Ling 566 Dec 6, 2006

Sign-Based Construction Grammar

Overview

- HW 7 comments
- Chapter 16 framework (same analyses, different underlying system)
- General wrap up

HW 7 Comments

- How do Ellipsis, Inversion and AALR interact?
 - Does it matter that Ellipsis isn't restricted to finite verbs?
 - Does it matter that Ellipsis says "no COMPS" and AALR says "add a COMP"?
 - What about *dervy-lxm* and AUX?

HW 7 Comments

- Saying why something isn't licensed requires making reference to the whole grammar.
- It's not enough to say that *put* is [AUX --] and so can't go through the NICE rules.
- You have to also explain that any sentence with *put* would be ungrammatical without its SPR and COMPS as required.

HW 7 comment

• Which nodes are [PRED +]?

Is there a monster in Loch Ness?

Overview of Differences

- Multiple Inheritance
- Signs
- Grammar rules form a hierarchy.
- Every tree node has its own phonology
- Many principles become constraints on grammar rules.
- The definition of well-formedness is simplified

Multiple Inheritance Hierarchies

Lexeme Hierarchy

Lexeme Abbreviations

• si-lxm: strict-intransitive-lexeme

• pp-arg-lxm: PP-argument-lexeme

• sr-lxm: subject-raising-lexeme

• sc-lxm: subject-control-lexeme

• siv-lxm: strict-intransitive-verb-lexeme

• piv-lxm: PP-intransitive-verb-lexeme

• srv-lxm: subject-raising-verb-lexeme

• scv-lxm: subject-control-verb-lexeme

• sia-lxm: strict-intransitive-adjective-lexeme

• pia-lxm: PP-intransitive-adjective-lexeme

• sra-lxm: subject-raising-adjective-lexeme

• sca-lxm: subject-control-adjective-lexeme

Lexeme Constraints

•
$$si\text{-}lxm: \left[\text{ARG-ST} \left\langle \left. \mathbf{X} \right. \right\rangle \right]$$
• $pp\text{-}arg\text{-}lxm: \left[\text{ARG-ST} \left\langle \left. \mathbf{X} \right. \right\rangle \text{PP} \right\rangle \right]$
• $sr\text{-}lxm: \left[\text{ARG-ST} \left\langle \left. \mathbf{1} \right. , \left[\text{SPR} \left\langle \left. \mathbf{1} \right. \right\rangle \right] \right\rangle \right]$
• $sc\text{-}lxm: \left[\text{ARG-ST} \left\langle \text{NP}_i \right. , \left[\text{SPR} \left\langle \left. \text{NP}_i \right. \right\rangle \right] \right\rangle \right]$

Another Lexeme Constraint

verb- lxm :	SYN	HEAD	[verb] PRED — INF / — AUX / — POL —
	ARG-ST SEM	HEAD VAL MODE	$\begin{bmatrix} \operatorname{SPR} & \langle \ \rangle \\ \operatorname{COMPS} & \langle \ \rangle \end{bmatrix} , \dots \bigg\rangle$ $\begin{bmatrix} \operatorname{prop} \end{bmatrix}$

And Another

```
\begin{bmatrix} \text{SYN} & \begin{bmatrix} \text{HEAD} & adj \\ \text{VAL} & \begin{bmatrix} \text{SPR} & \langle \text{ X} \rangle \\ \text{MOD} & \langle \text{ [HEAD} & noun]} \rangle \end{bmatrix} \end{bmatrix} \end{bmatrix}
SEM MODE prop
```

Synsem Types

Give ARG-ST a Unique Home

Words and Phrases as Saussurean Signs

```
word
PHON (Kim)
       MODE ref
                RELN
                        name
SEM
```

Augmented Signs

```
word
           \langle \text{ Kim } \rangle
PHON
SYN
ARG-ST
            MODE
                    ref
            INDEX
                         RELN
                                    name
SEM
            RESTR
```

