
© 2003 CSLI Publications

Ling 566
Nov 26, 2013

Catch-up/review

© 2003 CSLI Publications

Overview

• Ch 14 reading questions

• Big picture

• Untangle this...

• Course evals

© 2003 CSLI Publications

Reading Questions

• How do you know, on the word level,
whether an argument should be on the GAP
list or the COMPS list?

• Between pages 432 and 433, we have for
different lexical sequences for hand. Why
that many? Is that supposed to be an
exhaustive list of possible lexical
sequences?

© 2003 CSLI Publications

Reading Questions
• Can a GAP list have optional elements? For

example, you can build a topicalized sentence
with a verb that takes an optional
complement, e.g. eats in That cake, Sandy
eats frequently.

• Since the GAP list is filled out by the ARP and
that the ARP is encoded in the word type, does
that mean we are not allowed to specify in
individual lexical entries what complements
can go missing and what cannot? Is there even
need this kind of per-word specialization?

© 2003 CSLI Publications

Reading Questions
• Why:

ARG-ST: A+B
COMPS: B-C
GAP: C

• instead of:
ARG-ST: A+B+C
COMPS: B
GAP: C

• It makes sense to me conceptually, but what are
the actual implications in the grammar?

© 2003 CSLI Publications

Reading Questions

word:















SYN









VAL

[

SPR A

COMPS B ! C

]

GAP C









ARG-ST A ⊕ B















© 2003 CSLI Publications

Reading Questions

• According to the ARP defined in p.432,
does that imply that English not allow the
gap in specifier ?

• What's the difference between a non-empty
GAP list and a trace?

© 2003 CSLI Publications

Reading Questions

• In (36) we see that STOP-GAP<> is declared in
the lexeme type. Since this is defeasible (and the
default is <>) this should ensure that when we are
not dealing with LDDs we can basically ignore
STOP-GAP<> in our trees. However, where is
GAP<> introduced in our type hierarchy? I can't
seem to figure it out- and the Summary section
further confuses me since it says GAP<> and
STOP-GAP<> are appropriate for type syn-cat?

• Is GAP<> then empty by default and defeasible
like STOP-GAP<>?

© 2003 CSLI Publications

Reading Questions

• Unless I missed something, all of our feature
values so far come from somewhere - either
they're specified in a lexical entry or
inherited up the tree through the phrase
structure rules, or introduced by a lexical
rule. Here, though, we seem to be arbitrarily
declaring STOP-GAP features to be non-
empty in non-leaf nodes to fill gaps. Maybe
that doesn't explicitly violate anything in our
formalism, but doesn't that take away from
the heavy lexical basis of HPSG thus far?

© 2003 CSLI Publications

Reading Questions

• STOP-GAP: It's supposed to signify what sub
tree includes our gapped element? Isn't that
what the GAP feature says?

• How does STOP-GAP help make sure that
the missing NP in (39) is fully resolved?

(39) Pat is easy to continue to follow ___.

© 2003 CSLI Publications

A Tree for easy to talk to___




VAL
[

SPR 〈 2 NPi 〉
]

GAP 〈 〉





A












VAL

[

SPR 〈 2 〉

COMPS 〈 3 〉

]

GAP 〈 〉

STOP-GAP 〈 1 〉













3 VP




VAL
[

SPR 〈 NP 〉
]

GAP 〈 1 NPi 〉





easy to talk to

© 2003 CSLI Publications

Reading Questions

• We did just fine without STOP-SPR or
STOP-COMPS. What is it about GAP that
necessitates STOP-GAP? Is it because we
want to limit constructions that can give rise
to LDD?

• Why doesn't the Head-Filler Rule put the
STOP-GAP on the preceding phrase instead
of the headed phrase? It seems to be more
logical.

© 2003 CSLI Publications

Reading Questions

• The Head-Filler Rule allows the root S node
in (35) to be Gap < > because the STOP-
GAP and GAP values of its daughter match
the specifier, but is there some independent
reason why a non-empty STOP-GAP list
appears on the head daughter S node in the
first place?

© 2003 CSLI Publications

Reading Questions

• I'm wondering why the STOP-GAP middle
node of the GAP principle diagram in (33)
is labeled as the head. Is the STOP-GAP
element always the head? I didn't think that
was the case, but maybe I missed
something?

© 2003 CSLI Publications

The GAP Principle
A local subtree Φ satisfies the GAP Principle with respect to a
headed rule ρ if and only if Φ satisfies:

[

GAP (A1 ⊕...⊕ An) " A0

]

[GAP A1] ...
H

[

GAP Ai

STOP-GAP A0

]

... [GAP An]

© 2003 CSLI Publications

Reading Questions
• The GAP principle as formulated in (33) on pg 437

seems to indicate that any number of daughter
elements can come prior to the headed daughter
that contains STOP-GAP. However the only rule
that seems to license a construction like (33) is the
Head-Filler rule on the next page, which only has a
single GAP<> element to the left of the head. Are
there any constructions where we actually need the
leftmost "..." in the GAP principle?

