
© 2003 CSLI Publications

Ling 566
Oct 27, 2016

Lexical Types

© 2003 CSLI Publications

Overview

• Motivation for lexical hierarchy

• Default inheritance

• Tour of the lexeme hierarchy

• The Case Constraint

• pos vs. lexeme

• Reading Questions

© 2003 CSLI Publications

• We've streamlined our grammar rules...
• ...by stating some constraints as general principles

• ...and locating lots of information in the lexicon.

• Our lexical entries currently stipulate a lot of
information that is common across many entries and
should be stated only once.

• Examples?

• Ideally, particular lexical entries need only
give phonological form, the semantic
contribution, and any constraints truly
idiosyncratic to the lexical entry.

Motivation

© 2003 CSLI Publications

• Lexeme: An abstract proto-word which gives
rise to genuine words. We refer to lexemes by
their ‘dictionary form’, e.g. ‘the lexeme run’ or
‘the lexeme dog’.

•Word: A particular pairing of form and
meaning. Running and ran are different words

Lexemes and Words

© 2003 CSLI Publications

• Lexemes capture the similarities among run, runs,
running, and run.

• The lexical type hierarchy captures the similarities among
run, sleep, and laugh, among those and other verbs like
devour and hand, and among those and other words like
book.
Q: What do devour and book have in common?
A: The SHAC

• Lexical rules capture the similarities among runs, sleeps,
devours, hands,...

Lexical Types & Lexical Rules

© 2003 CSLI Publications

Q: Why do we have default inheritance?

A: Generalizations with exceptions are common:
• Most nouns in English aren't marked for CASE, but

pronouns are.
• Most verbs in English only distinguish two agreement

categories (3sing and non-3sing), but be distinguishes
more.
• Most prepositions in English are transitive, but here and

there are intransitive.
• Most nominal words in English are 3rd person, but some

(all of them pronouns) are 1st or 2nd person.
• Most proper nouns in English are singular, but some

(mountain range names, sports team names) are plural.

Default Inheritance

© 2003 CSLI Publications

Default Inheritance, Technicalities

If a type says
ARG-ST / < NP >,

and one of its
subtypes says
ARG-ST < >,

then the ARG-ST
value of instances of
the subtype is < >.

If a type says
ARG-ST < NP >,

and one of its
subtypes says
ARG-ST < >,

then this subtype can
have no instances,
since they would
have to satisfy
contradictory
constraints.

© 2003 CSLI Publications

• If a type says MOD / < S >, and one of its subtypes says
MOD <[SPR < NP>] >, then the ARG-ST value of
instances of the subtype is what?

Default Inheritance, More Technicalities

⎡

⎢

⎢

⎢

⎣

MOD

〈

⎡

⎢

⎢

⎣

HEAD / verb

SPR
〈

NP
〉

COMPS / ⟨ ⟩

⎤

⎥

⎥

⎦

〉

⎤

⎥

⎥

⎥

⎦

• That is, default constraints are ‘pushed down’

© 2003 CSLI Publications

Q: Can a grammar rule override a default
constraint on a word?

A: No. Defaults are all ‘cached out’ in the
lexicon.

• Words as used to build sentences have only
inviolable constraints.

Question on Default Inheritance

© 2003 CSLI Publications

Our Lexeme Hierarchy
synsem

[SYN, SEM]

lexeme
[ARG-ST]

infl-lxm

.

.

verb-lxm

siv-lxm piv-lxm tv-lxm

stv-lxm dtv-lxm ptv-lxm

cn-lxm

cntn-lxm massn-lxm

const-lxm

.

adj -lxm conj -lxm det-lxm predp-lxm argmkp-lxm

pn-lxm pron-lxm

expression

word
[ARG-ST]

phrase

© 2003 CSLI Publications

Functions of Types

• Stating what features are appropriate for
what categories

• Stating generalizations

• Constraints that apply to (almost) all
instances

• Generalizations about selection -- where
instances of that type can appear

11

© 2003 CSLI Publications

Every synsem has the features SYN and SEM
synsem

[SYN, SEM]

lexeme
[ARG-ST]

infl-lxm

.

