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Overview

• Motivation for lexical hierarchy

• Default inheritance

• Tour of the lexeme hierarchy

• The Case Constraint

• pos vs. lexeme

• Reading Questions
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• We've streamlined our grammar rules...
• ...by stating some constraints as general principles

• ...and locating lots of information in the lexicon.

• Our lexical entries currently stipulate a lot of 
information that is common across many entries and 
should be stated only once.

• Examples?

• Ideally, particular lexical entries need only give 
phonological form, the semantic contribution, 
and any constraints truly idiosyncratic to the 
lexical entry.

Motivation
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• Lexeme: An abstract proto-word which gives rise 
to genuine words.  We refer to lexemes by their 
‘dictionary form’, e.g. ‘the lexeme run’ or ‘the 
lexeme dog’.

•Word: A particular pairing of form and meaning.  
Running and ran are different words

Lexemes and Words
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• Lexemes capture the similarities among run, runs, 
running, and run.

• The lexical type hierarchy captures the similarities among 
run, sleep, and laugh, among those and other verbs like 
devour and  hand,  and among those and other words like 
book.
Q: What do devour and book have in common?
A: The SHAC 

• Lexical rules capture the similarities among runs, sleeps, 
devours, hands,...

Lexical Types & Lexical Rules
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Q: Why do we have default inheritance?

A: Generalizations with exceptions are common:
• Most nouns in English aren't marked for CASE, but 

pronouns are.
• Most verbs in English only distinguish two agreement 

categories (3sing and non-3sing), but be distinguishes 
more.
• Most prepositions in English are transitive, but here and 

there are intransitive.
• Most nominal words in English are 3rd person, but some 

(all of them pronouns) are 1st or 2nd person.
• Most proper nouns in English are singular, but some 

(mountain range names, sports team names) are plural.

Default Inheritance
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Default Inheritance, Technicalities

If a type says 
ARG-ST  / < NP >,

and one of its 
subtypes says 
ARG-ST   <   >,

then the ARG-ST 
value of instances of 
the subtype is  <  >.

If a type says 
ARG-ST   < NP >,

and one of its 
subtypes says 
ARG-ST   <   >,

then this subtype can 
have no instances, 
since they would 
have to satisfy 
contradictory 
constraints.
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• If a type says MOD  / < S >, and one of its subtypes says 
MOD   <[SPR < NP> ] >, then the ARG-ST value of 
instances of the subtype is what?  

Default Inheritance, More Technicalities











MOD

〈









HEAD / verb

SPR
〈

NP
〉

COMPS / 〈 〉









〉











• That is, default constraints are ‘pushed down’ 



© 2003 CSLI Publications

Q: Can a grammar rule override a default 
constraint on a word?

A:  No.  Defaults are all ‘cached out’ in the 
lexicon.

• Words as used to build sentences have only 
inviolable constraints.

Question on Default Inheritance
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Our Lexeme Hierarchy
synsem

[SYN, SEM]

lexeme
[ARG-ST]

infl-lxm

.

.

verb-lxm

siv-lxm piv-lxm tv-lxm

stv-lxm dtv-lxm ptv-lxm

cn-lxm

cntn-lxm massn-lxm

const-lxm

.

adj -lxm conj -lxm det-lxm predp-lxm argmkp-lxm

pn-lxm pron-lxm

expression

word
[ARG-ST]

phrase
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Functions of Types

• Stating what features are appropriate for 
what categories

• Stating generalizations

• Constraints that apply to (almost) all instances

• Generalizations about selection -- where 
instances of that type can appear
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Every synsem has the features SYN and SEM
synsem

[SYN, SEM]

lexeme
[ARG-ST]

infl-lxm

.

.

verb-lxm

siv-lxm piv-lxm tv-lxm

stv-lxm dtv-lxm ptv-lxm

cn-lxm

cntn-lxm massn-lxm

const-lxm

.

adj -lxm conj -lxm det-lxm predp-lxm argmkp-lxm

pn-lxm pron-lxm

expression

word
[ARG-ST]

phrase
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No ARG-ST on phrase
synsem

[SYN, SEM]

lexeme
[ARG-ST]

infl-lxm

.

