# Ling 566 Oct 28, 2009

Lexical Types

# Overview

- Motivation for lexical hierarchy
- Default inheritance
- Tour of the lexeme hierarchy
- The Case Constraint
- pos vs. lexeme

#### Motivation

- We've streamlined our grammar rules...
  - ...by stating some constraints as general principles
  - ...and locating lots of information in the lexicon.
  - Our lexical entries currently stipulate a lot of information that is common across many entries and should be stated only once.
- Examples?
- Ideally, particular lexical entries need only give phonological form, the semantic contribution, and any constraints truly idiosyncratic to the lexical entry.

#### Lexemes and Words

- Lexeme: An abstract proto-word which gives rise to genuine words. We refer to lexemes by their 'dictionary form', e.g. 'the lexeme *run*' or 'the lexeme *dog*'.
- Word: A particular pairing of form and meaning. Running and ran are different words

# Lexical Types & Lexical Rules

- Lexemes capture the similarities among *run*, *runs*, *running*, and *run*.
- The lexical type hierarchy captures the similarities among run, sleep, and laugh, among those and other verbs like devour and hand, and among those and other words like book.

Q: What do *devour* and *book* have in common?

A: The SHAC

• Lexical rules capture the similarities among *runs*, *sleeps*, *devours*, *hands*,...

#### Default Inheritance

Q: Why do we have default inheritance?

A: Generalizations with exceptions are common:

- Most nouns in English aren't marked for CASE, but pronouns are.
- Most verbs in English only distinguish two agreement categories (3sing and non-3sing), but be distinguishes more.
- Most prepositions in English are transitive, but *here* and *there* are intransitive.
- Most nominal words in English are 3rd person, but some (all of them pronouns) are 1st or 2nd person.
- Most proper nouns in English are singular, but some (mountain range names, sports team names) are plural.

# Default Inheritance, Technicalities

If a type says ARG-ST / < NP > and one of its

then the ARG-ST subtypes says value of instances of ARG-ST < >, the subtype is < >.

If a type says ARG-ST < NP >

and one of its subtypes says ARG-ST < >,

then this subtype can have no instances, since they would have to satisfy contradictory constraints.

# Default Inheritance, More Technicalities

If a type says MOD / < S >, and one of its subtypes says
 MOD <[SPR < NP>] >, then the ARG-ST value of instances of the subtype is what?

• That is, default constraints are 'pushed down'

# Question on Default Inheritance

Q: Can a grammar rule override a default constraint on a word?

A: No. Defaults are all 'cached out' in the lexicon.

• Words as used to build sentences have only inviolable constraints.

# Our Lexeme Hierarchy



# Functions of Types

- Stating what features are appropriate for what categories
- Stating generalizations
  - Constraints that apply to (almost) all instances
  - Generalizations about selection -- where instances of that type can appear

#### Every synsem has the features SYN and SEM



#### No ARG-ST on phrase



#### A Constraint on infl-lxm: the SHAC



#### A Constraint on infl-lxm: the SHAC

$$infl$$
- $lxm$ :  $\begin{bmatrix} \text{SYN} & \begin{bmatrix} \text{VAL} & \begin{bmatrix} \text{SPR} & \langle [\text{AGR} & \mathbb{1}] \rangle \end{bmatrix} \end{bmatrix} \end{bmatrix}$ 

#### Constraints on cn-lxm



#### Constraints on cn-lxm

| cn- $lxm$ : | SYN    | HEAD                                                  | $\begin{bmatrix} noun \\ AGR \end{bmatrix}$ | $[	ext{PER 3rd}]$                                                 |                                     |
|-------------|--------|-------------------------------------------------------|---------------------------------------------|-------------------------------------------------------------------|-------------------------------------|
|             |        | VAL                                                   | SPR                                         | \langle \begin{bmatrix} \text{HEAD} \\ \text{INDEX} \end{bmatrix} | $\left.\det_{i}\right] angle ight]$ |
|             | SEM    | MODE<br>INDEX                                         |                                             |                                                                   |                                     |
|             | ARG-ST | $\langle \mathrm{X}  angle \oplus /\langle \;  angle$ | )                                           |                                                                   |                                     |

#### Formally Distinguishing Count vs. Mass Nouns



#### Formally Distinguishing Count vs. Mass Nouns

$$cntn-lxm: \left[ ext{SYN} \left[ ext{VAL} \left[ ext{SPR} \left\langle \left[ ext{COUNT} + \right] 
ight
angle 
ight] 
ight] 
ight]$$
 $massn-lxm: \left[ ext{SYN} \left[ ext{VAL} \left[ ext{SPR} \left\langle \left[ ext{COUNT} - \right] 
ight
angle 
ight] 
ight] 
ight]$ 

#### Constraints on verb-lxm



#### Constraints on verb-lxm

```
verb-lxm: \begin{bmatrix} \text{SYN} & \begin{bmatrix} \text{HEAD} & verb \end{bmatrix} \\ \text{SEM} & \begin{bmatrix} \text{MODE} & \text{prop} \end{bmatrix} \\ \text{ARG-ST} & / \langle \text{NP}, \dots \rangle \end{bmatrix}
```

# Subtypes of verb-lxm



- verb-lxm: [ARG-ST / < NP, ... >]
  - siv-lxm: [ARG-ST / < NP >]
  - *piv-lxm*: [ARG-ST / < NP, PP >]
  - tv-lxm: [ARG-ST / < NP, NP, ... >]
    - *stv-lxm*: [ARG-ST / < NP, NP, >]
    - dtv-lxm: [ARG-ST / < NP, NP, NP >]
    - ptv-lxm: [ARG-ST / < NP, NP, PP >]

#### Proper Nouns and Pronouns



#### Proper Nouns and Pronouns

```
pn-lxm: \begin{bmatrix} SYN & HEAD & [noun \\ AGR & [PER & 3rd \\ NUM & / sg] \end{bmatrix} \end{bmatrix}
SEM & [MODE & ref]
ARG-ST & / \langle \ \rangle
```

$$pron-lxm: \begin{bmatrix} SYN & [HEAD & noun] \\ SEM & [MODE & / ref] \\ ARG-ST & \langle \ \rangle \end{bmatrix}$$

#### The Case Constraint

An outranked NP is [CASE acc].

object of verb

/

second object of verb

/

• object of argument-marking preposition

/

• object of predicational preposition

**( /** )

# The Case Constraint, continued An outranked NP is [CASE acc].

- Subjects of verbs
  - Should we add a clause to cover nominative subjects?
    - No.

We expect them to leave. (Chapter 12)

- Lexical rules for finite verbs will handle nominative subjects.
- Any other instances of case marking in English?
- Does it apply to case systems in other languages?

No: The Case Constraint is an English-specific constraint.

# Apparent redundancy

- Why do we need both the *pos* subhierarchy and lexeme types?
- pos:
  - Applies to words and phrases; models relationship between then
  - Constrains which features are appropriate (no AUX on *noun*)
- lexeme:
  - Generalizations about combinations of constraints

# Lexical Types & Lexical Rules

- Lexemes capture the similarities among *run*, *runs*, *running*, and *run*.
- The lexical type hierarchy captures the similarities among run, sleep, and laugh, among those and other verbs like devour and hand, and among those and other words like book.
- Lexical rules capture the similarities among *runs*, *sleeps*, *devours*, *hands*,...

### Overview

- Motivation for lexical hierarchy
- Default inheritance
- Tour of the lexeme hierarchy
- The Case Constraint
- pos vs. lexeme