.

verb-lxm

siv-lxm piv-lxm tv-lxm

stv-lxm dtv-lxm ptv-lxm

cn-lxm

cntn-lxm massn-lxm

const-lxm

.

adj -lxm conj -lxm det-lxm predp-lxm argmkp-lxm

pn-lxm pron-lxm

expression

word
[ARG-ST]

phrase

© 2003 CSLI Publications

No ARG-ST on phrase
synsem

[SYN, SEM]

lexeme
[ARG-ST]

infl-lxm

.

.

verb-lxm

siv-lxm piv-lxm tv-lxm

stv-lxm dtv-lxm ptv-lxm

cn-lxm

cntn-lxm massn-lxm

const-lxm

.

adj -lxm conj -lxm det-lxm predp-lxm argmkp-lxm

pn-lxm pron-lxm

expression

word
[ARG-ST]

phrase

© 2003 CSLI Publications

A Constraint on infl-lxm: the SHAC
synsem

[SYN, SEM]

lexeme
[ARG-ST]

infl-lxm

.

.

verb-lxm

siv-lxm piv-lxm tv-lxm

stv-lxm dtv-lxm ptv-lxm

cn-lxm

cntn-lxm massn-lxm

const-lxm

.

adj -lxm conj -lxm det-lxm predp-lxm argmkp-lxm

pn-lxm pron-lxm

expression

word
[ARG-ST]

phrase

© 2003 CSLI Publications

A Constraint on infl-lxm: the SHAC

infl-lxm :

⎡

⎢

⎣

SYN

⎡

⎢

⎣

VAL

[

SPR
〈

[AGR 1]
〉

]

HEAD [AGR 1]

⎤

⎥

⎦

⎤

⎥

⎦

© 2003 CSLI Publications

Constraints on cn-lxm
synsem

[SYN, SEM]

lexeme
[ARG-ST]

infl-lxm

.

.

verb-lxm

siv-lxm piv-lxm tv-lxm

stv-lxm dtv-lxm ptv-lxm

cn-lxm

cntn-lxm massn-lxm

const-lxm

.

adj -lxm conj -lxm det-lxm predp-lxm argmkp-lxm

pn-lxm pron-lxm

expression

word
[ARG-ST]

phrase

© 2003 CSLI Publications

Constraints on cn-lxm

cn-lxm :

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

SYN

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

HEAD

[

noun

AGR [PER 3rd]

]

VAL

⎡

⎣SPR ⟨

[

HEAD det

INDEX i

]

⟩

⎤

⎦

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

SEM

[

MODE / ref

INDEX i

]

ARG-ST ⟨X⟩ ⊕ /⟨ ⟩

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

© 2003 CSLI Publications

Formally Distinguishing Count vs. Mass Nouns
synsem

[SYN, SEM]

lexeme
[ARG-ST]

infl-lxm

.

.

verb-lxm

siv-lxm piv-lxm tv-lxm

stv-lxm dtv-lxm ptv-lxm

cn-lxm

cntn-lxm massn-lxm

const-lxm

.

adj -lxm conj -lxm det-lxm predp-lxm argmkp-lxm

pn-lxm pron-lxm

expression

word
[ARG-ST]

phrase

© 2003 CSLI Publications

Formally Distinguishing Count vs. Mass Nouns

cntn-lxm :

[

SYN

[

VAL
[

SPR ⟨ [COUNT +] ⟩
]

]

]

massn-lxm :

[

SYN

[

VAL
[

SPR ⟨ [COUNT −] ⟩
]

]

]

© 2003 CSLI Publications

Constraints on verb-lxm
synsem

[SYN, SEM]

lexeme
[ARG-ST]

infl-lxm

.

.

verb-lxm

siv-lxm piv-lxm tv-lxm

stv-lxm dtv-lxm ptv-lxm

cn-lxm

cntn-lxm massn-lxm

const-lxm

.

adj -lxm conj -lxm det-lxm predp-lxm argmkp-lxm

pn-lxm pron-lxm

expression

word
[ARG-ST]

phrase

© 2003 CSLI Publications

Constraints on verb-lxm

verb-lxm:

⎡

⎢

⎢

⎢

⎣

SYN
[

HEAD verb

]

SEM
[

MODE prop
]

ARG-ST / ⟨ NP, ... ⟩

⎤

⎥

⎥

⎥

⎦

© 2003 CSLI Publications

Subtypes of verb-lxm
verb-lxm

siv-lxm piv-lxm tv-lxm

stv-lxm dtv-lxm ptv-lxm

• verb-lxm: [ARG-ST / < NP, ... >]
• siv-lxm: [ARG-ST / < NP >]
• piv-lxm: [ARG-ST / < NP, PP >]
• tv-lxm: [ARG-ST / < NP, NP, ... >]

• stv-lxm: [ARG-ST / < NP, NP, >]
• dtv-lxm: [ARG-ST / < NP, NP, NP >]
• ptv-lxm: [ARG-ST / < NP, NP, PP >]

© 2003 CSLI Publications

Proper Nouns and Pronouns
synsem

[SYN, SEM]

lexeme
[ARG-ST]

infl-lxm

.