Phrases as Signs

```
\neg phrase
PHON
                        \langle \text{ Kim , walks } \rangle
SYN
                             SPR
                             COMPS
                             MODE
                                                         prop
                             INDEX
                                                          \left\langle \begin{bmatrix} \mathrm{RELN} & \mathbf{name} \\ \mathrm{NAME} & \mathrm{Kim} \\ \mathrm{NAMED} & i \end{bmatrix}, \begin{bmatrix} \mathrm{RELN} & \mathbf{walk} \\ \mathrm{SIT} & s \\ \mathrm{WALKER} & i \end{bmatrix}, \dots \right.
SEM
```

Types and Constraints

TYPE	FEATURES/VALUE TYPES	IST
sign	$\begin{bmatrix} \text{PHON} & list(form) \\ \text{SYN} & syn\text{-}cat \\ \text{SEM} & sem\text{-}cat \end{bmatrix}$	feat-struc
expression		sign
lex-sign	$\begin{bmatrix} \text{ARG-ST} & \textit{list}(expression) \end{bmatrix}$	sign
phrase		expression
word		expression & lex-sign
lexeme		lex-sign

Constructions: Some Abbreviations

cx	construction
l- cx	$lexical ext{-}construction$
d- cx	$derivational ext{-}construction$
i- cx	$in flectional \hbox{-} construction$
pi-cx	$post in {\it flectional-construction}$
p- cx	$phrasal ext{-}construction$
non-hd-cx	$non\mbox{-}headed\mbox{-}construction$
hd- cx	headed-construction
coord-cx	coordinate-construction
imp- cx	$imperative\mbox{-}construction$
hd-fill-cx	head-filler-construction
hd- $comp$ - cx	head-complement-construction
hd-spr-cx	head-specifier-construction
hd- mod - cx	$head ext{-}modifier ext{-}construction$

The World of Constructions

Properties of Constructions

TYPE	FEATURES/VALUE TYPES	IST
cx	$egin{bmatrix} ext{MOTHER} & sign \ ext{DTRS} & list(sign) \end{bmatrix}$	feat-struc
l-cx	$egin{bmatrix} ext{MOTHER} & lex ext{-}sign \ ext{DTRS} & \langle & lex ext{-}sign & angle \end{bmatrix}$	cx
p-cx	$\begin{bmatrix} \text{MOTHER} & phrase \\ \text{DTRS} & list(expression) \end{bmatrix}$	cx

Well-Formed Tree Structure

 Φ is a Well-Formed Structure according to a grammar G if and only if

- 1. there is some construction C in G, such that
- 2. there is a feature structure I that is an instantiation of C, such that Φ is the value of the MOTHER feature of I.

A Well-Formed Feature Structure

The grammar licenses a feature structure of type *phrase* whose PHON value is < ate , a , pizza > because there is a feature structure instantiating the head-complement construction that has that feature structure as its MOTHER value. This phrasal construct satisfies the following description:

$$\begin{bmatrix} phrase \\ PHON & \langle \text{ ate }, \text{ a }, \text{ pizza} \, \rangle \\ & \begin{bmatrix} Werb \\ FORM & \text{fin} \end{bmatrix} \\ SYN & \begin{bmatrix} SPR & \langle \text{ NP } \rangle \\ COMPS & \langle \rangle \\ MOD & \langle \, \rangle \end{bmatrix} \\ & \begin{bmatrix} GAP & \langle \, \rangle \\ MODE & \text{prop} \\ INDEX & s \end{bmatrix} \end{bmatrix}$$

$$\begin{bmatrix} MODE & \text{prop} \\ INDEX & s \\ RESTR & \begin{bmatrix} RELN & \mathbf{eat} \\ SIT & s \\ EATER & i \\ EATEN & j \end{bmatrix}, \begin{bmatrix} RELN & \mathbf{a} \\ BV & j \end{bmatrix}, \begin{bmatrix} RELN & \mathbf{pizza} \\ INST & j \end{bmatrix}, \rangle$$

