Context-Free Languages

- There are languages CFGs can't generate (non-context-free languages), notably those that incorporate *cross-serial dependencies*, such as Swiss German.
- Perhaps more importantly, CFGs are cumbersome and inefficient for representing natural language syntax.
- Most (but not all) modern theories of syntax include a notion of phrase structure (CFG), and then extend it.

Swiss German example (Shieber 1985) (1/2)

```
... mer d'chind em Hans es huus lönd hälfe aastriiche ... we the children-ACC Hans-DAT the house-ACC let help paint '... we let the children help Hans paint the house'
```

- Cross-serial dependency:
 - *let* governs the case on *children*
 - *help* governs the case on *Hans*
 - paint governs the case on house

Swiss German example (Shieber 1985) (2/2)

• Define a new language f(Swiss German)=

```
f(d'\text{chind}) = a f(\text{Jan s\"{a}it das mer}) = w

f(\text{em Hans}) = b f(\text{es huus}) = x

f(\text{l\"{o}nde}) = c f(\text{aastriiche}) = y

f(\text{h\"{a}lfe}) = d f([\text{other}]) = z
```

- Let r be the regular language $wa^*b^*xc^*d^*y$.
- $f(\mathbf{S}wissGerman) \cap r = wa^m b^n x c^m d^n y$
- $wa^mb^nxc^md^ny$ is not context-free
- Context free languages are closed under intersection
- .: Swiss German is not context-free.

Strongly v. weakly context-free

- A language is *weakly* context-free if the set of strings in the language can be generated by a CFG.
- A language is *strongly* context-free if it is weakly context free and the set of structures assigned to the strings by the CFG are the right ones.
- Shieber's proof shows that Swiss German is *weakly* not context-free and therefore *a fortiori strongly* not context-free.
- A prior paper by Bresnan et al had argued that Dutch was *strongly* not context-free, but the argument was dependent on linguistic analyses.