.

verb-lxm

siv-lxm piv-lxm tv-lxm

stv-lxm dtv-lxm ptv-lxm

cn-lxm

cntn-lxm massn-lxm

const-lxm

.

adj -lxm conj -lxm det-lxm predp-lxm argmkp-lxm

pn-lxm pron-lxm

expression

word
[ARG-ST]

phrase

© 2003 CSLI Publications

Proper Nouns and Pronouns

pn-lxm:

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

SYN

⎡

⎢

⎢

⎣

HEAD

⎡

⎢

⎢

⎣

noun

AGR

[

PER 3rd

NUM / sg

]

⎤

⎥

⎥

⎦

⎤

⎥

⎥

⎦

SEM
[

MODE ref
]

ARG-ST / ⟨ ⟩

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

pron-lxm:

⎡

⎢

⎢

⎢

⎣

SYN
[

HEAD noun
]

SEM
[

MODE / ref
]

ARG-ST ⟨ ⟩

⎤

⎥

⎥

⎥

⎦

© 2003 CSLI Publications

The Case Constraint

An outranked NP is [CASE acc].

• object of verb ✓

• second object of verb ✓

• object of argument-marking preposition ✓

• object of predicational preposition (✓)

© 2003 CSLI Publications

The Case Constraint, continued
An outranked NP is [CASE acc].

• Subjects of verbs

• Should we add a clause to cover nominative subjects?

• No.

We expect them to leave. (Chapter 12)

• Lexical rules for finite verbs will handle nominative subjects.

• Any other instances of case marking in English?

• Does it apply to case systems in other languages?

No: The Case Constraint is an English-specific constraint.

© 2003 CSLI Publications

Apparent redundancy

• Why do we need both the pos
subhierarchy and lexeme types?
• pos:
• Applies to words and phrases; models

relationship between then
• Constrains which features are

appropriate (no AUX on noun)
• lexeme:
• Generalizations about combinations of

constraints

© 2003 CSLI Publications

• Lexemes capture the similarities among run, runs,
running, and run.

• The lexical type hierarchy captures the similarities among
run, sleep, and laugh, among those and other verbs like
devour and hand, and among those and other words like
book.

• Lexical rules capture the similarities among runs, sleeps,
devours, hands,...

Lexical Types & Lexical Rules

© 2003 CSLI Publications

Overview

• Motivation for lexical hierarchy

• Default inheritance

• Tour of the lexeme hierarchy

• The Case Constraint

• pos vs. lexeme

• Reading Questions

© 2003 CSLI Publications

Reading Questions
• If verb-lxm is specified as inviolable [MODE

prop], how do we handle imperatives, which are
specified as [MODE dir] and presumably fall
under verb-lxm?

• Why is there a separate type for prepositional-
intransitive-verb-lexeme? How does it differ
from the strict-transitive lexeme since it takes one
complement?

• What's to be done with verbs that fit into more
than one lexeme subtype? Put the entry under
verb-lxm? Multiple entries?

30

© 2003 CSLI Publications

Reading Questions
• Why do we treat proper nouns as non-

inflecting? That about Keeping up with the
Joneses? It seems like the unifying feature of
proper nouns & pronouns is that they don't
take specifiers. Why not use that as the
distinction between types?

• It seems odd to me to classify pronoun
lexemes as type const-lxm. They're the only
things in English that take case, after all, and
unless we treat case as a derivational rule, that
would seem to mean they inflect.

31

© 2003 CSLI Publications

Reading Questions

• Also, I don't really understand the usage of X
in the lexeme hierarchy in (35). If verb-lxm
has an inviolable ARG-ST which begins with
NP, why do we write all of its descendants as
having ARG-STs beginning with X rather
than NP?