.

verb-lxm

siv-lxm piv-lxm tv-lxm

stv-lxm dtv-lxm ptv-lxm

cn-lxm

cntn-lxm massn-lxm

const-lxm

.

adj -lxm conj -lxm det-lxm predp-lxm argmkp-lxm

pn-lxm pron-lxm

expression

word
[ARG-ST]

phrase
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A Constraint on infl-lxm:  the SHAC
synsem

[SYN, SEM]

lexeme
[ARG-ST]

infl-lxm

.

.

verb-lxm

siv-lxm piv-lxm tv-lxm

stv-lxm dtv-lxm ptv-lxm

cn-lxm

cntn-lxm massn-lxm

const-lxm

.

adj -lxm conj -lxm det-lxm predp-lxm argmkp-lxm

pn-lxm pron-lxm

expression

word
[ARG-ST]

phrase
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A Constraint on infl-lxm:  the SHAC

infl-lxm :







SYN







VAL

[

SPR
〈

[AGR 1 ]
〉

]

HEAD [ AGR 1 ]












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Constraints on cn-lxm
synsem

[SYN, SEM]

lexeme
[ARG-ST]

infl-lxm

.

.

verb-lxm

siv-lxm piv-lxm tv-lxm

stv-lxm dtv-lxm ptv-lxm

cn-lxm

cntn-lxm massn-lxm

const-lxm

.

adj -lxm conj -lxm det-lxm predp-lxm argmkp-lxm

pn-lxm pron-lxm

expression

word
[ARG-ST]

phrase
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Constraints on cn-lxm

cn-lxm :

































SYN

















HEAD

[

noun

AGR [PER 3rd]

]

VAL



SPR 〈

[

HEAD det

INDEX i

]

〉





















SEM

[

MODE / ref

INDEX i

]

ARG-ST 〈X〉 ⊕ /〈 〉
































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Formally Distinguishing Count vs. Mass Nouns
synsem

[SYN, SEM]

lexeme
[ARG-ST]

infl-lxm

.

.

verb-lxm

siv-lxm piv-lxm tv-lxm

stv-lxm dtv-lxm ptv-lxm

cn-lxm

cntn-lxm massn-lxm

const-lxm

.

adj -lxm conj -lxm det-lxm predp-lxm argmkp-lxm

pn-lxm pron-lxm

expression

word
[ARG-ST]

phrase
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Formally Distinguishing Count vs. Mass Nouns

cntn-lxm :

[

SYN

[

VAL
[

SPR 〈 [COUNT +] 〉
]

]

]

massn-lxm :

[

SYN

[

VAL
[

SPR 〈 [COUNT −] 〉
]

]

]
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Constraints on verb-lxm
synsem

[SYN, SEM]

lexeme
[ARG-ST]

infl-lxm

.

.

verb-lxm

siv-lxm piv-lxm tv-lxm

stv-lxm dtv-lxm ptv-lxm

cn-lxm

cntn-lxm massn-lxm

const-lxm

.

adj -lxm conj -lxm det-lxm predp-lxm argmkp-lxm

pn-lxm pron-lxm

expression

word
[ARG-ST]

phrase
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Constraints on verb-lxm

verb-lxm:











SYN
[

HEAD verb

]

SEM
[

MODE prop
]

ARG-ST / 〈 NP, ... 〉










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Subtypes of verb-lxm
verb-lxm

siv-lxm piv-lxm tv-lxm

stv-lxm dtv-lxm ptv-lxm

• verb-lxm:     [ARG-ST / < NP, ... >]
	

 • siv-lxm:   [ARG-ST / < NP >]  
	

 • piv-lxm:   [ARG-ST / < NP, PP >]
	

 • tv-lxm:     [ARG-ST / < NP, NP, ... >]

• stv-lxm:     [ARG-ST / < NP, NP, >]
• dtv-lxm:     [ARG-ST / < NP, NP, NP >]
• ptv-lxm:     [ARG-ST / < NP, NP, PP >]
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Proper Nouns and Pronouns
synsem

[SYN, SEM]

lexeme
[ARG-ST]

infl-lxm

.

