
© 2003 CSLI Publications

Ling 566
Oct 22, 2015

Review

© 2003 CSLI Publications

Overview

• Reading questions

• Homework tips

• SPR and COMPS

• Common mistakes

• Analogies to other systems you might know

© 2003 CSLI Publications

Reading Questions

• Do we have to understand 6.3 (the squiggly
bits)?

• I am wondering what exactly ω and Φ stand
for in 6.1. From the context, it looks like ω
may stand for the surface word, whereas Φ
stands for the specified features of a given
interpretation of that word. 'F' is specified as
a "resolved feature structure", but the other
symbols do not have explicit definitions.

© 2003 CSLI Publications

© 2003 CSLI Publications

Reading Questions

• In the appendix it mentions that feature
structures have a recursive definition. Why
do they need to have a recursive definition
and which part of the definition is
recursive?

• What is the difference between sequences φ
and description sequences d?

© 2003 CSLI Publications

Reading Questions

• In 6.3.5, a requirement of a tree structure is:
3. sister nodes are ordered with respect to
each other. Is this the same as saying there
can on be only one possible ordering of
nodes in a given structure?

• And another requirement is: 4. it has no
crossing branches What's an example of a
spurious structure that would have crossing
branches?

© 2003 CSLI Publications

Reading Questions

• From the examples in the chapter, it appears
we can arbitrarily choose a gender value for
word structures corresponding to proper
nouns (names). How about cases when
other words within the sentence (i.e. gender
specific pronouns) give some indication of
gender--would we then simply choose the
gender based on that context?

© 2003 CSLI Publications

Reading Questions

• Earlier in the class, we discussed how the
book states that feature structures need to be
fully resolved. In this chapter, though,
example 8 states that the addressee field
does not need to reference anything. Is it
still a fully resolved tree, even if the
addressee is not referencing anything?
What's the difference between this case, and
a case that would not accept a tree because
it isn't fully resolved?

© 2003 CSLI Publications

Reading Questions

• Because of the change on the morphology of
the word, it makes sense why we have to
create two separate lexical entries for the same
verb based on the tense (send vs. sent). And it
also makes sense why we have to make a case
for agreement for the present tense of the verb
(send vs. sends). However, for the past tense
(sent), the word isn’t morphologically affected
when it is used with either 3rd, 2nd, 1st, plural
or single NPs, thus it seems unnecessary to
have to specify AGR for the verb sent.

© 2003 CSLI Publications

Reading Questions
• The verb sent in example (13), the COMPS

list includes two NPs both with [CASE acc]. I
understand the CASE constraint on the first
NP, but don't quite understand why the second
NP also has a CASE constraint. At least in
English, I haven't been able to think of an
example using sent where the second NP
would be a pronoun where CASE would be
meaningful. In our example it is a letter.

• Why do we put CASE outside of AGR? (as in
pg. 167 (2a))

© 2003 CSLI Publications

Reading Questions

• Are prepositions always semantically empty?
What about This is for you?

• (28) shows the phrase to Lee, and points out
that the preposition to has no semantics on its
own. I get the feeling that this isn't a necessary
consequence of the grammar so far, but
instead is something of a stylistic choice.
Would it be straightforward to get the same
semantics in the end, if prepositions like to
have their own semantic interpretation?

© 2003 CSLI Publications

Reading Questions
• I'd like to know how we define the meaning of the RELN

values. It seemed like we made use of a times relation to
crate two hundred from two and hundred. Yet we didn't
explicitly define what that means. Is it just a place marker?

• I was a bit surprised to see RESTR values for "two" and
"letters" that where called two and letter. Perhaps I
shouldn't be -- since we obviously have to have some grasp
of the language used in our formalisms (and it just so
happens that it's the same language we're analyzing) and
since all of the SEM structures up until now have involved
English words -- but it nevertheless struck me as circular in
these cases. Why is that seeming circularity not considered
a problem for the grammar, especially when one gets to the
point of trying to implement NLP?

© 2003 CSLI Publications

Reading Questions

• The RESTR value of "us" contains three
predications; send, group, and speaker. In
the sentence "they sent us a letter" the
INST of group is identified with the
SENDEE feature of "send" but the other
two predications don't show up again. So I
was wondering what purpose those
predications serve? Are there sentences
where they are connected to other semantic
entries?

© 2003 CSLI Publications

Reading Questions

• Since there seem to be various different
ways to define the SEM RESTR values how
to you know when you have enough
predications?