• Why is the type constraint for adj-lxm
written with an item called X in the SPR list,
but an item called NP beginning the ARG-ST
list? Shouldn't they match? (p. 244)

32

© 2003 CSLI Publications

Reading Questions

• What are some ways to read the slash
notation introduced in Chapter 8? Would
"unless otherwise specified" (e.g., "the list
of MOD is empty unless otherwise
specified...") be applicable in this case?

• In the feature structure for det-lxm at the
bottom of page 244, does the slash in the
value of SPR just mean SPR is not always
going to be an empty list for a determiner?

33

© 2003 CSLI Publications

Reading Questions

• I am confused by example (21) on page 235.
It seems to suggest that the value of: [TEL /
[1]] and [CHAIR [TEL / [1]] are different. If
they are distinct then why do they have the
same index [1]?

• On page 245 it says " 's is a determiner that
exceptionally takes an obligatory NP
specifier.", but exactly what in the constraints
on the type det-lxm specify that? Does this
have to do with the / notation after SPR?

34

© 2003 CSLI Publications

Reading Questions

• Why is MOD / < > specified in the feature
structure for lexeme on page 237? Would every
lexeme (or the subtypes of lexeme) be required to
specify MOD < > if this wasn't part of the
definition of lexeme? Why don't we also state
COMPS / < >? It seems to me like there will be
many lexemes that don't take complements, and it
would be easier to have the default be an empty
list.

35

© 2003 CSLI Publications

Reading Questions

• Is there a way to indicate that something
has, in fact, been overridden? I'm
wondering how far down these subtype
trees can go to reach the leaf level and if the
path is far it may be difficult to remember
what the supertype's defeasable values
were. In that case it might be nice to have
something to show that the leaf has
significantly changed from an antecedent
supertype.

36

© 2003 CSLI Publications

Reading Questions

• Regarding choosing when to put the '/'
before something--would we theoretically
leave it out until we come across an
examples that shows we require it? So
assume that nothing is defeasible until we
find a counterexample showing that it is?

• How can we determine whether a constraint
is defeasible or not? Is it simply to see if
there's any exception in real usage?

37

© 2003 CSLI Publications

Reading Questions

• Are there defeasible-constraint/exception
actions that preclude words from being
included in a lexical class for a given
language model, or could I hypothetically
define, say, transitive verbs as a subtype of
common nouns and then just have it override
pretty much every constraint imparted by the
common noun supertype? Is the only thing
stopping that from happening a matter of
smarter "engineering" decisions in
constructing a model?

38

© 2003 CSLI Publications

Reading Questions

• Is it ever possible for a subtype to "un-value"
a feature that one of its supertypes values?
e.g., if a lexical supertype defeasibly stated
that COMPS needs to be empty for all its
members, could a subtype make an exception
and change it not to say that COMPS
contains a single NP or whatever, but rather
to say that the subtype doesn't impart any
particular value for the COMPS list onto its
members? How would we represent that?

39

© 2003 CSLI Publications

Reading Questions

• Lexemes are useful for lexical entries but
won’t work in trees where the specific form
of the word must be represented, right?

• Why don't we just use morphemes instead
of lexemes?

• I am still unclear on the distinctions
between lexeme, lexical sequence, and
lexical entry. Looking forward to the
discussion of them.

40

© 2003 CSLI Publications

Reading Questions

© 2003 CSLI Publications

Reading Questions
• Assuming that the lexical entry is what gets

"stored" in the lexicon -- say, encoded in the
neurons, just for concreteness -- does the type
of the lexeme get stored with it? For example
the lexical entry for devour is of type word,
but does the type stv-lxm form part of its
lexical entry somewhere as well?

• The descriptions of lexemes feels a bit like
inheritance in OOP. Is it possible for a lexeme
to have multiple inheritance? Is there any time
this might be useful?

42

© 2003 CSLI Publications

Reading Questions

• Do we still need lexemes/a lexical type
hierarchy in isolating languages?

• Where do the lexical rules and the lexeme
types belong, to the grammar rules or to the
lexicon?

43

© 2003 CSLI Publications

Reading Questions

• Are there applications where it helps to label
text with lexeme classes before processing it,
similar to the way POS tags are often useful
features?

• Are fronted arguments still outranked by the
same things? On the table, I put the book.

• I'd like some clarification on argument making
and predicational prepositions. Is the former
equivalent with PP as complements and the
latter PP as modifiers?

44

