
© 2003 CSLI Publications

Ling 566
Oct 29, 2015

Lexical Types

© 2003 CSLI Publications

Overview

• Motivation for lexical hierarchy

• Default inheritance

• Tour of the lexeme hierarchy

• The Case Constraint

• pos vs. lexeme

• Reading Questions

© 2003 CSLI Publications

• We've streamlined our grammar rules...
• ...by stating some constraints as general principles

• ...and locating lots of information in the lexicon.

• Our lexical entries currently stipulate a lot of
information that is common across many entries and
should be stated only once.

• Examples?

• Ideally, particular lexical entries need only give
phonological form, the semantic contribution,
and any constraints truly idiosyncratic to the
lexical entry.

Motivation

© 2003 CSLI Publications

• Lexeme: An abstract proto-word which gives rise
to genuine words. We refer to lexemes by their
‘dictionary form’, e.g. ‘the lexeme run’ or ‘the
lexeme dog’.

•Word: A particular pairing of form and meaning.
Running and ran are different words

Lexemes and Words

© 2003 CSLI Publications

• Lexemes capture the similarities among run, runs,
running, and run.

• The lexical type hierarchy captures the similarities among
run, sleep, and laugh, among those and other verbs like
devour and hand, and among those and other words like
book.
Q: What do devour and book have in common?
A: The SHAC

• Lexical rules capture the similarities among runs, sleeps,
devours, hands,...

Lexical Types & Lexical Rules

© 2003 CSLI Publications

Q: Why do we have default inheritance?

A: Generalizations with exceptions are common:
• Most nouns in English aren't marked for CASE, but

pronouns are.
• Most verbs in English only distinguish two agreement

categories (3sing and non-3sing), but be distinguishes
more.
• Most prepositions in English are transitive, but here and

there are intransitive.
• Most nominal words in English are 3rd person, but some

(all of them pronouns) are 1st or 2nd person.
• Most proper nouns in English are singular, but some

(mountain range names, sports team names) are plural.

Default Inheritance

© 2003 CSLI Publications

Default Inheritance, Technicalities

If a type says
ARG-ST / < NP >,

and one of its
subtypes says
ARG-ST < >,

then the ARG-ST
value of instances of
the subtype is < >.

If a type says
ARG-ST < NP >,

and one of its
subtypes says
ARG-ST < >,

then this subtype can
have no instances,
since they would
have to satisfy
contradictory
constraints.

© 2003 CSLI Publications

• If a type says MOD / < S >, and one of its subtypes says
MOD <[SPR < NP>] >, then the ARG-ST value of
instances of the subtype is what?

Default Inheritance, More Technicalities











MOD

〈









HEAD / verb

SPR
〈

NP
〉

COMPS / 〈 〉









〉











• That is, default constraints are ‘pushed down’

© 2003 CSLI Publications

Q: Can a grammar rule override a default
constraint on a word?

A: No. Defaults are all ‘cached out’ in the
lexicon.

• Words as used to build sentences have only
inviolable constraints.

Question on Default Inheritance

© 2003 CSLI Publications

Our Lexeme Hierarchy
synsem

[SYN, SEM]

lexeme
[ARG-ST]

infl-lxm

.

.

verb-lxm

siv-lxm piv-lxm tv-lxm

stv-lxm dtv-lxm ptv-lxm

cn-lxm

cntn-lxm massn-lxm

const-lxm

.

adj -lxm conj -lxm det-lxm predp-lxm argmkp-lxm

pn-lxm pron-lxm

expression

word
[ARG-ST]

phrase

© 2003 CSLI Publications

Functions of Types

• Stating what features are appropriate for
what categories

• Stating generalizations

• Constraints that apply to (almost) all instances

• Generalizations about selection -- where
instances of that type can appear

© 2003 CSLI Publications

Every synsem has the features SYN and SEM
synsem

[SYN, SEM]

lexeme
[ARG-ST]

infl-lxm

.

