Overview

- Some examples of the phenomenon
- What is new and different about it
- Brief sketch of the TG approach
- Broad outlines of our approach
- Details of our approach
- Subject extraction
- Coordinate Structure Constraint
Examples

• *wh*-questions:

 What did you find?
 Tell me who you talked to

• relative clauses:

 the item that I found
 the guy who(m) I talked to

• topicalization:

 The manual, I can’t find
 Chris, you should talk to.

• *easy*-adjectives:

 My house is easy to find.
 Pat is hard to talk to.
What these have in common

• There is a ‘gap’: nothing following *find* and *to*, even though both normally require objects.
• Something that fills the role of the element missing from the gap occurs at the beginning of the clause.
• We use topicalization and *easy*-adjectives to illustrate:

 The manual, I can’t find_____
 Chris is easy to talk to _____
Gaps and their fillers can be far apart:

• *The solution to this problem*, Pat said that someone claimed you thought I would never find ____.

• *Chris is easy to consider it impossible for anyone but a genius to try to talk to* ____.

☞ That’s why we call them “long distance dependencies”
Fillers often have syntactic properties associated with their gaps

\[\text{Him, I haven’t met __.} \]
\[\times \text{He, I haven’t met __.} \]

\[\text{The scissors, Pat told us __ were missing.} \]
\[\times \text{The scissors, Pat told us __ was missing.} \]

\[\text{On Pat, you can rely __.} \]
\[\times \text{To Pat, you can rely __.} \]
LDDs in TG

• These were long thought to constitute the strongest evidence for transformations.

• They were handled in TG by moving the filler from the gap position.

• Case, agreement, preposition selection could apply before movement.
A big debate about LDDs in TG

• Does long-distance movement take place in one fell swoop or in lots of little steps?

Swooping

Looping
Looping is now generally accepted in TG

- Various languages show morphological marking on the verbs or complementizers of clauses between the filler and the gap.
- Psycholinguistic evidence indicates increased processing load in the region between filler and gap.
- This opens the door to non-transformational analyses, in which the filler-gap dependency is mediated by local information passing.
Very Rough Sketch of Our Approach

• A feature GAP records information about a missing constituent.

• The GAP value is passed up the tree by a new principle.

• A new grammar rule expands S as a filler followed by another S whose GAP value matches the filler.

• Caveat: Making the details of this general idea work involves several complications.
The Feature GAP

• Like valence features and ARG-ST, GAP’s value is a list of feature structures (often empty).

• Subject gaps are introduced by a lexical rule.

• Non-subject gaps are introduced by revising the Argument Realization Principle.
The Revised ARP

• The ARP now says the non-SPR arguments are distributed between COMPS and GAP.

• ⊖ is a kind of list subtraction, but:
 • it’s not always defined, and
 • when defined, it’s not always unique

• The ARP now says the non-SPR arguments are distributed between COMPS and GAP.
A Word with a Non-Empty GAP Value

\[
\langle \text{hand}, \langle \text{word} \rangle, \langle \text{ARG-ST} \rangle \rangle
\]

\[
\text{SYN} \left[\begin{array}{c}
\text{HEAD} \\
\text{VAL} \\
\text{GAP}
\end{array} \right] = \left[\begin{array}{c}
\text{FORM fin} \\
\text{SPR} \\
\text{COMPS} \langle \text{3PP[to]} \rangle \\
\langle \text{2NP[acc]} \rangle \\
\text{1NP} \\
\text{AGR} \langle \text{non-3sing} \rangle
\end{array} \right]
\]
How We Want GAP to Propagate

S

[GAP ⟨ ⟩]

NP

[GAP ⟨ ⟩]

Kim

we

S

[GAP ⟨ NP ⟩]

VP

[GAP ⟨ NP ⟩]

V

[GAP ⟨ ⟩]

know

S

[GAP ⟨ NP ⟩]

NP

[GAP ⟨ ⟩]

Dana

V(P)

[GAP ⟨ NP ⟩]

hates
What We Want the GAP Propagation Mechanism to Do

• Pass any GAP values from daughters up to their mothers,
• except when the filler is found.
• For topicalization, we can write the exception into the grammar rule, but
• For *easy*-adjectives, the NP that corresponds to the gap is the subject, which is introduced by the Head-Specifier Rule.
• Since specifiers are not generally gap fillers, we can’t write the gap-filling into the HSR.
Our Solution to this Problem

- For *easy*-adjectives, we treat the adjective formally as the filler, marking its SPR value as coindexed with its GAP value.