Another Well-Formed Feature Structure

```
lexeme
PHON
                  \langle driver \rangle
                    HEAD
                                        AGR [PER 3rd]
SYN
                     GAP
                    MODE
                                      \operatorname{ref}
                     INDEX
                                          \left\langle \begin{bmatrix} \text{RELN} & \mathbf{drive} \\ \text{SIT} & s \\ \text{DRIVER} & i \end{bmatrix} \right.
SEM
```

Two Constraints

Root Constraint:

$$\begin{bmatrix} & & \begin{bmatrix} verb & & \\ FORM & fin \end{bmatrix} \\ SYN & & \begin{bmatrix} COMPS & \langle \ \rangle \\ SPR & & \langle \ \rangle \end{bmatrix} \end{bmatrix}$$

$$\begin{bmatrix} GAP & \langle \ \rangle \end{bmatrix}$$

Principle of Order:

Semantic Compositionality Principle

```
cx: \begin{bmatrix} \text{MOTHER} & [\text{SEM} [\text{RESTR} \boxed{\text{A1}} \oplus ... \oplus \boxed{\text{An}}]] \\ \text{DTRS} & \langle [\text{SEM} [\text{RESTR} \boxed{\text{A1}}]], ..., [\text{SEM} [\text{RESTR} \boxed{\text{An}}]] \rangle \end{bmatrix}
```

Alternative Version:

```
cx: \begin{bmatrix} \text{MOTHER} & [\text{SEM} [\text{RESTR} \boxed{\textbf{A0}} \oplus \boxed{\textbf{A1}} \oplus ... \oplus \boxed{\textbf{An}}]] \\ \text{DTRS} & \langle [\text{SEM} [\text{RESTR} \boxed{\textbf{A1}}]], ..., [\text{SEM} [\text{RESTR} \boxed{\textbf{An}}]] \rangle \\ \text{CX-SEM} & \boxed{\textbf{A0}} \end{bmatrix}
```

Head Constructions

Phrasal Constructions of Our Grammar:

TYPE	FEATURES/VALUE TYPES	IST
hd- cx	$[\text{HD-DTR} sign \]$	cx

Head Feature Principle:

$$hd\text{-}cx: egin{bmatrix} \mathrm{MOTHER} & [\mathrm{SYN} & [\mathrm{HEAD} & \mathbb{1}]] \\ \mathrm{HD\text{-}DTR} & [\mathrm{SYN} & [\mathrm{HEAD} & \mathbb{1}]] \end{bmatrix}$$

Two More Principles

Semantic Inheritance Principle:

$$hd\text{-}cx: \begin{bmatrix} \text{MOTHER} & \begin{bmatrix} \text{SEM} & \begin{bmatrix} \text{MODE} & \mathbb{1} \\ \text{INDEX} & \mathbb{2} \end{bmatrix} \end{bmatrix} \\ \text{HD-DTR} & \begin{bmatrix} \text{SEM} & \begin{bmatrix} \text{MODE} & \mathbb{1} \\ \text{INDEX} & \mathbb{2} \end{bmatrix} \end{bmatrix} \end{bmatrix}$$

Valence Principle:

$$hd\text{-}cx: egin{bmatrix} \text{MOTHER} & [\text{SYN} & [\text{VAL} & / & 1]] \\ \text{HD-DTR} & [\text{SYN} & [\text{VAL} & / & 1]] \end{bmatrix}$$

The GAP Principle

hd-cx:

```
 \begin{bmatrix} \text{MOTHER} & [\text{SYN} [\text{GAP} & (\text{Al} \oplus ... \oplus \text{An}) \oplus \text{Ao}] ] \\ \text{HD-DTR} & [\text{SYN} [\text{STOP-GAP} & \text{Ao}]] \\ \text{DTRS} & \langle [\text{SYN} [\text{GAP} & \text{Al}]] , ... , [\text{SYN} [\text{GAP} & \text{An}]] \rangle \\ \end{bmatrix}
```