• On the phrase level, the RESTR value order
appears to be determined by word order
within the phrase. How does this apply to
the word level? How do we know RESTR
value predication order for a lexical entry?

© 2003 CSLI Publications

Reading Questions

• We don't, however, actually know the specific
identities of they or us without more context.
Imagine the sentence, They sent us a letter
occurred in the context, My sister and I emailed
our grandparents. They sent us a letter. Could
we use the indices already described to connect
my sister and I with us and our grandparents
with they? Perhaps we could extrapolate the
Semantic Compositionality Principle to a wider
scope? This seems related to issues like
anaphora resolution.

© 2003 CSLI Publications

Reading Questions

• In a sentence, it seems that the RESTR value of
the verb is a good indicator of how many
semantic indices there will be. However, I'm
not 100 % certain how to annotate more
complicated NP's which contain NP's such as
Jake's friend or the cat on the mat in the house.
It seems that the Semantic Inheritance principle
would reduce each of those NP's into a single
index as in two letters to Lee on page 190; this
would lead me to believe that every noun
should have its own index.

© 2003 CSLI Publications

Reading Questions

• In languages that use complex case systems,
it seems to me that there would be certain
overlap between semantic and syntactic
features. How could redundancy be avoided
(or should it be)?

© 2003 CSLI Publications

Reading Questions
• Which is used more frequently in real-life

computational linguistics, and what are the
qualities that might make one sentence more
amenable to a given methodology?

• In the book, I felt that for the top down approach,
a list of RESTR predications are immediately
introduced, but is there a good technique /
approach / advice on how to come up with such
predications at the first step? It just seems
counter-intuitive to do it this way because it feels
like a process of dividing up the list of RESTR,
instead of summing up the RESTR.

© 2003 CSLI Publications

Reading Questions
• It says the top-down approach could be used

equally well, but in the example, starts
immediately with RESTR lists that only could
have been generated with a human understanding
of the sentence, and tree that is already
constructed. I understand that trees can be
analyzed top-down and rules can be applied to
license its parts from the top-down, but I don't
understand how the tree could actually be
constructed from the top down. (Or, if it can be
done more intelligently than brute force, what
reason there would be to do so.)

© 2003 CSLI Publications

Reading Questions

• Could top-down and bottom-up parsing be
combined (in computational applications) in
an effort to disambiguate structural/word
sense/etc ambiguity? There would
obviously need to be some probabilistic
weights involved from both ends.

© 2003 CSLI Publications

Homework tips/requests

• Type whenever possible

• Answer each part of each question separately

• Be sure to answer each part of each question, and
follow the directions!

• Look over the problems early and ask questions

• Check your work

• Monitor GoPost

• WORK TOGETHER

© 2003 CSLI Publications

SPR value on AP/PP?

• Kim grew fond of baseball.

• Kim and Sandy ate lunch in the park.

• Kim and Sandy are in the park.

© 2003 CSLI Publications

Which grammar does this tree go with?

NP

D

the

NOM

N

cat

© 2003 CSLI Publications

What’s wrong with this?

〈

out,













word

HEAD prep

VAL

[

SPR 〈 VP 〉

COMPS 〈 (PP | NP) 〉

]













〉

© 2003 CSLI Publications

What’s wrong with this?

*

out,

2

6

6

6

6

4

word

head prep

val

"

spr 〈 〉

comps 〈 (NP) (PP) 〉

#

3

7

7

7

7

5

+

© 2003 CSLI Publications

What’s wrong with this?

〈

out,













word

HEAD prep

VAL

[

SPR 〈 〉

COMPS (NP | PP)

]













〉

© 2003 CSLI Publications

What’s wrong with this?

〈

grew,



















word

HEAD

[

verb

AGR 3sing

]

VAL

[

SPR 〈 NP 〉

COMPS 〈 AP 〉

]



















〉

© 2003 CSLI Publications

What’s wrong with this?

〈

out,













word

HEAD preposition

VAL

[

SPR 〈 〉

COMPS 〈 (NP | PP) 〉

]













〉

© 2003 CSLI Publications

What’s wrong with this?

〈

there,













phrase

HEAD prep

VAL

[

SPR 〈 〉

COMPS 〈 〉

]













〉

© 2003 CSLI Publications

Tags & lists

• What’s the difference between these two?

• When does it matter?

