Ling 566 Nov 15, 2006

Auxiliaries

Overview

- What are auxiliaries?
- General properties of auxiliaries
- Lexical type/lexical entries for auxiliaries
- NICE properties (lexical rules)

What Auxiliaries Are

- Sometimes called "helping verbs," auxiliaries are little words that come before the main verb of a sentence, including forms of *be, have, do, can, could, may, might, must, shall, should, will,* and *would*
- They tend to be involved in the expression of time, necessity, possibility, permission, and obligation, as well as such things as negation, affirmation, and questioning

Some Basic Facts about Auxiliaries

- They are optional Pat tapdanced. Pat can tapdance. Pat is tapdancing.
- They precede any non-auxiliary verbs *Pat tapdance can. *Pat tapdancing is.
- They determine the form of the following verb *Pat can tapdancing. *Pat is tapdance.
- When they co-occur, their order is fixed Pat must be tapdancing. *Pat is musting tapdance.
- Auxiliaries of any given type cannot iterate *Pat could should tapdance.

A Little History

- Chomsky's first book, *Syntactic Structures* (1957), contained a detailed analysis of the English system of auxiliary verbs
- It showed how formal analysis could reveal subtle generalizations
- The power of Chomsky's analysis of auxiliaries was one of the early selling points for transformational grammar
 - Especially, his unified treatment of auxiliary do
- So it's a challenge to any theory of grammar to deal with the same phenomena

Two Approaches to Analyzing Auxiliaries

- Treat auxiliaries as a special category, and formulate specialized transformations sensitive to their presence
- Assimilate their properties to existing types as much as possible, and elaborate the lexicon to handle what is special about them
- We adopt the latter, treating auxiliaries as a subtype of *srv-lxm*

Consequences of Making auxv-lxm a Subtype of srv-lxm

- Auxliaries should express one-place predicates
- Auxiliaries should allow non-referential subjects (dummy *there*, *it*, and idiom chunks)
- Passivization of the main verb (the auxiliary's complement) should preserve truth conditions
- Are these borne out?

Why call auxiliaries verbs?

- *be, have*, and *do* exhibit verbal inflections (tense, agreement)
- *be, have,* and *do* can all appear as main verbs (that is, as the only verb in a sentence)
 - Their inflections are the same in main and auxiliary uses
 - be exhibits auxiliary behavior, even in its main verb uses
- Modals (*can*, *might*, *will*, etc.) don't inflect, but they occur in environments requiring a finite verb with no (other) finite verb around.

What's special about auxiliaries?

- Unlike other subject-raising verbs we have looked at, their complements aren't introduced by *to*
- The modals and *do* have defective paradigms
- There are restrictions on the ordering and iterability of auxiliaries
- They have a set of special characteristics known as the NICE properties.

Some Type Constraints

TYPE	FEATURES/CONSTRAINTS	IST
verb-lxm	$\begin{bmatrix} \text{SYN} & \begin{bmatrix} \text{verb} \\ \text{AUX} & / - \end{bmatrix} \end{bmatrix}$	infl-lxm
	$\begin{bmatrix} ARG\text{-ST} & \langle [HEAD \ nominal] \ , \dots \ \rangle \\ SEM & \begin{bmatrix} MODE \ prop \end{bmatrix} \end{bmatrix}$	
srv-lxm	$\left[\text{ARG-ST} \left\langle \boxed{1}, \begin{bmatrix} \text{SPR} & \langle \boxed{1} \rangle \\ \text{COMPS} & \langle \rangle \end{bmatrix} \right\rangle \right]$	verb-lxm
ic-srv-lxm	$\begin{bmatrix} ARG-ST & \left\langle X, \begin{bmatrix} INF & + \\ INDEX & s \end{bmatrix} \right\rangle \\ SEM & \begin{bmatrix} RESTR & \left\langle \begin{bmatrix} ARG & s \end{bmatrix} \right\rangle \end{bmatrix} \end{bmatrix}$	srv-lxm
auxv-lxm	$\begin{bmatrix} \text{SYN} & \begin{bmatrix} \text{HEAD} & \begin{bmatrix} \text{AUX} & + \end{bmatrix} \end{bmatrix} \end{bmatrix}$	srv-lxm

A Lexical Entry for be

$$\left\langle \text{be} \right., \left[\begin{array}{c} auxv\text{-}lxm \\ \\ ARG\text{-ST} \end{array} \right. \left\langle \begin{array}{c} \text{SYN} & \left[\text{HEAD} & \left[\text{PRED} & + \right] \right] \\ \\ \text{SEM} & \left[\text{INDEX} & 2 \right] \end{array} \right. \right\rangle \right\rangle$$