• Also, where does the GAP principle live in our
grammar? Is it a constraint on the rules
themselves?

© 2003 CSLI Publications

Reading Questions

• (33) seems to indicate that GAP and GAP
STOP have different values in the head
daughter (Ai and A0) but in (35) they are
the same. What am I missing here?

© 2003 CSLI Publications

Reading Questions

• Why does STOP-GAP appear in non-leaf
nodes when there are no gap-stoppers?
There doesn't seem to be a lexical rule
licensing it.

• For cases where we are not dealing with gap
stoppers like easy and hard, how does the
feature STOP-GAP end up on a node like an
S? The feature doesn't get passed up
apparently so how does it magically appear?

© 2003 CSLI Publications

Reading Questions

• The text seems to be suggesting that the
easy/tough method of gap-filling is different
than the kind described by the Head-Filler
Rule. Is this the case, and if so, what else is
going on to license the gapless AP in (38)?

© 2003 CSLI Publications

A Tree for easy to talk to___




VAL
[

SPR 〈 2 NPi 〉
]

GAP 〈 〉





A












VAL

[

SPR 〈 2 〉

COMPS 〈 3 〉

]

GAP 〈 〉

STOP-GAP 〈 1 〉













3 VP




VAL
[

SPR 〈 NP 〉
]

GAP 〈 1 NPi 〉





easy to talk to

© 2003 CSLI Publications

Reading Questions

• Why identify the GAP value of mother and
daughter in imperatives?

*Me, hand the toy!

(?)To me, hand the toy!

This book, put on the top shelf!

© 2003 CSLI Publications

Big picture: Our model

• Describes a set of strings

• Associates semantic representations (and
trees) with well-formed strings

• Is stated in terms of declarative constraints

• ... which are order-independent

• Locates most constraints ‘in the lexicon’

• Is stated in a precise fashion

© 2003 CSLI Publications

Parts of our model

• Type hierarchy (lexical types, other types)

• Phrase structure rules

• Lexical rules

• Lexical entries

• Grammatical principles

• Initial symbol

© 2003 CSLI Publications

Complicated example #1

• What phenomena are illustrated by this
sentence?

• What rules or interesting lexical types are
involved in our analysis of it?

• What tree structure does our grammar
assign?

 It was explained to me that Kim left.

© 2003 CSLI Publications

S

NP

It

VP

V

was

VP

V

explained

PP

P

to

NP

me

CP

C

that

S

NP

Kim

VP

left

© 2003 CSLI Publications

Complicated examples #2

I expect it to continue to surprise Kim that
Sandy laughed.

© 2003 CSLI Publications

S

NP

I

VP

V

expect

NP

it

VP

V

to

VP

V

continue

VP

V

to

VP

V

surprise

NP

Kim

CP

C

that

S

NP

Sandy

VP

laughed

© 2003 CSLI Publications

Why not these?

*I expect it to continue to surprise Kim Sandy
laughed.

*I expect there to continue to surprise Kim
that Sandy laughed.

*I expect that Sandy laughed to Kim be
surprised.

© 2003 CSLI Publications

Complicated example #4

You all laughed, did you not?

*You all laughed, did not you?

You all laughed, didn’t you?

© 2003 CSLI Publications

S

S

NP

you

VP

ADV

all

VP

laughed

S

V

did

NP

you

ADV

not

© 2003 CSLI Publications

S

S

NP

Y ou

VP

ADV

all

VP

laughed

S

V

didn′t

NP

you

© 2003 CSLI Publications

Complicated example #5

That Sandy could laugh so hard, Kim did not
realize.

*That Sandy could laugh so hard, Kim
realized not.

*Sandy could laugh so hard, Kim did not
realize.

*That Sandy could laugh so hard, Kim did not
realize it.

© 2003 CSLI Publications

S

CP

C

That

S

NP

Sandy

VP

V

could

VP

laugh

S

NP

Kim

VP

V

did

ADV

not

VP

realize

© 2003 CSLI Publications

Complicated example #6

Kim continues to be likely to be easy to talk
to.

*Kim continue to be likely to be easy to talk
to.

*Kim continues to be likely to is easy to talk
to.

*Kim continues to Kim be likely to be easy to
talk to.

© 2003 CSLI Publications

S

NP

Kim

VP

V

continues

VP

V

to

VP

V

be

AP

A

likely

VP

V

to

VP

V

be

AP

A

easy

VP

V

to

VP

V

talk

PP

to

© 2003 CSLI Publications

Complicated example #7

That cake, Kim thought would be easy to eat.

*That cake, Kim thought would be easy to eat
pie.

*That cake, Kim thought would be easy to
eaten.

*Cupcake, Kim thought would be easy to eat.

*That cake, Kim thought that would be easy to
eat.

© 2003 CSLI Publications

S

NP

D

That

N

cake

S

NP

Kim

VP

V

thought

S

V

would

VP

V

be

AP

A

easy

VP

V

to

VP

eat

© 2003 CSLI Publications

Overview

• Ch 14 Reading Questions

• Big picture

• Untangle this...

• Course evals