[

SPR 〈 1 NP 〉
]

[

SPR 1 〈 NP 〉
]

© 2003 CSLI Publications

What’s wrong with this tree?
NP

D

the

NOM

N
h

COMPS 〈 (1 PP) 〉
i

photos

1 PP

of the suspect

© 2003 CSLI Publications

2

6

4

HEAD verb

SPR 〈 〉

COMPS 〈 〉

3

7

5

1

2

6

4

HEAD noun

SPR 〈 〉

COMPS 〈 〉

3

7

5

2

6

4

HEAD noun

SPR 〈 〉

COMPS 〈 〉

3

7

5

I

2

6

4

HEAD verb

SPR 〈 1 〉

COMPS 〈 〉

3

7

5

2

6

4

HEAD verb

SPR 〈 1 〉

COMPS 〈 2 〉

3

7

5

rely

2

2

6

4

HEAD prep

SPR 〈 〉

COMPS 〈 〉

3

7

5

2

6

4

HEAD prep

SPR 〈 〉

COMPS 〈 3 〉

3

7

5

on

3

2

6

4

HEAD noun

SPR 〈 〉

COMPS 〈 〉

3

7

5

2

6

4

HEAD noun

SPR 〈 〉

COMPS 〈 〉

3

7

5

Kim

What’s wrong
with this

tree?

© 2003 CSLI Publications

2

6

4

HEAD verb

SPR 〈 〉

COMPS 〈 〉

3

7

5

1

2

6

4

HEAD pronoun

SPR 〈 〉

COMPS 〈 〉

3

7

5

I

2

6

4

HEAD verb

SPR 〈 1 〉

COMPS 〈 〉

3

7

5

2

6

4

HEAD verb

SPR 〈 1 〉

COMPS 〈 2 〉

3

7

5

rely

2

2

6

4

HEAD prep

SPR 〈 〉

COMPS 〈 〉

3

7

5

2

6

4

HEAD prep

SPR 〈 〉

COMPS 〈 3 〉

3

7

5

on

3

2

6

4

HEAD noun

SPR 〈 〉

COMPS 〈 〉

3

7

5

Kim

What’s wrong
with this

tree?

© 2003 CSLI Publications

2

6

4

HEAD verb 4

SPR 〈 〉

COMPS 〈 〉

3

7

5

1

2

6

4

HEAD noun

SPR 〈 〉

COMPS 〈 〉

3

7

5

I

2

6

4

HEAD verb 4

SPR 〈 1 〉

COMPS 〈 〉

3

7

5

2

6

4

HEAD verb 4

SPR 〈 1 〉

COMPS 〈 2 〉

3

7

5

rely

2

2

6

4

HEAD prep 5

SPR 〈 〉

COMPS 〈 〉

3

7

5

2

6

4

HEAD prep 5

SPR 〈 〉

COMPS 〈 3 〉

3

7

5

on

3

2

6

4

HEAD noun

SPR 〈 〉

COMPS 〈 〉

3

7

5

Kim

What’s wrong
with this

tree?

© 2003 CSLI Publications

2

6

4

HEAD 4 verb

SPR 〈 〉

COMPS 〈 〉

3

7

5

1

2

6

4

HEAD 6 noun

SPR 〈 〉

COMPS 〈 〉

3

7

5

I

2

6

4

HEAD 4 verb

SPR 〈 1 〉

COMPS 〈 〉

3

7

5

2

6

4

HEAD 4 verb

SPR 〈 1 〉

COMPS 〈 2 〉

3

7

5

rely

2

2

6

4

HEAD 5 prep

SPR 〈 〉

COMPS 〈 〉

3

7

5

2

6

4

HEAD 5 prep

SPR 〈 〉

COMPS 〈 3 〉

3

7

5

on

3

2

6

4

HEAD 6 noun

SPR 〈 〉

COMPS 〈 〉

3

7

5

Kim

What’s wrong
with this

tree?

© 2003 CSLI Publications

2

6

4

HEAD 4 verb

SPR 〈 〉

COMPS 〈 〉

3

7

5

1

2

6

4

HEAD noun

SPR 〈 〉

COMPS 〈 〉

3

7

5

I

2

6

4

HEAD 4 verb

SPR 〈 1 〉

COMPS 〈 〉

3

7

5

4

2

6

4

HEAD verb

SPR 〈 1 〉

COMPS 〈 2 〉

3

7

5

rely

2

2

6

4

HEAD 5 prep

SPR 〈 〉

COMPS 〈 〉

3

7

5

5

2

6

4

HEAD prep

SPR 〈 〉

COMPS 〈 3 〉

3

7

5

on

3

2

6

4

HEAD noun

SPR 〈 〉

COMPS 〈 〉

3

7

5

Kim

What’s wrong
with this

tree?