The Entry for be, with Inherited Information

$$\left\langle \begin{array}{c} \operatorname{auxv-lxm} \\ \operatorname{SYN} \end{array} \right| \left(\begin{array}{c} \operatorname{HEAD} & \begin{bmatrix} \operatorname{verb} \\ \operatorname{AUX} & + \\ \operatorname{AGR} & \boxed{0} \end{bmatrix} \\ \operatorname{VAL} & \left[\operatorname{SPR} & \langle \left[\operatorname{AGR} & \boxed{0} \right] \rangle \right] \\ \operatorname{ARG-ST} & \left\langle \begin{array}{c} \operatorname{SYN} & \begin{bmatrix} \operatorname{HEAD} & \left[\operatorname{PRED} & + \right] \\ \operatorname{VAL} & \left[\operatorname{SPR} & \langle \left[\operatorname{3} \right] \rangle \\ \operatorname{COMPS} & \langle \rangle \end{array} \right] \right] \right\rangle \\ \operatorname{SEM} & \left[\operatorname{INDEX} & \boxed{2} \right] \\ \operatorname{SEM} & \left[\operatorname{RESTR} & \langle & \rangle \right] \\ \end{array}$$

Entry for have

$$\left\langle \text{have ,} \begin{bmatrix} auxv\text{-}lxm \\ ARG\text{-ST } \left\langle X \right., \begin{bmatrix} SYN & HEAD & [verb] \\ FORM & psp \end{bmatrix} \right] \right\rangle$$

$$\left\langle \text{have ,} \begin{bmatrix} INDEX & s \\ RESTR & \left\langle \begin{bmatrix} RELN & have \\ SIT & s \\ ARG & 3 \end{bmatrix} \right\rangle \right]$$

- Note the FORM restriction on the complement VP
- What accounts for the analogous FORM restriction on verbs following *be*?

Lexical Entry for a Modal

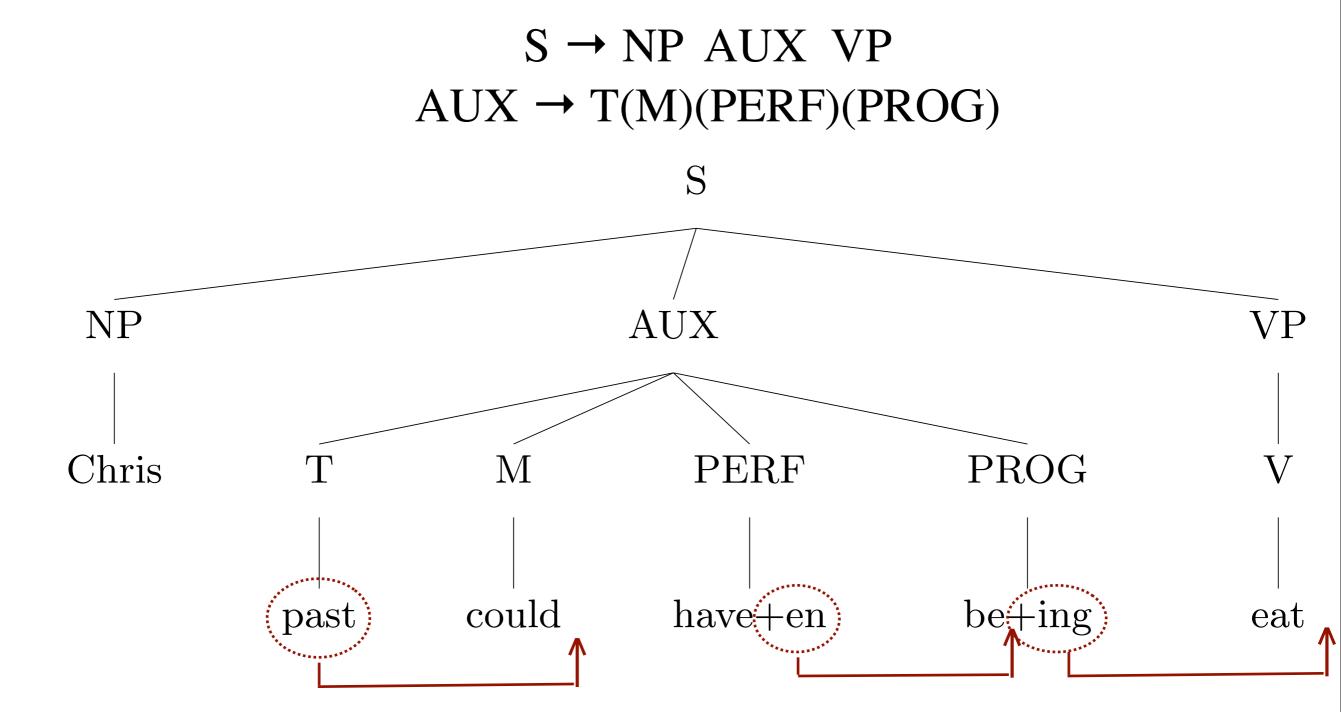
$$\left\{ \begin{array}{ll} \text{auxv-lxm} \\ \text{SYN} & \left[\text{HEAD} \left[\text{FORM fin} \right] \right] \\ \\ \text{ARG-ST} & \left\langle \mathbf{X} \right., \left[\begin{array}{ll} \text{SYN} & \left[\begin{array}{ll} \text{HEAD} & \left[\begin{array}{c} verb \\ \text{INF} & - \\ \text{FORM base} \end{array} \right] \right] \right\rangle \\ \\ \text{SEM} & \left[\begin{array}{ll} \text{INDEX} & s_2 \end{array} \right] \\ \\ \text{SEM} & \left[\begin{array}{ll} \text{RELN} & \mathbf{would} \\ \text{SIT} & s_1 \\ \text{ARG} & s_2 \end{array} \right] \right\rangle \\ \end{array}$$

