
© 2003 CSLI Publications

Ling 566
Oct 26, 2017

Lexical Types

© 2003 CSLI Publications

Overview

• Motivation for lexical hierarchy

• Default inheritance

• Tour of the lexeme hierarchy

• The Case Constraint

• pos vs. lexeme

• Reading Questions

© 2003 CSLI Publications

• We've streamlined our grammar rules...
• ...by stating some constraints as general principles

• ...and locating lots of information in the lexicon.

• Our lexical entries currently stipulate a lot of
information that is common across many entries and
should be stated only once.

• Examples?

• Ideally, particular lexical entries need only
give phonological form, the semantic
contribution, and any constraints truly
idiosyncratic to the lexical entry.

Motivation

© 2003 CSLI Publications

• Lexeme: An abstract proto-word which gives
rise to genuine words. We refer to lexemes by
their ‘dictionary form’, e.g. ‘the lexeme run’ or
‘the lexeme dog’.

•Word: A particular pairing of form and
meaning. Running and ran are different words

Lexemes and Words

© 2003 CSLI Publications

• Lexemes capture the similarities among run, runs,
running, and run.

• The lexical type hierarchy captures the similarities among
run, sleep, and laugh, among those and other verbs like
devour and hand, and among those and other words like
book.
Q: What do devour and book have in common?
A: The SHAC

• Lexical rules capture the similarities among runs, sleeps,
devours, hands,...

Lexical Types & Lexical Rules

© 2003 CSLI Publications

Q: Why do we have default inheritance?

A: Generalizations with exceptions are common:
• Most nouns in English aren't marked for CASE, but

pronouns are.
• Most verbs in English only distinguish two agreement

categories (3sing and non-3sing), but be distinguishes
more.
• Most prepositions in English are transitive, but here and

there are intransitive.
• Most nominal words in English are 3rd person, but some

(all of them pronouns) are 1st or 2nd person.
• Most proper nouns in English are singular, but some

(mountain range names, sports team names) are plural.

Default Inheritance

© 2003 CSLI Publications

Default Inheritance, Technicalities

If a type says
ARG-ST / < NP >,

and one of its
subtypes says
ARG-ST < >,

then the ARG-ST
value of instances of
the subtype is < >.

If a type says
ARG-ST < NP >,

and one of its
subtypes says
ARG-ST < >,

then this subtype can
have no instances,
since they would
have to satisfy
contradictory
constraints.

© 2003 CSLI Publications

• If a type says MOD / < S >, and one of its subtypes says
MOD <[SPR < NP>] >, then the SPR value of instances
of the subtype is what?

Default Inheritance, More Technicalities

⎡

⎢

⎢

⎢

⎣

MOD

〈

⎡

⎢

⎢

⎣

HEAD / verb

SPR
〈

NP
〉

COMPS / ⟨ ⟩

⎤

⎥

⎥

⎦

〉

⎤

⎥

⎥

⎥

⎦

• That is, default constraints are ‘pushed down’

© 2003 CSLI Publications

Q: Can a grammar rule override a default
constraint on a word?

A: No. Defaults are all ‘cached out’ in the
lexicon.

• Words as used to build sentences have only
inviolable constraints.

Question on Default Inheritance

© 2003 CSLI Publications

Our Lexeme Hierarchy
synsem

[SYN, SEM]

lexeme
[ARG-ST]

infl-lxm

.

.

verb-lxm

siv-lxm piv-lxm tv-lxm

stv-lxm dtv-lxm ptv-lxm

cn-lxm

cntn-lxm massn-lxm

const-lxm

.

adj -lxm conj -lxm det-lxm predp-lxm argmkp-lxm

pn-lxm pron-lxm

expression

word
[ARG-ST]

phrase

© 2003 CSLI Publications

Functions of Types

• Stating what features are appropriate for
what categories

• Stating generalizations

• Constraints that apply to (almost) all
instances

• Generalizations about selection -- where
instances of that type can appear

11

© 2003 CSLI Publications

Every synsem has the features SYN and SEM
synsem

[SYN, SEM]

lexeme
[ARG-ST]

infl-lxm

.

.

verb-lxm

siv-lxm piv-lxm tv-lxm

stv-lxm dtv-lxm ptv-lxm

cn-lxm

cntn-lxm massn-lxm

const-lxm

.

adj -lxm conj -lxm det-lxm predp-lxm argmkp-lxm

pn-lxm pron-lxm

expression

word
[ARG-ST]

phrase

© 2003 CSLI Publications

No ARG-ST on phrase
synsem

[SYN, SEM]

lexeme
[ARG-ST]

infl-lxm

.

