We will continue with context free grammars by looking at probabilistic context free parsing (Assignments 3-4).

We will work with a Turing-complete* language formalism (HPSG) in Assignment 5.

*We won’t really use the full power of the complexity.
Regular languages

- (Right-linear:)
- At most one non-terminal on the LHS (left-hand side) and at most one terminal followed by one non-terminal on the RHS.
- \(A \rightarrow xB \) or \(A \rightarrow x \) where \(x \) is a terminal and \(A, B \) are non-terminals

\[a^*bc^* \]

\[S \rightarrow aS \]
\[S \rightarrow bA \]
\[A \rightarrow \epsilon \]
\[A \rightarrow cA \]
Three views of the same object

Regular languages can be described by regular expressions or by finite state automata

- Regular language: a set of strings
- Regular expressions compactly describes a regular language
- Finite State Automaton (FSA) accepts or generates all the strings from the language (and no other strings)
- In this sense, the FSA and the regular expression are “equivalent” to each other
Regular languages: Formal definition

Required symbols:
- ε is the empty string
- \emptyset is the empty set
- \sum is an alphabet (e.g. $\sum = \{a,b,c,d\}$)

The class of regular languages over \sum is formally defined as:
- \emptyset is a regular language
- $\forall a \in \sum \cup \varepsilon$, $\{a\}$ is a regular language
- If L_1 and L_2 are regular languages, then so are:
 - $L_1 \cdot L_2 = \{xy \mid x \in L_1, y \in L_2\}$ (concatenation)
 - $L_1 \cup L_2$ (union or disjunction)
 - L_1^* (Kleene closure)
The Pumping Lemma (intuition)

- Why are languages of the form $a^n b^n$ not regular?
 - aka: why it is not possible to model syntax with FSA?
Regular expressions: Tools that use them

- A variety of unix tools (grep, sed, ...), editors (emacs, jEdit, ...), and programming languages (perl, python, Java, ...) incorporate regular expressions.
- Implementations are fairly efficient, but regex are still slow as far as computers go.
- The various tools and languages differ w.r.t. the exact syntax of the regular expressions they allow but all are similar.
The syntax of regular expressions (I)

Regular expressions consist of

- strings of literal characters: c, A100, natural language, 30 years!
- disjunction:
 - ordinary disjunction: fami\(l(y|ies)\)
 - character classes: [Tt]he, bec[oa]me
 - ranges: [A–Z] (any capital letter)
- negation:
 - [^a] (any symbol but a)
 - [^A–Z0–9] (not an uppercase letter or number)
The syntax of regular expressions (II)

- counters
 - optionality: ?
 - colour
 - any number of occurrences: * (Kleene star)
 - [0-9]* years
 - at least one occurrence: +
 - [0-9]+ dollars
- wildcard for any character: .
 - beg.n for any character in between beg and n
The syntax of regular expressions (III)

- Escaped characters: to specify a character with a special meaning (*, +, ?, (,), |, [,]), it is preceded by a backslash (\).
 e.g., a period is expressed as \.

- Operator precedence, from highest to lowest:
 - parentheses ()
 - counters * + ?
 - character sequences
 - disjunction |
Regular expressions in python programming language

- https://docs.python.org/3/library/re.html
- (do study the above docs whenever you have a problem, rather than quickly looking at them and then trying to guess why you have a problem)
- Your best friend: https://regex101.com/
- Elizalike (Assignment 1) initial step-through

end of 4/4 class
grep is a powerful and efficient program for searching in text files using regular expressions.

It is standard on Unix, Linux, and Mac OS X, and there also are various ports to Windows (e.g.,
http://gnuwin32.sourceforge.net/packages/grep.htm,

The version of grep that supports the full set of operators mentioned above is generally called egrep (for extended grep).

My grepping scenario: which module does this variable come from?!
RegEx example: Single character

- Alphabet: $\Sigma = \{a\}$
- Language (set of strings): $L = \{a\}$
- Regular expression: a
- FSA:
RegEx example: Single character

- Alphabet: $\sum = \{a\}$
- Language (set of strings): $L = \{a\}$
- Regular expression: a
- FSA:
RegEx example: Disjunction/Union

- Alphabet: $\Sigma = \{a, b\}$
- Language (set of strings): $L = \{a, b\}$
- Regular expression: $a | b$
- FSA:
RegEx example: Disjunction/Union

- Alphabet: $\sum = \{a,b\}$
- Language (set of strings): $L = \{a,b\}$
- Regular expression: $a|b$
- FSA:
RegEx example: Concatenation

- Alphabet: $\Sigma = \{a,b,c,d\}$
- Language (set of strings): $L_1 = \{a,b\}$, $L_2 = \{c,d\}$
- Regular expression: $(a|b) \cdot (c|d)$
- FSA:
RegEx example: Concatenation