- Note the restriction on the form of the complement VP
- What inflectional lexical rules apply to this lexeme?

Accounting for the Basic Facts Cited Earlier

- Optionality of auxiliaries:
 As raising verbs, their subjects and complements go together.
- Auxiliaries precede non-auxiliary verbs:
 Auxiliaries are heads, and complements follow heads in English.
- Auxiliaries determine the form of the following verb: This is built into their lexical entries.
- When auxiliaries co-occur, their order is fixed:
 Different explanations for different combinations; see next slide.
- Non-iterability of auxiliaries:
 Ditto.

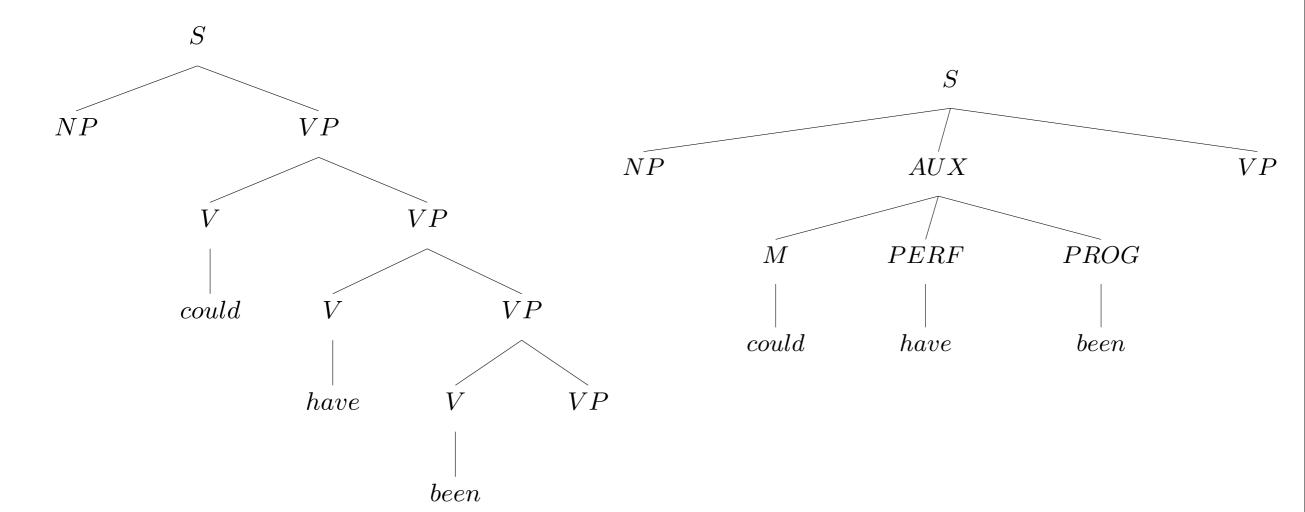
Accounting for Restrictions on Order and Iterability


Order

- Modals are finite, and all auxiliaries take non-finite complements. Hence, modals must come first.
- Stative verbs (like *own*) don't have present participles, and auxiliary *have* is stative. Hence, **Pat is having tapdanced*.