.

verb-lxm

siv-lxm piv-lxm tv-lxm

stv-lxm dtv-lxm ptv-lxm

cn-lxm

cntn-lxm massn-lxm

const-lxm

.

adj -lxm conj -lxm det-lxm predp-lxm argmkp-lxm

pn-lxm pron-lxm

expression

word
[ARG-ST]

phrase

© 2003 CSLI Publications

No ARG-ST on phrase
synsem

[SYN, SEM]

lexeme
[ARG-ST]

infl-lxm

.

.

verb-lxm

siv-lxm piv-lxm tv-lxm

stv-lxm dtv-lxm ptv-lxm

cn-lxm

cntn-lxm massn-lxm

const-lxm

.

adj -lxm conj -lxm det-lxm predp-lxm argmkp-lxm

pn-lxm pron-lxm

expression

word
[ARG-ST]

phrase

© 2003 CSLI Publications

A Constraint on infl-lxm: the SHAC
synsem

[SYN, SEM]

lexeme
[ARG-ST]

infl-lxm

.

.

verb-lxm

siv-lxm piv-lxm tv-lxm

stv-lxm dtv-lxm ptv-lxm

cn-lxm

cntn-lxm massn-lxm

const-lxm

.

adj -lxm conj -lxm det-lxm predp-lxm argmkp-lxm

pn-lxm pron-lxm

expression

word
[ARG-ST]

phrase

© 2003 CSLI Publications

A Constraint on infl-lxm: the SHAC

infl-lxm :







SYN







VAL

[

SPR
〈

[AGR 1]
〉

]

HEAD [AGR 1]













© 2003 CSLI Publications

Constraints on cn-lxm
synsem

[SYN, SEM]

lexeme
[ARG-ST]

infl-lxm

.

.

verb-lxm

siv-lxm piv-lxm tv-lxm

stv-lxm dtv-lxm ptv-lxm

cn-lxm

cntn-lxm massn-lxm

const-lxm

.

adj -lxm conj -lxm det-lxm predp-lxm argmkp-lxm

pn-lxm pron-lxm

expression

word
[ARG-ST]

phrase

© 2003 CSLI Publications

Constraints on cn-lxm

cn-lxm :

































SYN

















HEAD

[

noun

AGR [PER 3rd]

]

VAL



SPR 〈

[

HEAD det

INDEX i

]

〉





















SEM

[

MODE / ref

INDEX i

]

ARG-ST 〈X〉 ⊕ /〈 〉

































© 2003 CSLI Publications

Formally Distinguishing Count vs. Mass Nouns
synsem

[SYN, SEM]

lexeme
[ARG-ST]

infl-lxm

.

.

verb-lxm

siv-lxm piv-lxm tv-lxm

stv-lxm dtv-lxm ptv-lxm

cn-lxm

cntn-lxm massn-lxm

const-lxm

.

adj -lxm conj -lxm det-lxm predp-lxm argmkp-lxm

pn-lxm pron-lxm

expression

word
[ARG-ST]

phrase

© 2003 CSLI Publications

Formally Distinguishing Count vs. Mass Nouns

cntn-lxm :

[

SYN

[

VAL
[

SPR 〈 [COUNT +] 〉
]

]

]

massn-lxm :

[

SYN

[

VAL
[

SPR 〈 [COUNT −] 〉
]

]

]

© 2003 CSLI Publications

Constraints on verb-lxm
synsem

[SYN, SEM]

lexeme
[ARG-ST]

infl-lxm

.

.

verb-lxm

siv-lxm piv-lxm tv-lxm

stv-lxm dtv-lxm ptv-lxm

cn-lxm

cntn-lxm massn-lxm

const-lxm

.

adj -lxm conj -lxm det-lxm predp-lxm argmkp-lxm

pn-lxm pron-lxm

expression

word
[ARG-ST]

phrase

© 2003 CSLI Publications

Constraints on verb-lxm

verb-lxm:











SYN
[

HEAD verb

]

SEM
[

MODE prop
]