.

verb-lxm

siv-lxm piv-lxm tv-lxm

stv-lxm dtv-lxm ptv-lxm

cn-lxm

cntn-lxm massn-lxm

const-lxm

.

adj -lxm conj -lxm det-lxm predp-lxm argmkp-lxm

pn-lxm pron-lxm

expression

word
[ARG-ST]

phrase
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Proper Nouns and Pronouns

pn-lxm:























SYN









HEAD









noun

AGR

[

PER 3rd

NUM / sg

]

















SEM
[

MODE ref
]

ARG-ST / 〈 〉























pron-lxm:











SYN
[

HEAD noun
]

SEM
[

MODE / ref
]

ARG-ST 〈 〉










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The Case Constraint

An outranked NP is [CASE  acc].

• object of verb ✓

• second object of verb ✓

• object of argument-marking preposition ✓

• object of predicational preposition (✓)
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The Case Constraint, continued
An outranked NP is [CASE  acc].

• Subjects of verbs

• Should we add a clause to cover nominative subjects?

• No.

We expect them to leave.  (Chapter 12)

• Lexical rules for finite verbs will handle nominative subjects.

• Any other instances of case marking in English?

• Does it apply to case systems in other languages?

No:  The Case Constraint is an English-specific constraint.
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Apparent redundancy

• Why do we need both the pos subhierarchy 
and lexeme types?
• pos: 
• Applies to words and phrases; models 

relationship between then
• Constrains which features are appropriate 

(no AUX on noun)
• lexeme:
• Generalizations about combinations of 

constraints 
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• Lexemes capture the similarities among run, runs, 
running, and run.

• The lexical type hierarchy captures the similarities among 
run, sleep, and laugh, among those and other verbs like 
devour and  hand,  and among those and other words like 
book.

• Lexical rules capture the similarities among runs, sleeps, 
devours, hands,...

Lexical Types & Lexical Rules
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Overview

• Motivation for lexical hierarchy

• Default inheritance

• Tour of the lexeme hierarchy

• The Case Constraint

• pos vs. lexeme

• Reading Questions
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Reading Questions

• The lexeme tree and general hierarchy just 
seems awfully specific to me to be 
generalizable. How do we capture other 
languages?

• Which rule or principle prevents integrating the 
feature structure lexeme into the parsing tree ?
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Reading Questions

• Does the Case Constraint rule apply only inside 
individual ARG-ST, or is it applied across all 
elements in all ARG-STs simultaneously in the 
tree?

• Do we need to separate lexical entries for 
"give" in order to handle the dative shift?

• I gave Susan the directions.

• I gave the directions to Susan.
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Reading Questions

• Is "lexeme" the same as "root"?

• Why do we insist on saying "family of lexical 
sequences" everywhere?

• Do lexical sequences always pair a form and a 
feature structure of type lexeme?
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Reading Questions

• (p.245) "It saves us from having to assign 
values to features where they would do no 
work, for example, PER in propositions or 
CASE in verbs" How? It seems like PER and 
CASE in those cases are just underspecified.
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Reading Questions

• (28) specifies the ARG-ST values for cn-lxm. I am 
confused as to why we have to specify an optional 
empty list in AGR-ST addition to the DP. I 
understand that their are special cases, like the 
"picture" example given, in which you need to 
account for other arguments. But couldn't a subtype 
of cn-lxm simply add those on it's own? What is 
the point of the defeasible empty list if it is going to 
either going to a) be overridden or b) be ignored. 

• [ ARG-ST < DP > (+) / < > ]
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Reading Questions

• Where does the second NP in the ARG-ST for 
predp-lxm come from then since ARG-ST is 
the addition of SPR and COMPS, but I don't 
see where we get a COMPS?  

• Does ARG-ST replace SPR & COMPS?
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Reading Questions

• It seems like any principle could be 
reformulated as a grammar rule-and any 
grammar rule could be restated as a general 
principle (at least if a person really wanted to).  
So the question is what would make a linguist 
posit a new "principle" vs. a "rule"?  Is the 
distinction somewhat arbitrary?