Iterability

- Auxiliary be is also stative, so *Pat is being tapdancing.
- Modals must be finite, and their complements must be base, so *Pat can should tapdance.
- *Pat has had tapdanced can be ruled out in various ways, e.g. stipulating that auxiliary have has no past participle.


Sketch of Chomsky's Old Analysis

How this Analysis Handles the Basic Facts

- Optionality of auxiliaries:
 Stipulated in the phrase structure rule (with parentheses)
- Auxiliaries precede non-auxiliary verbs:
 Built into the phrase structure rule, with AUX before VP
- Auxiliaries determine the form of the following verb: Inflections are inserted with the auxiliaries and moved onto the following verb transformationally.
- When auxiliaries co-occur, their order is fixed: Stipulated in the phrase structure rule for AUX
- Non-iterability of auxiliaries:
 Ditto.

The two analyses assign very different trees

- could have been VP,
 have been VP, and been VP
 are all constituents
- could have been is not a constituent

- could have been VP, have been VP, and been VP are not constituents
- could have been is a constituent

Ellipsis and Constituency

• Consider:

Pat couldn't have been eating garlic, but Chris could have been Pat couldn't have been eating garlic, but Chris could have Pat couldn't have been eating garlic, but Chris could

- On the nested analysis, the missing material is a (VP) constituent in each case
- On the flat analysis, the missing material is never a constituent
- This argues for our analysis over the old transformational one.

Our Analysis of Auxiliaries So Far

- Auxiliaries are subject-raising verbs
- Most basic distributional facts about them can be handled through selectional restrictions between auxiliaries and their complements (that is, as ARG-ST constraints)
- Auxiliaries are identified via a HEAD feature AUX, which we have not yet put to use

Descriptive Summary of the NICE Properties

Negation

Sentences are negated by putting *not* after the first auxiliary verb; they can be reaffirmed by putting *too* or *so* in the same position

Inversion

Questions are formed by putting an auxiliary verb before the subject NP

Contraction

Auxiliary verbs take negated forms, with *n't* affixed

Ellipsis

Verb phrases immediately following an auxiliary verb can be omitted

Negation (and Reaffirmation)

• Polar adverbs (sentential *not*, *so*, and *too*) appear immediately following an auxiliary

```
Pat will not leave
Pat will SO leave
Pat will TOO leave
```

- What about examples like *Not many people left*?
- What happens when you want to deny or reaffirm a sentence with no auxiliary?

```
Pat left
Pat did not leave
Pat did TOO leave
```

The Auxiliary do

- Like modals, *do* only occurs in finite contexts:
 - *Pat continued to do not leave
- Unlike modals, *do* cannot be followed by other auxiliaries: *Pat did not have left

The ADV_{pol}-Addition Lexical Rule

What does the type *pi-rule* mean?

- It maps words to words (hence, "post-inflectional")
- It preserves MOD values, HEAD values as a default, and (like other lexical rule types) SEM values as a default

$$\begin{bmatrix} & & & & & & & & & & & & & & & & \\ & & & & & & & & & & & & & \\ & & & & & & & & & & & \\ & & & & & & & & & & \\ & & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & &$$

Why doesn't ADV_{pol}-Addition LR mention VAL?

What is the role of these indices?

$$\begin{bmatrix} pi\text{-}rule \\ & \\ \text{INPUT} & \left\langle X \right., \begin{bmatrix} \text{SYN} & \begin{bmatrix} \text{werb} & \\ \text{FORM} & \text{fin} \\ \text{POL} & - \\ \text{AUX} & + \end{bmatrix} \end{bmatrix} \right\rangle$$

$$\begin{bmatrix} \text{ARG-ST} & \left\langle \mathbb{I} \right\rangle \oplus \mathbb{A} \\ \text{SEM} & \begin{bmatrix} \text{INDEX} & \mathbb{S}_1 \end{bmatrix} \end{bmatrix}$$

$$\begin{bmatrix} \text{OUTPUT} & \left\langle Y \right., \begin{bmatrix} \text{SYN} & \begin{bmatrix} \text{HEAD} & [\text{POL} +] \\ \text{VAL} & [\text{SPR} & \left\langle Z \right\rangle] \end{bmatrix} \right\rangle$$

$$\begin{bmatrix} \text{ADV}_{pol} & \\ \text{ARG-ST} & \left\langle \mathbb{I} \right\rangle \oplus \left\langle \begin{bmatrix} \text{INDEX} & \mathbb{S}_2 \\ \text{RESTR} & \left\langle \begin{bmatrix} \text{ARG} & \mathbb{S}_1 \end{bmatrix} \right\rangle \end{bmatrix} \right\rangle \oplus \mathbb{A}$$

$$\begin{bmatrix} \text{SEM} & \begin{bmatrix} \text{INDEX} & \mathbb{S}_2 \end{bmatrix} \\ \end{bmatrix}$$