.

verb-lxm

siv-lxm piv-lxm tv-lxm

stv-lxm dtv-lxm ptv-lxm

cn-lxm

cntn-lxm massn-lxm

const-lxm

.

adj -lxm conj -lxm det-lxm predp-lxm argmkp-lxm

pn-lxm pron-lxm

expression

word
[ARG-ST]

phrase

© 2003 CSLI Publications

A Constraint on infl-lxm: the SHAC
synsem

[SYN, SEM]

lexeme
[ARG-ST]

infl-lxm

.

.

verb-lxm

siv-lxm piv-lxm tv-lxm

stv-lxm dtv-lxm ptv-lxm

cn-lxm

cntn-lxm massn-lxm

const-lxm

.

adj -lxm conj -lxm det-lxm predp-lxm argmkp-lxm

pn-lxm pron-lxm

expression

word
[ARG-ST]

phrase

© 2003 CSLI Publications

A Constraint on infl-lxm: the SHAC

infl-lxm :

⎡

⎢

⎣

SYN

⎡

⎢

⎣

VAL

[

SPR
〈

[AGR 1]
〉

]

HEAD [AGR 1]

⎤

⎥

⎦

⎤

⎥

⎦

© 2003 CSLI Publications

Constraints on cn-lxm
synsem

[SYN, SEM]

lexeme
[ARG-ST]

infl-lxm

.

.

verb-lxm

siv-lxm piv-lxm tv-lxm

stv-lxm dtv-lxm ptv-lxm

cn-lxm

cntn-lxm massn-lxm

const-lxm

.

adj -lxm conj -lxm det-lxm predp-lxm argmkp-lxm

pn-lxm pron-lxm

expression

word
[ARG-ST]

phrase

© 2003 CSLI Publications

Constraints on cn-lxm

cn-lxm :

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

SYN

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

HEAD

[

noun

AGR [PER 3rd]

]

VAL

⎡

⎣SPR ⟨

[

HEAD det

INDEX i

]

⟩

⎤

⎦

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

SEM

[

MODE / ref

INDEX i

]

ARG-ST ⟨X⟩ ⊕ /⟨ ⟩

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

© 2003 CSLI Publications

Formally Distinguishing Count vs. Mass Nouns
synsem

[SYN, SEM]

lexeme
[ARG-ST]

infl-lxm

.

.

verb-lxm

siv-lxm piv-lxm tv-lxm

stv-lxm dtv-lxm ptv-lxm

cn-lxm

cntn-lxm massn-lxm

const-lxm

.

adj -lxm conj -lxm det-lxm predp-lxm argmkp-lxm

pn-lxm pron-lxm

expression

word
[ARG-ST]

phrase

© 2003 CSLI Publications

Formally Distinguishing Count vs. Mass Nouns

cntn-lxm :

[

SYN

[

VAL
[

SPR ⟨ [COUNT +] ⟩
]

]

]

massn-lxm :

[

SYN

[

VAL
[

SPR ⟨ [COUNT −] ⟩
]

]

]

© 2003 CSLI Publications

Constraints on verb-lxm
synsem

[SYN, SEM]

lexeme
[ARG-ST]

infl-lxm

.

.

verb-lxm

siv-lxm piv-lxm tv-lxm

stv-lxm dtv-lxm ptv-lxm

cn-lxm

cntn-lxm massn-lxm

const-lxm

.

adj -lxm conj -lxm det-lxm predp-lxm argmkp-lxm

pn-lxm pron-lxm

expression

word
[ARG-ST]

phrase

© 2003 CSLI Publications

Constraints on verb-lxm

verb-lxm:

⎡

⎢

⎢

⎢

⎣

SYN
[

HEAD verb

]

SEM
[

MODE prop
]

ARG-ST / ⟨ NP, ... ⟩

⎤

⎥

⎥

⎥

⎦

© 2003 CSLI Publications

Subtypes of verb-lxm
verb-lxm

siv-lxm piv-lxm tv-lxm

stv-lxm dtv-lxm ptv-lxm

• verb-lxm: [ARG-ST / < NP, ... >]
• siv-lxm: [ARG-ST / < NP >]
• piv-lxm: [ARG-ST / < NP, PP >]
• tv-lxm: [ARG-ST / < NP, NP, ... >]

• stv-lxm: [ARG-ST / < NP, NP, >]
• dtv-lxm: [ARG-ST / < NP, NP, NP >]
• ptv-lxm: [ARG-ST / < NP, NP, PP >]

© 2003 CSLI Publications

Proper Nouns and Pronouns
synsem

[SYN, SEM]

lexeme
[ARG-ST]

infl-lxm

.