The Head-Complement Construction

$$hd\text{-}comp\text{-}cx: \begin{bmatrix} \text{MOTHER} & [\text{SYN} & [\text{VAL} & [\text{COMPS} & \langle \ \rangle \] \]] \\ \text{HD-DTR} & \begin{bmatrix} word & & & \\ \text{SYN} & [\text{VAL} & [\text{COMPS} & \mathbb{A} \]] \end{bmatrix} \end{bmatrix} \\ \text{DTRS} & \langle \ \boxed{0} \ \rangle \oplus \boxed{\mathbb{A}} nelist \end{bmatrix}$$

And with inherited constraints....

```
PHON A1 \( \oplus \ldots \) An
                                          HEAD 1
                                                       COMPS
                           SYN
                                          VAL SPR
MOTHER
                                                         MOD
                                          MODE
                                          INDEX
                           SEM
                                          RESTR \boxed{\text{C1}} \oplus ... \oplus \boxed{\text{Cn}}
                            word
                                           HEAD 1
                                           VAL \begin{bmatrix} \text{COMPS} & \langle 5, ..., m \rangle \\ \text{SPR} & D \\ \text{MOD} & E \end{bmatrix}
                            SYN
HD-DTR 4
                                          MODE 2
                            SEM
                                           INDEX
                  \left\langle \begin{bmatrix} \text{PHON} & \text{A1} \\ \text{RESTR} & \text{C1} \end{bmatrix}, \begin{bmatrix} \text{PHON} & \text{A2} \\ \text{RESTR} & \text{C2} \end{bmatrix}, \dots, \begin{bmatrix} \text{PHON} & \text{An} \\ \text{RESTR} & \text{Cn} \end{bmatrix} \right\rangle
```

An Instance of the HCC

```
hd-comp-cx
               phrase
                PHON ( talked , to , Kim )
MOTHER
                SEM [ ... ]
HD-DTR
                                                           phrase
               word
                                                           PHON
                                                                    \langle \text{ to }, \text{ Kim } \rangle
                          \langle talked \rangle
              PHON
                                                           SEM [ ... ]
```

```
hd-comp-cx
            phrase
            PHON
                     \langle in , Seattle \rangle
                   HEAD
                            prep
                             SPR
MOTHER
             SYN
                   VAL
                             MOD
                                        В
            SEM [ ... ]
HD-DTR
          0
            word
                                               word
            PHON \langle in \rangle
                                               PHON (Seattle)
                  HEAD prep
                                                     HEAD noun
DTRS
                        SPR A
COMPS (1)
                         MOD B
                                               SEM [ ... ]
            SEM [ ...
```

Two More Constructions

$$hd\text{-}spr\text{-}cx: \begin{bmatrix} \text{MOTHER} & \left[\text{SYN} & \left[\text{SPR} & \left\langle \right. \right] \right] \\ \text{HD-DTR} & \left[\text{O} & \left[\text{SPR} & \left\langle \right. \right] \right\rangle \\ \text{SYN} & \left[\text{COMPS} & \left\langle \right. \right\rangle \\ \text{STOP-GAP} & \left\langle \right. \right\rangle \end{bmatrix} \end{bmatrix}$$

$$hd\text{-}mod\text{-}cx: \begin{bmatrix} \text{HD-DTR} & \boxed{1} \begin{bmatrix} \text{SYN} & \begin{bmatrix} \text{VAL} & \begin{bmatrix} \text{COMPS} & \langle & \rangle \end{bmatrix} \end{bmatrix} \\ \text{DTRS} & \left\langle \boxed{1}, \begin{bmatrix} \text{SYN} & \begin{bmatrix} \text{VAL} & \begin{bmatrix} \text{COMPS} & \langle & \rangle \\ \text{MOD} & \langle & \boxed{1} & \rangle \end{bmatrix} \end{bmatrix} \right\rangle \end{bmatrix}$$

A Tree

The Head-Filler Construction


```
hd-fill-cx
                    PHON (Bagels, I, think, she, likes)

\begin{array}{c}
\text{VAL} & \begin{bmatrix}
\text{SPR} \\
\text{COMPS}
\end{bmatrix}

                    SYN
MOTHER
                                    GAP
                    SEM
HD-DTR
                                                                     \lceil \text{PHON} \ \langle \ \text{I, think, she, likes} \rangle \rceil
                  PHON (Bagels)
                                                                      SEM [ ... ]
```