ARG-ST / 〈 NP, ... 〉











© 2003 CSLI Publications

Subtypes of verb-lxm
verb-lxm

siv-lxm piv-lxm tv-lxm

stv-lxm dtv-lxm ptv-lxm

• verb-lxm: [ARG-ST / < NP, ... >]
	

 • siv-lxm: [ARG-ST / < NP >]
	

 • piv-lxm: [ARG-ST / < NP, PP >]
	

 • tv-lxm: [ARG-ST / < NP, NP, ... >]

• stv-lxm: [ARG-ST / < NP, NP, >]
• dtv-lxm: [ARG-ST / < NP, NP, NP >]
• ptv-lxm: [ARG-ST / < NP, NP, PP >]

© 2003 CSLI Publications

Proper Nouns and Pronouns
synsem

[SYN, SEM]

lexeme
[ARG-ST]

infl-lxm

.

.

verb-lxm

siv-lxm piv-lxm tv-lxm

stv-lxm dtv-lxm ptv-lxm

cn-lxm

cntn-lxm massn-lxm

const-lxm

.

adj -lxm conj -lxm det-lxm predp-lxm argmkp-lxm

pn-lxm pron-lxm

expression

word
[ARG-ST]

phrase

© 2003 CSLI Publications

Proper Nouns and Pronouns

pn-lxm:























SYN









HEAD









noun

AGR

[

PER 3rd

NUM / sg

]

















SEM
[

MODE ref
]

ARG-ST / 〈 〉























pron-lxm:











SYN
[

HEAD noun
]

SEM
[

MODE / ref
]

ARG-ST 〈 〉











© 2003 CSLI Publications

The Case Constraint

An outranked NP is [CASE acc].

• object of verb ✓

• second object of verb ✓

• object of argument-marking preposition ✓

• object of predicational preposition (✓)

© 2003 CSLI Publications

The Case Constraint, continued
An outranked NP is [CASE acc].

• Subjects of verbs

• Should we add a clause to cover nominative subjects?

• No.

We expect them to leave. (Chapter 12)

• Lexical rules for finite verbs will handle nominative subjects.

• Any other instances of case marking in English?

• Does it apply to case systems in other languages?

No: The Case Constraint is an English-specific constraint.

© 2003 CSLI Publications

Apparent redundancy

• Why do we need both the pos subhierarchy
and lexeme types?
• pos:
• Applies to words and phrases; models

relationship between then
• Constrains which features are appropriate

(no AUX on noun)
• lexeme:
• Generalizations about combinations of

constraints

© 2003 CSLI Publications

• Lexemes capture the similarities among run, runs,
running, and run.

• The lexical type hierarchy captures the similarities among
run, sleep, and laugh, among those and other verbs like
devour and hand, and among those and other words like
book.

• Lexical rules capture the similarities among runs, sleeps,
devours, hands,...

Lexical Types & Lexical Rules

© 2003 CSLI Publications

Overview

• Motivation for lexical hierarchy

• Default inheritance

• Tour of the lexeme hierarchy

• The Case Constraint

• pos vs. lexeme

• Reading Questions

© 2003 CSLI Publications

Reading Questions
• What would the SPR of a predicative preposition

or adjective be?

• Why is it that the "non-empty MOD value is
irrelevant" (pg 243) when the preposition appears
as a complement? Isn't it problematic that a
complement preposition still has an unrealized
MOD value?

• Would we consider the prepositions of phrasal
verbs ("She takes after her mother.") to be of type
argument-marking-preposition? Or is this
something we haven't handled yet in HPSG?

© 2003 CSLI Publications

Reading Questions

© 2003 CSLI Publications

Reading Questions

• What's the value of having defeasible
constraints, if it's all cached out by the time you
get to lexical entries?

• when authoring a grammar, is there a clear line
between "default behavior" and simply
"majority behavior" ? because if default
behavior is always determined by the majority
of lexemes, shouldn't the top basic lexeme
entry have a default definition for a noun,
because "the majority of words are nouns"?