- We use a feature STOP-GAP to trigger the emptying of the GAP list.
 - STOP-GAP stops gap propagation
 - *easy*-adjectives mark STOP-GAP lexically
 - a new grammar rule, the Head-Filler Rule mentions STOP-GAP
The GAP Principle

A local subtree Φ satisfies the GAP Principle with respect to a headed rule ρ if and only if Φ satisfies:

$$\left[\text{GAP} \left(\bigoplus_{i=1}^{n} A_i \right) \ominus A_0 \right]$$
How does STOP-GAP work?

- STOP-GAP is empty almost everywhere.
- When a gap is filled, STOP-GAP is nonempty, and its value is the same as the gap being filled.
- This blocks propagation of that GAP value, so gaps are only filled once.
- The nonempty STOP-GAP values come from two sources:
 - a stipulation in the Head-Filler Rule
 - lexical entries for *easy*-adjectives
- No principle propagates STOP-GAP.
The Head-Filler Rule

This only covers gap filling in finite Ss
The filler has to be identical to the GAP value
The STOP-GAP value is also identical
The GAP Principle ensures that the mother’s GAP value is the empty list
Gap Filling with *easy*-Adjectives

- Because STOP-GAP and GAP have the same value, that value will be subtracted from the mother’s GAP value.

- The first argument is coindexed with the GAP value, accounting for the interpretation of the subject as the filler.
A Tree for *easy to talk to*
STOP-GAP Housekeeping

• Lexical entries with nonempty STOP-GAP values (like *easy*) are rare, so STOP-GAP is by default empty in the lexicon.

• HeadSpecifier and Head-Modifier rules need to say \([\text{STOP-GAP} < >]\)

• Lexical rules preserve STOP-GAP values.
GAP Housekeeping

- The initial symbol must say [GAP < >]. Why?
 - To block *Pat found and *Chris talked to as stand-alone sentences.

- The Imperative Rule must propagate GAP values. Why?
 - It’s not a headed rule, so the effect of the GAP Principle must be replicated
 - Imperatives can have gaps: *This book, put on the top shelf!*
Sentences with Multiple Gaps

• Famous examples:

This violin, sonatas are easy to play___ on____.
*Sonatas, this violin is easy to play___ on____.

• Our analysis gets this:
 • The subject of easy is coindexed with the first element of the GAP list.
 • The Head-Filler rule only allows one GAP remaining.
 • There are languages that allow multiple gaps more generally.
Where We Are

- filler-gap structures:

 *The solution to this problem, nobody understood***

 *That problem is easy to understand***

- The feature GAP encodes information about missing constituents

- Modified ARP allows arguments that should be on the COMPS list to show up in the GAP list

- GAP values are passed up the tree by the GAP Principle
Where We Are (continued)

• The feature STOP-GAP signals where GAP passing should stop

• The Head-Filler Rule matches a filler to a GAP and (via STOP-GAP) empties GAP

• Lexical entries for \textit{easy}-adjectives require a gap in the complement, coindex the subject with the gap, and (via STOP-GAP) empty GAP on the mother
On to New Material….