Which *not*s does the rule license?

$$\begin{bmatrix} pi\text{-}rule \\ INPUT & \left\langle X \right\rangle, \begin{bmatrix} SYN & \begin{bmatrix} werb \\ FORM & fin \\ POL & - \\ AUX & + \end{bmatrix} \end{bmatrix} \\ ARG\text{-}ST & \left\langle \mathbb{1} \right\rangle \oplus \mathbb{A} \\ SEM & \begin{bmatrix} INDEX & s_1 \end{bmatrix} \end{bmatrix} \\ OUTPUT & \left\langle Y \right\rangle, \begin{bmatrix} SYN & \begin{bmatrix} HEAD & [POL +] \\ VAL & [SPR & \left\langle Z \right\rangle] \end{bmatrix} \\ ARG\text{-}ST & \left\langle \mathbb{1} \right\rangle \oplus \left\langle \begin{bmatrix} INDEX & s_2 \\ RESTR & \left\langle [ARG & s_1] \right\rangle \end{bmatrix} \right\rangle \oplus \mathbb{A} \end{bmatrix} \\ SEM & \begin{bmatrix} INDEX & s_2 \end{bmatrix} \end{bmatrix}$$

Andy must <u>not</u> have been sleeping?

Andy must have <u>not</u> been sleeping?

Andy must have been <u>not</u> sleeping?

Kleptomaniacs can<u>not</u> not steal.

Kleptomaniacs cannot <u>not</u> steal.

Negation and Reaffirmation: A Sample Tree

Inversion

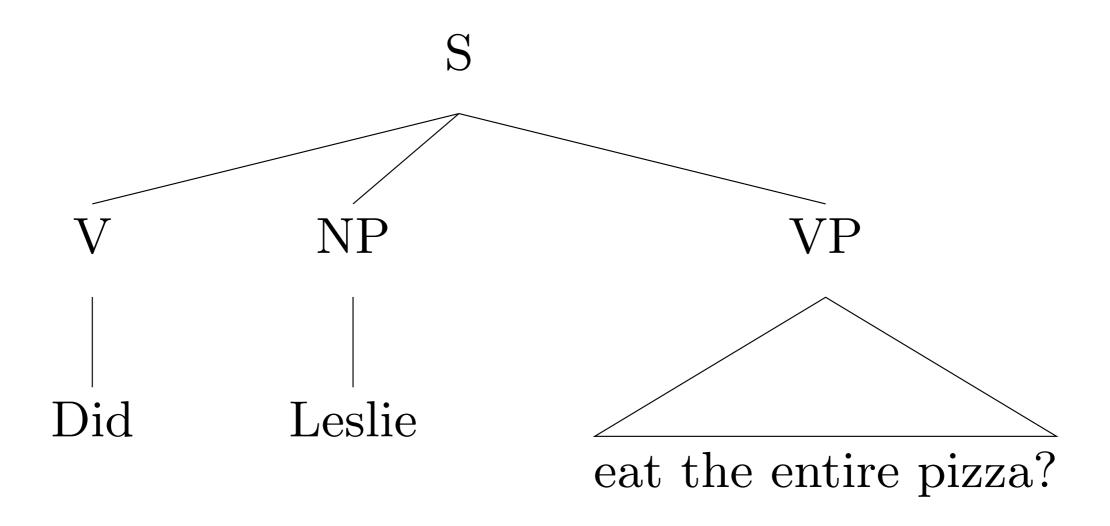
- Yes-no questions begin with an auxiliary: *Will Robin win?*
- The NP after the auxiliary has all the properties of a subject
 - Agreement: *Have they left?* vs. **Has they left?*
 - Case: **Have them left?*
 - Raising: Will there continue to be food at the meetings?
- What happens if you make a question out of a sentence without an auxiliary?

Robin won
Did Robin win?

