Ling 566
Oct 23, 2008
Lexical Types
Overview

• Motivation for lexical hierarchy
• Default inheritance
• Tour of the lexeme hierarchy
• The Case Constraint
• pos vs. lexeme
Motivation

• We've streamlined our grammar rules...
 • ...by stating some constraints as general principles
 • ...and locating lots of information in the lexicon.
 • Our lexical entries currently stipulate a lot of information that is common across many entries and should be stated only once.

• Examples?

• Ideally, particular lexical entries need only give phonological form, the semantic contribution, and any constraints truly idiosyncratic to the lexical entry.
Lexemes and Words

• **Lexeme**: An abstract proto-word which gives rise to genuine words. We refer to lexemes by their ‘dictionary form’, e.g. ‘the lexeme *run*’ or ‘the lexeme *dog*’.

• **Word**: A particular pairing of form and meaning. *Running* and *ran* are different words.
Lexical Types & Lexical Rules

• Lexemes capture the similarities among *run, runs, running,* and *run.*

• The lexical type hierarchy captures the similarities among *run, sleep,* and *laugh,* among those and other verbs like *devour* and *hand,* and among those and other words like *book.*

Q: What do *devour* and *book* have in common?

A: The SHAC

• Lexical rules capture the similarities among *runs, sleeps, devours, hands,*...
Default Inheritance

Q: Why do we have default inheritance?

A: Generalizations with exceptions are common:

• Most nouns in English aren't marked for CASE, but pronouns are.
• Most verbs in English only distinguish two agreement categories (3sing and non-3sing), but be distinguishes more.
• Most prepositions in English are transitive, but here and there are intransitive.
• Most nominal words in English are 3rd person, but some (all of them pronouns) are 1st or 2nd person.
• Most proper nouns in English are singular, but some (mountain range names, sports team names) are plural.
Default Inheritance, Technicalities

If a type says
ARG-ST / < NP >,
and one of its
subtypes says
ARG-ST < >,
then the ARG-ST value of instances of
the subtype is < >.

If a type says
ARG-ST < NP >,
and one of its
subtypes says
ARG-ST < >,
then this subtype can have no instances,
since they would have to satisfy
contradictory constraints.
If a type says MOD / < S >, and one of its subtypes says MOD < [SPR < NP>] >, then the ARG-ST value of instances of the subtype is what?

\[
\begin{bmatrix}
\text{MOD} & \left[\begin{bmatrix}
\text{HEAD} & / \verb\text{verb}\n\text{SPR} & \langle \text{NP} \rangle
\text{COMPS} & / \langle \rangle
\end{bmatrix}\right]
\end{bmatrix}
\]

That is, default constraints are ‘pushed down’
Question on Default Inheritance

Q: Can a grammar rule override a default constraint on a word?

A: No. Defaults are all ‘cached out’ in the lexicon.

• Words as used to build sentences have only inviolable constraints.
Our Lexeme Hierarchy

- **synsem**
 [SYN, SEM]

- **lexeme**
 [ARG-ST]

- **expression**
 - **word**
 - **phrase**

- **infl-lxm**
 - **adj-lxm**
 - **conj-lxm**
 - **det-lxm**
 - **predp-lxm**
 - **argmkp-lxm**

- **verb-lxm**
 - **siv-lxm**
 - **piv-lxm**
 - **tv-lxm**
 - **cntn-lxm**
 - **massn-lxm**

- **cn-lxm**
 - **pn-lxm**
 - **pron-lxm**

- **const-lxm**
Functions of Types

• Stating what features are appropriate for what categories

• Stating generalizations
 • Constraints that apply to (almost) all instances
 • Generalizations about selection -- where instances of that type can appear
Every synsem has the features SYN and SEM.
No ARG-ST on phrase
A Constraint on \textit{infl-lxm}: the SHAC
A Constraint on $infl\text{-}lxm$: the SHAC

\[
\begin{array}{c}
\text{infl-}lxm : \left[\begin{array}{c}
\text{SYN} \\
\text{VAL} \\
\text{HEAD}
\end{array} \right] \left[\begin{array}{c}
\text{SPR} \left[\begin{array}{c}
\text{AGR} \\
\Box
\end{array} \right]
\end{array} \right]
\end{array}
\]
Constraints on \textit{cn-lxm}
Constraints on \(cn-lxm \)

\[
\begin{align*}
\text{SYN} & \quad [\text{HEAD} \quad \text{VAL} \quad \text{SEM} \quad \text{ARG-ST}]
\end{align*}
\]

\[
\begin{align*}
\text{SYN} & \quad [\text{HEAD} \quad \text{AGR} \quad \text{VAL} \quad \text{SPR} \quad \text{SEM} \quad \text{INDEX} \quad \text{ARG-ST}]
\end{align*}
\]

\[
\begin{align*}
\text{SYN} & \quad [\text{HEAD} \quad \text{AGR} \quad \text{VAL} \quad \text{SPR} \quad \text{SEM} \quad \text{INDEX} \quad \text{ARG-ST}]
\end{align*}
\]