- Alphabet: $\Sigma = \{a, b, c, d\}$
- Language (set of strings): $L1 = \{a, b\}$, $L2 = \{c, d\}$
- Regular expression: $(a|b) \cdot (c|d)$
- FSA:

```
0 1 2
a c
\downarrow \downarrow \downarrow
b d
```

- what about: $(ab)\| (cd)$?
RegEx example: Kleene closure

- Alphabet: $\Sigma = \{a, b\}$
- Language (set of strings): $L_1 = \{\varepsilon, a, b, aa, bb, ab, ba, bb...\}$
- Regular expression: $(a|b)^*$
- FSA:
RegEx example: Kleene closure

- Alphabet: $\sum = \{a,b\}$
- Language (set of strings): $L_1 = \{\epsilon, a, b, aa, bb, ab, ba, bb, \ldots\}$
- Regular expression: $(a|b)^*$
- FSA:
FSA as transition table

<table>
<thead>
<tr>
<th>State</th>
<th>a</th>
<th>b</th>
<th>c</th>
</tr>
</thead>
<tbody>
<tr>
<td>>0</td>
<td>1</td>
<td>3</td>
<td>-</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>2</td>
<td>-</td>
</tr>
<tr>
<td>2:</td>
<td>-</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>3:</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

FSA as transition table

Formal Language Theory

Regular Expressions

Finite State Automata

Recap
FSA as transition table

<table>
<thead>
<tr>
<th>State</th>
<th>a</th>
<th>b</th>
<th>c</th>
</tr>
</thead>
<tbody>
<tr>
<td>>0</td>
<td>1</td>
<td>3</td>
<td>-</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>2</td>
<td>-</td>
</tr>
<tr>
<td>2:</td>
<td>-</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>3:</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Diagram

- States: 0, 1, 2, 3
- Transitions:
 - From 0 to 1 on 'a'
 - From 0 to 3 on 'b'
 - From 1 to 2 on 'b'
 - From 2 to 3 on 'c'
 - From 3 to 0 on 'b'

Start state: 0

Table

<table>
<thead>
<tr>
<th>State</th>
<th>a</th>
<th>b</th>
<th>c</th>
</tr>
</thead>
<tbody>
<tr>
<td>>0</td>
<td>1</td>
<td>3</td>
<td>-</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>2</td>
<td>-</td>
</tr>
<tr>
<td>2:</td>
<td>-</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>3:</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>
DFSA and NFSA

▶ **Deterministic Finite State Automaton (DFSA, DFA)**
 ▶ Does not have “free” (ϵ, empty string) transitions
 ▶ (Meaning: State changes only after reading an input)
 ▶ Given an input sequence, you can predict uniquely the next state

▶ **Nondeterministic Finite State Automaton (NFSA, NFA)**
 ▶ Can have “free” (ϵ, empty string) transitions
 ▶ Given an input sequence, you can’t always predict the next state
 ▶ Can be convenient, e.g. to convert regex to a FSA
Converting FSA to regex

E.g. The State Removal method

► If transitions out of Start state:
 ► Add a new Start state
 ► Old Start state no longer start
 ► Add an ϵ transition from new Start to old

► If more that one Accepting state or transitions out of Accepting state:
 ► Add a new Accepting State
 ► Add ϵ transitions from old Accepting states to new
 ► Old Accepting states no longer accept

► Now, remove intermediate states one by one, combining simple inputs on the edges into more complex inputs.

► (Choose the simplest nodes to remove)

► This algorithm is easy to visualize but harder to apply systematically

► Look up e.g. transition closure method if you want systematic
The State Removal Method

Getting rid of multiple accepting states:

Getting rid of State 1:
The State Removal Method

Getting rid of multiple accepting states:

Getting rid of State 1:
The State Removal Method - 2

Getting rid of State 3:

Getting rid of State 2:

The final picture yields the regular expression:
The State Removal Method - 2

Getting rid of State 3:

\[
\begin{align*}
S & \xrightarrow{\epsilon} 0 \xrightarrow{a+b} 2 \xrightarrow{(b|c)?} 4 \\
S & \xrightarrow{b} 0 \xrightarrow{b} 4
\end{align*}
\]

Getting rid of State 2:

\[
\begin{align*}
S & \xrightarrow{\epsilon} 0 \xrightarrow{a+b(b|c)?} 4 \\
S & \xrightarrow{b} 0 \xrightarrow{b} 4
\end{align*}
\]

The final picture yields the regular expression:
\[(a+b(b|c)?)b\]
Optional: Converting regex to FSA (Thompson’s construction)