The Inversion Lexical Rule

How the Rule Yields Inverted Order

...plus the ARP


The Feature INV

- What is the INV value of inputs to the Inversion LR?
 - Perhaps surprisingly, the input is [INV +]
 - Word-to-word rules (*pi-rules*) have default identity of HEAD features, and no INV value is given on the input
- Then what work is the feature doing?
 - It's used to mark auxiliaries that can't or must be inverted You better watch out vs. *Better you watch out I shall go (shall ~ 'will') vs. Shall I go? (shall ~ 'should')

Other Cases of Inversion

- Inversion is not limited to questions
 - Preposed negatives: Never have I been so upset!
 - Conditionals: *Had we known, we would have left.*
 - Exclamations: May your teeth fall out!
- Does our rule account for these?
 - No. Our rule's output says [MODE ques]. And each construction has slightly different idiosyncrasies.
- How might we extend our analysis to cover them?
 - Define a type of inversion lexical rules, sharing certain properties, but with some differences.

Inversion: A Sample Tree

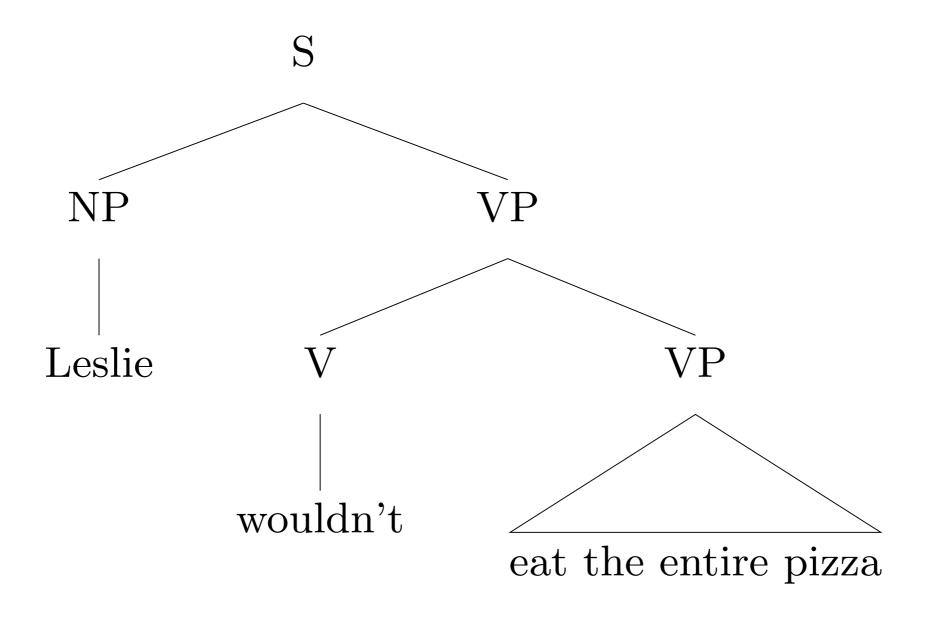
Contraction

- There are several types of contraction in English, but we're only talking about words ending in *n't*
- It may seem like just *not* said fast, but there's more to it
 - Only finite verbs can take n't:
 *Terry must haven't seen us
 - There are morphological irregularities:

The Contraction Lexical Rule

Most of the work is in the semantics

$$| \text{INPUT} | \left\langle \mathbb{E} \right\rangle , \left[\begin{array}{c} \text{SYN} & \left[\begin{array}{c} \text{Werb} & \\ \text{FORM} & \text{fin} \\ \text{AUX} & + \\ \text{POL} & - \end{array} \right] \right] \\ \text{ARG-ST} | \mathbb{E} \\ \text{SEM} & \left[\begin{array}{c} \text{INDEX} & s_1 \\ \text{RESTR} & \mathbb{A} \end{array} \right] \\ \text{OUTPUT} & \left\langle \mathbb{F}_{NEG}(\mathbb{Z}) \right\rangle , \left[\begin{array}{c} \text{SYN} & \left[\begin{array}{c} \text{HEAD} & \left[\text{POL} & + \right] \\ \text{VAL} & \left[\text{SPR} & \left\langle \mathbf{X} \right\rangle \right] \end{array} \right] \\ \text{ARG-ST} | \mathbb{E} \\ \text{SEM} & \left[\begin{array}{c} \text{INDEX} & s_2 \\ \text{RESTR} & \left\langle \begin{bmatrix} \text{RELN} & \textbf{not} \\ \text{SIT} & s_2 \\ \text{ARG} & s_1 \end{bmatrix} \right\rangle \oplus \mathbb{A} \right] \right] \\ \end{array} \right\}$$


Why?

What does POL do?