The Imperative Construction


```
[HEAD [FORM 1]]
                                    SYN VAL 2
GAP A
                                                          [IND s_0]
                                     SEM
                         SYN [HEAD [FORM 1]] ,..., GAP A
                                                                                                                                            HEAD [FORM 1]
                                                                                                                     , \begin{vmatrix} \text{SYN} & \text{VAL} & 2 \\ \text{GAP} & \boxed{\mathbf{A}} \end{vmatrix} \begin{vmatrix} \text{SEM} & [\text{IND} & s_{n-1}] \end{vmatrix}
DTRS (
                           SEM [IND s_1]
                       \begin{bmatrix} \text{HEAD } conj \\ \text{IND } s_0 \\ \text{RESTR} \left\langle [\text{ARGS } \langle s_1...s_n \rangle] \right\rangle \end{bmatrix}, \begin{bmatrix} \text{SYN} & \begin{bmatrix} \text{HEAD } [\text{FORM } \mathbb{1}] \\ \text{VAL } \mathbb{2} \\ \text{GAP } \mathbb{A} \end{bmatrix} \\ \text{SEM} & [\text{IND } s_n] \end{bmatrix}
```

```
PHON (Kim, sleeps, and, Pat, works)
                                            HEAD
                                                           verb
                                          \begin{vmatrix} VAL & \begin{bmatrix} SPR & \langle \rangle \\ COMPS & \langle \rangle \end{bmatrix} \end{vmatrix}
MOTHER
                        SYN
                        SEM [ ... ]
                   THON (Kim, sleeps)
                                                                                      PHON ( and )
                                   {
m HEAD} \,\, verb
                                 \begin{bmatrix} \text{NEAD vero} \\ \text{VAL} \begin{bmatrix} \text{SPR } \langle \ \rangle \\ \text{COMPS } \langle \ \rangle \end{bmatrix} \end{bmatrix}, \begin{bmatrix} \text{SYN} \begin{bmatrix} \text{HEAD } conj \end{bmatrix} \\ \text{SEM} \begin{bmatrix} \dots \end{bmatrix}
DTRS (
                   SYN
                   SEM [ ... ]
                 PHON ( Pat , works )
                                  HEAD
                                                    verb
                                 VAL

\begin{bmatrix}
SPR \\
COMPS
\end{bmatrix}

                  SYN
                  SEM
```

Some More Abbreviations

imp- cl	$imperative\mbox{-}clause$
decl- cl	$declarative\mbox{-}clause$
simp-decl-cl	simple-declarative-clause
top-cl	$topicalized\hbox{-}clause$
wh- rel - cl	$wh\mathchar`elative\mathchar`elause$
wh- int - cl	wh-interrogative-clause
core- cl	core- $clause$

A Construction Hierarchy

Locality

- Like CFG ruless, constructions involve only mothers and daughters.
- A lexical head can place constraints on its sisters or on an appropriate materteral dependent.
- Unbounded dependencies are localized.
 Sandy is hard ((for us) to continue) to please____
 Getting it done is hard for us to imagine them considering____
- Our principles provide a theory of what information (reflected in terms of HEAD, VAL, GAP, etc.) is passed up within the domain projected by a lexical head (including subjects and modifiers) and hence a theory of what information is locally accessible at any given point in a tree.

Course overview

- Survey of some phenomena central to syntactic theory
- Introduction to the HPSG framework
- Process over product: How to build a grammar fragment
- Value of precise formulation (and of getting a computer to do the tedious part for you!)

Reflection

- What was the most surprising thing in this class?
- What do you think is most likely wrong?
- What do you think is the coolest result?
- What do you think you're most likely to remember?

Overview

- HW 7 comments
- Chapter 16 framework (same analyses, different underlying system)
- General wrap up