- Basically reversing the process above (with a bit more ϵ involved, if you want to follow the general case).
- (Why so many epsilon-transitions? Thompson construction assumes strictly 1 entry and 1 exit point for each state)
- you are operating not just on nodes in a graph, but on separate automata, so you need to preserve their start and accepting states
- Another tutorial: http://web.cecs.pdx.edu/~harry/compilers/slides/LexicalPart3.pdf
Converting regex to FSA: regex to NFA

\[a^*(b|c) \]
Converting regex to FSA: regex to NFA

\[a^*(b|c) \]

\[a^* \text{ (NFA, Kleene star of } a) : \]

```
1 \rightarrow \epsilon \rightarrow 2
\epsilon \rightarrow 3 \rightarrow a \rightarrow 4
```

\[\epsilon \]
Converting regex to FSA: regex to NFA

\[a^* (b|c) \]

\[b|c \] (NFA, disjunction of b and c):

\[
\begin{array}{c}
0 \quad 1 \\
\epsilon \quad \epsilon \\
3 \quad 5 \\
\epsilon \quad \epsilon \\
2 \quad 4 \\
\epsilon \quad \epsilon \\
7 \quad 6 \\
\epsilon \\
\end{array}
\]

\[
\begin{array}{c}
b \quad \epsilon \\
4 \quad 2 \\
\epsilon \quad \epsilon \\
6 \quad 0 \\
\epsilon \quad \epsilon \\
7 \quad 6 \\
\epsilon \\
\end{array}
\]
Converting regex to FSA: regex to NFA

\[a^*(b|c)\]
\[a^*(b|c)\] (NFA, concatenation of \(a^*\) and \(b|c\)):

Note: we can get from 0 to 4 by \(a\); from 4 to 4 by \(a\); from 4 to 10 by \(b\); from 4 to 11 by \(c\). From 10 and 11, we can just halt.
Converting NFA to DFA

ε closure: sets of NFA states corresponding to each State to which you can get from that state by any # of ε arcs. (e.g. 1: 1,2,3,5,6,7,8)

| State | NFA states | a*(b|c) |
|-------|------------------|--------|
| 1 | 1,2,3,5,6,7,8 | |
| 2 | 2,5,6,7,8 | |
| 3 | 3 | |
| 4 | 4,2,1,3,5,6,7,8 | |
| 5 | 5,6,7,8 | |
| 6 | 6,7,8 | |
| 7 | 7 | |
| 8 | 8 | |
| 9 | 9,11,12 | |
| 10 | 10,11,12 | |
| 11 | 11,12 | |
| 12 | 12 | |
Converting NFA to DFA

All states to which you can get from State1 to State2 by some input and any \textit{epsilon} transitions:

<table>
<thead>
<tr>
<th>State</th>
<th>a</th>
<th>b</th>
<th>c</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1,2,3,4,5,6,7,8</td>
<td>9,11,12</td>
<td>10,11,12</td>
</tr>
<tr>
<td>2</td>
<td>1,2,3,4,5,6,7,8</td>
<td>9,11,12</td>
<td>10,11,12</td>
</tr>
<tr>
<td>3</td>
<td>1,2,3,4,5,6,7,8</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>4</td>
<td>1,2,3,4,5,6,7,8</td>
<td>9,11,12</td>
<td>10,11,12</td>
</tr>
<tr>
<td>5</td>
<td>-</td>
<td>9,11,12</td>
<td>10,11,12</td>
</tr>
<tr>
<td>6</td>
<td>-</td>
<td>9,11,12</td>
<td>10,11,12</td>
</tr>
<tr>
<td>7</td>
<td>-</td>
<td>9,11,12</td>
<td>-</td>
</tr>
<tr>
<td>8</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>9</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>10</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>11</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>12</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>13</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

\[a^*(b|c) \]
Converting NFA to DFA

Define new DFA states by sets of NFA states reachable by each input in the alphabet. Set Start State S_0 to $\textit{epsilon}$-closure of the NFA start state. $S_0 = \{1,2,3,5,6,7,8\}$

<table>
<thead>
<tr>
<th>State</th>
<th>a</th>
<th>b</th>
<th>c</th>
</tr>
</thead>
<tbody>
<tr>
<td>S_0</td>
<td>$S_1 {1,2,3,4,5,6,7,8}$</td>
<td>$S_2 {9,11,12}$</td>
<td>$S_3 {10,11,12}$</td>
</tr>
<tr>
<td>S_1</td>
<td>$S_1 {1,2,3,4,5,6,7,8}$</td>
<td>$S_2 {9,11,12}$</td>
<td>$S_3 {10,11,12}$</td>
</tr>
<tr>
<td>S_2</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>S_3</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

$a^* (b|c)$ (DFA: could be minimized by combining S_0 and S_1)
What you need to know

- Regular expressions and FSA are “equivalent” (accept/generate the same set of strings (language))
- Regular expressions can be used to search for patterns
- Regular languages are the least expressive in the Chomsky hierarchy
- Models of language differ in their expressive power
- A formal grammar generates/accepts a language (a set of strings)
- An FSA accepts all strings from the regular language that it describes
- FSA operations: Disjunction, Concatenation, Kleene closure
- Algorithm to convert FSA to RegEx (optionally: and vice versa)
- Syntax of RegEx and how to use them in python