*We can'tn't stop

*They won't TOO mind

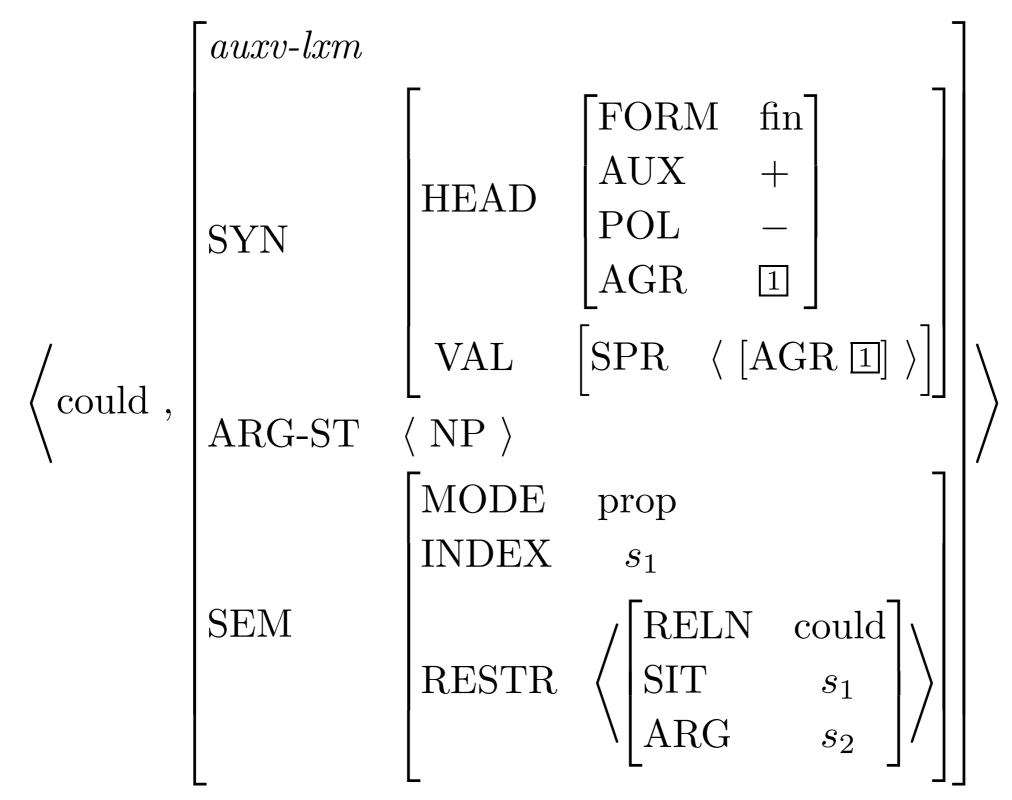
Contraction: Sample Tree

Ellipsis

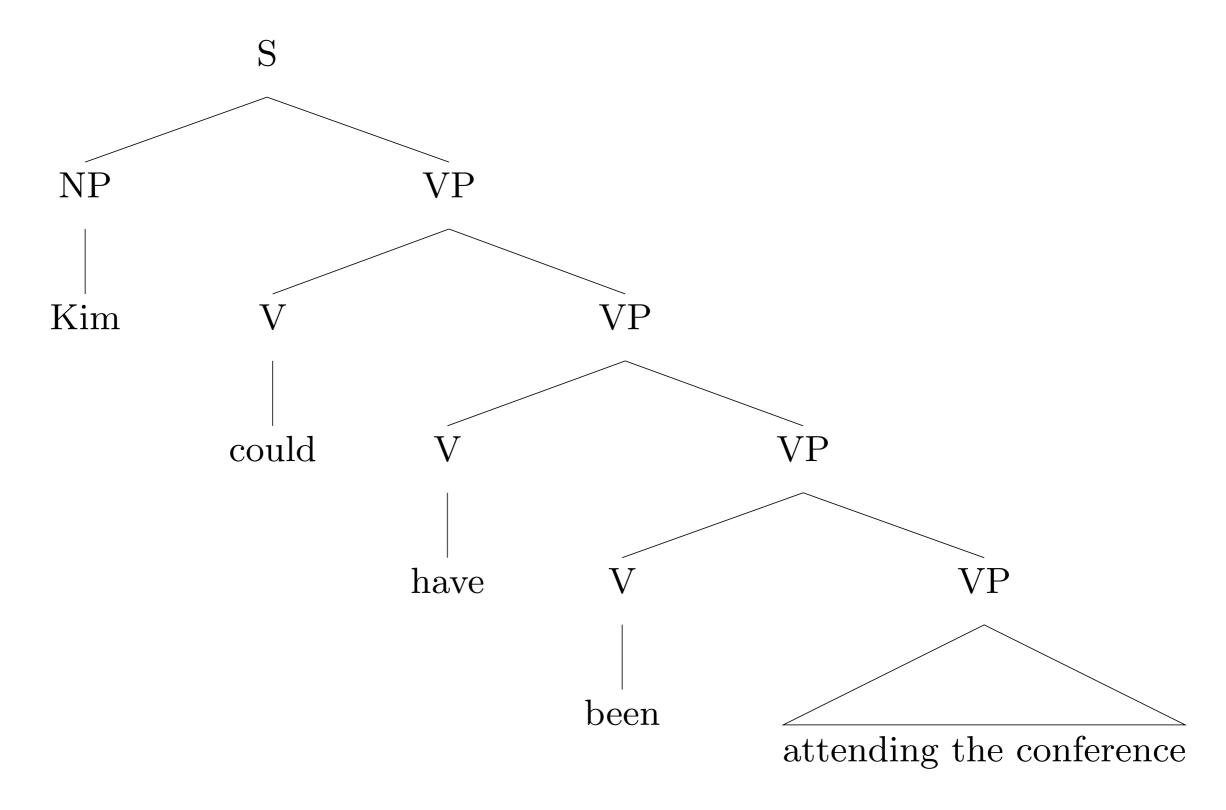
• Ellipsis allows VPs to be omitted, so long as they would have been preceded by an auxiliary