© 2003 CSLI Publications

Reading Questions

• I understand that in practice some constraints will NOT
be overridden in any subtypes of a given lexeme, but
why do we take pains to indicate when something CAN
be overridden, instead of just taking as a general
principle that all instances of a type inherit the
constraints of that type unless their entry say otherwise?

• "Note that the default part of the constraint has been
'pushed down' to the next level of embedding in such a
way as to have the maximum effect that is still
consistent with the overriding constraint." How does
one determine maximum effect and if it is still
consistent with the overriding constraint?

© 2003 CSLI Publications

Reading Questions

• It looks like infl-lxm is really just a type to
accommodate the SHAC. Since the SHAC
definition in previous chapters said that the
constraint only applied to common nouns and
verbs, I'm not entirely sure what moving it in
the hierarchy is going to get us beyond what we
already had. I guess we no longer have to say
"for common nouns and verbs" in the
definition, but is there something deeper I am
missing?

© 2003 CSLI Publications

Reading Questions

• Why exactly is the SHAC Constraint, as
specified on page 238, not a defeasible
constraint? Wouldn't it make sense to define the
constraint such that the values of both AGR
features are able to be overridden?

• The type verb-lxm requires all instances to
have an NP at the start of its AGR-ST list. In
the last class we talked about how certain verbs
in imperative sentences are truly subjectless.
How does this lexeme handle those verbs?

© 2003 CSLI Publications

Reading Questions

• For (41a), we're told the MOD can be
irrelevant. If so, why does it appear as non-
defeasible in the type?

• Why does adj have [MODE prop] while adv
has [MODE none]?

© 2003 CSLI Publications

Reading Questions

• What does it mean when it says "ARG-ST <
NP, ... >"?

• Does the verbal lexeme hierarchy allow us to
add new branches for new structures, or would
we need to fit these other types into the existing
types with modifications where necessary? For
example, if a verb takes a sentence
complement, would this structure belong to
verb-lxm or somewhere under tv-lxm?

© 2003 CSLI Publications

Reading Questions

• Way back in Chapter 2 (right?), we originally
identified verbs as simply being [COMPS itr],
[COMPS str], etc. We then quickly realized
that, given the large variety of valence patterns
in English, that naming each pattern as a
separate value of COMPS was an inelegant
solution. Haven't we done the same thing by
specifying valence patterns in our lexeme type
hierarchy? Aren't we just going to end up
exploding our type hierarchy into something
just as unwieldy as what we had in Chapter 2?

© 2003 CSLI Publications

Reading Questions
• It seems as though it would make sense to define

an inheritance ("is-a") relationship between
lexeme and word. Intuitively, runs and ran seem
like children/subtypes of the supertype ran.

• Do the types of semantic relations between
lexical items found in things like WordNet have
a place in an HPSG theory of the lexicon? I was
wondering in particular if the inheritance-based
view from the chapter could be extended to
account for the hypernym/hyponym relation (a
dog is a canine is an animal, etc.).

© 2003 CSLI Publications

Reading Questions

• What exactly is the difference between a lexical
entry and a lexical sequence?

• What is an example of a lexical sequence
which is not a lexical entry?

• What is the relationship between a lexical
sequence and a lexeme? Is a lexical sequence a
set of lexical entries that can be generated by a
lexeme?

© 2003 CSLI Publications

Reading Questions

© 2003 CSLI Publications

Reading Questions

• Footnote 11 in section 8.4 states that a lexical
entry is a "description", while a lexical
sequence is a "model". What exactly does this
mean? Conceptually I suppose a description is
a static entry of information about an object,
while a model can be manipulated to imitate
behavior. But how does that apply to the
notions of 'lexical entry" and "lexical
sequence"?

© 2003 CSLI Publications

Reading Questions

• In the past we've discussed both top-down and
bottom-up in reference to information
processing. I'm just curious about whether it's
more common/beneficial to think of the lexicon
bottom-up or not. It seems intuitive to focus on
the lexeme first and work down to the word,
but is it actually easier to focus on the word,
and work your way up, in order to not waste
time looking at default constraints that would
just be contradicted closer to word?