• Sentences with subject gaps
• Gaps in coordinate constructions
Subject Gaps

• The ARP revision only allowed missing complements.
• But gaps occur in subject position, too:
 This problem, everyone thought ___ was too easy.
• We handle these via a lexical rule that, in effect, moves the contents of the SPR list into the GAP list
The Subject Extraction Lexical Rule

\[\text{pi-rule} \]

\[
\text{INPUT} \quad \left< X, \begin{array}{l}
\text{ARG-ST} \quad A \\
\text{SYN} \end{array} \right>
\]

\[
\text{OUTPUT} \quad \left< Y, \begin{array}{l}
\text{ARG-ST} \quad A\langle 1, \ldots \rangle \\
\text{SYN} \end{array} \right>
\]

- NB: This says nothing about the phonology, because the default for *pi-rules* is to leave the phonology unchanged.
A Lexical Sequence This Licenses

- Note that the ARP is satisfied
A Tree with a Subject Gap

S
 [GAP ⟨ ⟩]

NP
 [GAP ⟨ ⟩]

Kim

S
 [GAP ⟨ NP ⟩]

VP
 [GAP ⟨ NP ⟩]

we

V
 [GAP ⟨ ⟩]

know

NP
 [GAP ⟨ ⟩]

likes

Dana

NP
 [GAP ⟨ NP ⟩]

© 2003 CSLI Publications
Island Constraints

• There are configurations that block filler-gap dependencies, sometimes called “islands”
• Trying to explain them has been a central topic of syntactic research since the mid 1960s
• We’ll look at just one, Ross’s so-called “Coordinate Structure Constraint”
• Loose statement of the constraint: a constituent outside a coordinate structure cannot be the filler for a gap inside the coordinate structure.
Coordinate Structure Constraint Examples

*This problem, nobody finished the extra credit and____
*This problem, nobody finished____ and the extra credit.
*This problem, nobody finished ___ and started the extra credit.
*This problem, nobody started the extra credit and finished____

• But notice:

This problem, everybody started____ and nobody finished ____
The Coordinate Structure Constraint

• In a coordinate structure,
 • no conjunct can be a gap (conjunct constraint), and
 • no gap can be contained in a conjunct if its filler is outside of that conjunct (element constraint)

•unless each conjunct has a gap that is paired with the same filler (across-the-board exception)
These observations cry out for explanation

• In our analysis, the conjunct constraint is an immediate consequence: individual conjuncts are not on the ARG-ST list of any word, so they can’t be put on the GAP list.

• The element constraint and ATB exception suggest that GAP is one of those features (along with VAL and FORM) that must agree across conjuncts.

• Note: There is no ATB exception to the conjunct constraint.

*This problem, you can compare only____ and____.
Our Coordination Rule, so far

\[
\begin{bmatrix}
\text{FORM} & 1 \\
\text{VAL} & 0 \\
\text{IND} & s_0
\end{bmatrix}
\rightarrow
\begin{bmatrix}
\text{FORM} & 1 \\
\text{VAL} & 0 \\
\text{IND} & s_0
\end{bmatrix}
\begin{bmatrix}
\text{HEAD} & \text{conj} \\
\text{IND} & s_0 \\
\text{RESTR} & \langle \text{ARGS} \langle s_1 \ldots s_n \rangle \rangle
\end{bmatrix}
\begin{bmatrix}
\text{FORM} & 1 \\
\text{VAL} & 0 \\
\text{IND} & s_n
\end{bmatrix}
\]

- Recall that we have tinkered with what must agree across conjuncts at various times.
- Now we’ll add GAP to the things that conjuncts must share
Our Final Coordination Rule

- We’ve just added GAP to all the conjuncts and the mother.
- This makes the conjuncts all have the same gap (if any)
- Why do we need it on the mother?
Closing Remarks on LDDs

- This is a huge topic; we’ve only scratched the surface
 - There are many more kinds of LDDs, which would require additional grammar rules
 - There are also more island constraints, which also need to be explained
- Our account of the coordinate structure constraint (based on ideas of Gazdar) is a step in the right direction, but it would be nice to explain why certain features must agree across conjuncts.
Overview

• Some examples of the phenomenon
• What is new and different about it
• Brief sketch of the TG approach
• Broad outlines of our approach
• Details of our approach
• Subject extraction
• Coordinate Structure Constraint