Pat couldn't have been watching us, but Chris could have been watching us.

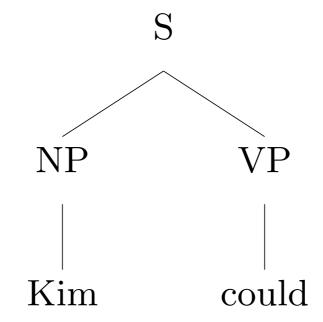
- Unlike the other NICE properties, this holds of all auxiliaries, not just finite ones.
- What is the elliptical counterpart to a sentence with no auxiliary?


Whenever Pat watches TV, Chris watches TV Whenever Pat watches TV, Chris does

The Ellipsis Lexical Rule


$$\begin{bmatrix} d\text{-}rule \\ \text{INPUT} & \left\langle \boxed{1}, \begin{bmatrix} auxv\text{-}lxm \\ \text{ARG-ST} & \left\langle \boxed{2} \right\rangle & \oplus & \boxed{A} \end{bmatrix} \right\rangle \\ \text{OUTPUT} & \left\langle \boxed{1}, \begin{bmatrix} dervv\text{-}lxm \\ \text{ARG-ST} & \left\langle \boxed{2} \right\rangle \end{bmatrix} \right\rangle \end{bmatrix}$$

- Note that this is a derivational LR (*d-rule*) -- that is, lexeme-to-lexeme
- This means that SYN and SEM are unchanged, by default


Ellipsis: A Sample Output

Ellipsis: A Sample Tree

Semantics of Ellipsis

What is the SEM value of the S node of this tree?

$$\begin{bmatrix} \text{INDEX} & s_1 \\ \text{MODE} & \text{prop} \end{bmatrix}$$

$$\begin{bmatrix} \text{RELN} & \text{name} \\ \text{NAME} & \text{Kim} \\ \text{NAMED} & i \end{bmatrix}, \begin{bmatrix} \text{RELN} & \text{could} \\ \text{SIT} & s_1 \\ \text{ARG} & s_2 \end{bmatrix} \right\rangle$$

Note: s_2 has to be filled in by context.

Infinitival to Revisited

- VP Ellipsis can occur after to:
 - We didn't find the solution, but we tried to.
- This is covered by our Ellipsis LR if we say *to* is [AUX +].
- Since AUX is declared on type *verb*, it follows that *to* is a verb.

do Revisited

- Chomsky's old analysis: in sentences w/o auxiliaries...
 - Tense can get separated from the verb in various ways
 - Negation/Reaffirmation inserts something between Tense and the following verb
 - Inversion moves Tense to the left of the subject NP
 - Ellipsis deletes what follows Tense
 - When this happens, do is inserted to support Tense
- Our counterpart:
 - NICE properties hold only of auxiliaries
 - *do* is a semantically empty auxiliary, so negated, reaffirmed, inverted, and elliptical sentences that are the semantic counterparts to sentences w/o auxiliaries are ones with *do*.

Summary

- Our analysis employs straightforward mechanisms
 - Lexical entries for auxiliaries
 - 3 new features (AUX, POL, INV)
 - 4 lexical rules
- We handle a complex array of facts
 - co-occurrence restrictions (ordering & iteration)
 - the NICE properties
 - auxiliary do
 - combinations of NICE constructions