\[
\begin{align*}
\text{SYN} & \quad [\text{HEAD} \quad \text{AGR} \quad \text{VAL} \quad \text{SPR} \quad \text{SEM} \quad \text{INDEX} \quad \text{ARG-ST}]
\end{align*}
\]

\[
\begin{align*}
\text{SYN} & \quad [\text{HEAD} \quad \text{AGR} \quad \text{VAL} \quad \text{SPR} \quad \text{SEM} \quad \text{INDEX} \quad \text{ARG-ST}]
\end{align*}
\]

\[
\begin{align*}
\text{SYN} & \quad [\text{HEAD} \quad \text{AGR} \quad \text{VAL} \quad \text{SPR} \quad \text{SEM} \quad \text{INDEX} \quad \text{ARG-ST}]
\end{align*}
\]
Formally Distinguishing Count vs. Mass Nouns
Formally Distinguishing Count vs. Mass Nouns

\[cntn-lxm : \begin{array} { c c c } \text{SYN} & \text{VAL} & \langle \text{SPR} \ [\text{COUNT} +] \rangle \end{array} \]

\[massn-lxm : \begin{array} { c c c } \text{SYN} & \text{VAL} & \langle \text{SPR} \ [\text{COUNT} -] \rangle \end{array} \]
Constraints on \textit{verb-lxm}

\begin{itemize}
\item \textit{siv-lxm}, \textit{piv-lxm}, \textit{tv-lxm}, \textit{cntn-lxm}, \textit{massn-lxm}
\item \textit{stv-lxm}, \textit{dtv-lxm}, \textit{ptv-lxm}
\end{itemize}

\textit{synsem} \hspace{1cm} \text{[SYN, SEM]}

\textit{lexeme} \hspace{1cm} \text{[ARG-ST]}

\textit{expression} \hspace{1cm} \text{[ARG-ST]}

\textit{word} \hspace{1cm} \text{phrase}

\textit{infl-lxm} \hspace{1cm} \textit{const-lxm}

\textit{adj-lxm}, \textit{conj-lxm}, \textit{det-lxm}, \textit{predp-lxm}, \textit{argmkp-lxm}

\textit{pn-lxm}, \textit{pron-lxm}
Constraints on \textit{verb-lxm}

\[
\text{\textit{verb-lxm}: } \begin{bmatrix}
\text{SYN} & \begin{bmatrix} \text{HEAD} \text{ verb} \end{bmatrix} \\
\text{SEM} & \begin{bmatrix} \text{MODE} \text{ prop} \end{bmatrix} \\
\text{ARG-ST} & \langle \text{NP, ...} \rangle
\end{bmatrix}
\]
Subtypes of *verb-lxm*

- **verb-lxm**: [ARG-ST / < NP, ... >]
 - **siv-lxm**: [ARG-ST / < NP >]
 - **piv-lxm**: [ARG-ST / < NP, PP >]
 - **tv-lxm**: [ARG-ST / < NP, NP, ... >]
 - **stv-lxm**: [ARG-ST / < NP, NP, >]
 - **dtv-lxm**: [ARG-ST / < NP, NP, NP >]
 - **ptv-lxm**: [ARG-ST / < NP, NP, PP >]
Proper Nouns and Pronouns
Proper Nouns and Pronouns

$$pn-lxm: \begin{bmatrix} SYN & HEAD & [\text{noun}] \\ SEM & [\text{MODE} & \text{ref}] \\ ARG-ST & / \langle \rangle \end{bmatrix}$$

$$pron-lxm: \begin{bmatrix} SYN & [\text{HEAD} & \text{noun}] \\ SEM & [\text{MODE} & / \text{ref}] \\ ARG-ST & \langle \rangle \end{bmatrix}$$
The Case Constraint

An outranked NP is [CASE acc].

- object of verb ✓
- second object of verb ✓
- object of argument-marking preposition ✓
- object of predicational preposition (✓)
The Case Constraint, continued

An outranked NP is [CASE acc].

• Subjects of verbs
 • Should we add a clause to cover nominative subjects?
 • No.

 We expect them to leave. (Chapter 12)
 • Lexical rules for finite verbs will handle nominative subjects.
• Any other instances of case marking in English?
• Does it apply to case systems in other languages?
 No: The Case Constraint is an English-specific constraint.
Apparent redundancy

• Why do we need both the *pos* subhierarchy and *lexeme* types?

• *pos*:
 • Applies to words and phrases; models relationship between then
 • Constrains which features are appropriate (no AUX on *noun*)

• *lexeme*:
 • Generalizations about combinations of constraints
Lexical Types & Lexical Rules

• Lexemes capture the similarities among *run, runs, running, and run*.

• The lexical type hierarchy captures the similarities among *run, sleep, and laugh*, among those and other verbs like *devour* and *hand*, and among those and other words like *book*.

• Lexical rules capture the similarities among *runs, sleeps, devours, hands,...*
Overview

• Motivation for lexical hierarchy
• Default inheritance
• Tour of the lexeme hierarchy
• The Case Constraint
• pos vs. lexeme