© 2003 CSLI Publications

What’s wrong with this?

*

hundred ,

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

SYN

2

6

6

6

6

6

6

6

6

4

HEAD number

VAL

2

6

6

6

6

6

4

SPR 〈

"

HEAD number

INDEX j

#

〉

COMPS 〈

"

HEAD number

INDEX k

#

〉

3

7

7

7

7

7

5

3

7

7

7

7

7

7

7

7

5

SEM

2

6

6

6

6

6

6

6

6

6

6

4

INDEX m

MODE ref

RESTR

*

2

6

6

6

6

4

RELN hund-number

MULTIPLIER j

ADDEND k

HUND-VALUE m

3

7

7

7

7

5

+

3

7

7

7

7

7

7

7

7

7

7

5

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5

+

© 2003 CSLI Publications

And this?

*

hundred ,

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

SYN

2

6

6

6

6

4

HEAD number

VAL

2

6

4

SPR 〈
h

HEAD number
i

〉

COMPS 〈
h

HEAD number
i

〉

3

7

5

3

7

7

7

7

5

SEM

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

INDEX i

MODE ref

RESTR 〈

2

6

6

6

6

4

RELN times

RESULT k

FACTOR1 l

FACTOR2 m

3

7

7

7

7

5

,

2

6

4

RELN constant

INST m

VALUE 100

3

7

5
,

2

6

6

6

6

4

RELN plus

RESULT i

TERM1 j

TERM2 k

3

7

7

7

7

5

〉

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5

+

© 2003 CSLI Publications

How about this?

*

hundred ,

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

SYN

2

6

6

6

6

6

6

6

6

4

HEAD number

VAL

2

6

6

6

6

6

4

SPR 〈

"

HEAD number

INDEX l

#

〉

COMPS 〈

"

HEAD number

INDEX j

#

〉

3

7

7

7

7

7

5

3

7

7

7

7

7

7

7

7

5

SEM

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

INDEX m

MODE ref

RESTR 〈

2

6

6

6

6

4

RELN times

RESULT k

FACTOR1 l

FACTOR2 m

3

7

7

7

7

5

,

2

6

4

RELN constant

INST m

VALUE 100

3

7

5
,

2

6

6

6

6

4

RELN plus

RESULT i

TERM1 j

TERM2 k

3

7

7

7

7

5

〉

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5

+

© 2003 CSLI Publications

Better version

*

hundred ,

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

SYN

2

6

6

6

6

6

6

6

6

4

HEAD number

VAL

2

6

6

6

6

6

4

SPR 〈

"

HEAD number

INDEX l

#

〉

COMPS 〈

"

HEAD number

INDEX j

#

〉

3

7

7

7

7

7

5

3

7

7

7

7

7

7

7

7

5

SEM

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

INDEX i

MODE ref

RESTR 〈

2

6

6

6

6

4

RELN times

RESULT k

FACTOR1 l

FACTOR2 m

3

7

7

7

7

5

,

2

6

4

RELN constant

INST m

VALUE 100

3

7

5
,

2

6

6

6

6

4

RELN plus

RESULT i

TERM1 j

TERM2 k

3

7

7

7

7

5

〉

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5

+

© 2003 CSLI Publications

Type hierarchy analogies

© 2003 CSLI Publications

Type hierarchy analogies

• How is this formalism like OOP?

© 2003 CSLI Publications

Type hierarchy analogies

• How is this formalism like OOP?

• How is it different?

© 2003 CSLI Publications

Type hierarchy analogies

• How is this formalism like OOP?

• How is it different?

• How is the type hierarchy like an ontology?

© 2003 CSLI Publications

Type hierarchy analogies

• How is this formalism like OOP?

• How is it different?

• How is the type hierarchy like an ontology?

• How is it different?

© 2003 CSLI Publications

Type hierarchy analogies

• How is this formalism like OOP?

• How is it different?

• How is the type hierarchy like an ontology?

• How is it different?

• How is this formalism like the MP’s
formalism?

© 2003 CSLI Publications

Type hierarchy analogies

• How is this formalism like OOP?

• How is it different?

• How is the type hierarchy like an ontology?

• How is it different?

• How is this formalism like the MP’s
formalism?

• How is it different?

© 2003 CSLI Publications

Overview

• Reading questions

• Homework tips

• Common mistakes

• Analogies to other systems you might know