.

verb-lxm

siv-lxm piv-lxm tv-lxm

stv-lxm dtv-lxm ptv-lxm

cn-lxm

cntn-lxm massn-lxm

const-lxm

.

adj -lxm conj -lxm det-lxm predp-lxm argmkp-lxm

pn-lxm pron-lxm

expression

word
[ARG-ST]

phrase

© 2003 CSLI Publications

Proper Nouns and Pronouns

pn-lxm:

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

SYN

⎡

⎢

⎢

⎣

HEAD

⎡

⎢

⎢

⎣

noun

AGR

[

PER 3rd

NUM / sg

]

⎤

⎥

⎥

⎦

⎤

⎥

⎥

⎦

SEM
[

MODE ref
]

ARG-ST / ⟨ ⟩

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

pron-lxm:

⎡

⎢

⎢

⎢

⎣

SYN
[

HEAD noun
]

SEM
[

MODE / ref
]

ARG-ST ⟨ ⟩

⎤

⎥

⎥

⎥

⎦

© 2003 CSLI Publications

The Case Constraint

An outranked NP is [CASE acc].

• object of verb ✓

• second object of verb ✓

• object of argument-marking preposition ✓

• object of predicational preposition (✓)

© 2003 CSLI Publications

The Case Constraint, continued
An outranked NP is [CASE acc].

• Subjects of verbs

• Should we add a clause to cover nominative subjects?

• No.

We expect them to leave. (Chapter 12)

• Lexical rules for finite verbs will handle nominative subjects.

• Any other instances of case marking in English?

• Does it apply to case systems in other languages?

No: The Case Constraint is an English-specific constraint.

© 2003 CSLI Publications

Apparent redundancy

• Why do we need both the pos
subhierarchy and lexeme types?
• pos:
• Applies to words and phrases; models

relationship between then
• Constrains which features are

appropriate (no AUX on noun)
• lexeme:
• Generalizations about combinations of

constraints

© 2003 CSLI Publications

• Lexemes capture the similarities among run, runs,
running, and run.

• The lexical type hierarchy captures the similarities among
run, sleep, and laugh, among those and other verbs like
devour and hand, and among those and other words like
book.

• Lexical rules capture the similarities among runs, sleeps,
devours, hands,...

Lexical Types & Lexical Rules

© 2003 CSLI Publications

Overview

• Motivation for lexical hierarchy

• Default inheritance

• Tour of the lexeme hierarchy

• The Case Constraint

• pos vs. lexeme

• Reading Questions

© 2003 CSLI Publications

Reading Questions

• What is the difference between lexical
entries and lexical sequences?

• How does "family of lexical sequences" fit
in?

• How do lexical sequences relate to word
structures?

© 2003 CSLI Publications

Reading Questions
• Which layer in our system hierarchy should the

lexeme level be put in? Or is it something that is
independent of the hierarchy?

• P.229: lexeme is the sister branch of expression,
and that word & phrase are daughter branches of
expression. If a lexeme can be thought of as an
abstract proto-word, why isn’t lexeme the mother
branch of word?

• How is it that those two items (lexeme and
expression) can have equal "hierarchy" or does
the tree not carry that sort of meaning with it?

© 2003 CSLI Publications

Reading Questions

• How does the concept of a common lexeme
relate to stemming and lemmatization,
terms used in the information retrieval
domain to describe the normalization of
words parsed from text during indexing ?
Would the common lexeme be more like
stemming by reduction or lemmatization by
expansion into inflected forms?

© 2003 CSLI Publications

Reading Questions

• What is the role of phonology within this
notion of the lexicon?

• Does the notion of lexeme correspond to a
verb that is in base form?

© 2003 CSLI Publications

Reading Questions

• For the lexeme value, when a word can
have different lexeme values in different
context, for example, some verbs can be
both transitive and intransitive, do we
assign values according to the context? Or
do we under specify?

• What is the point of keeping type word in
our expressions list, if having the lexemes is
so much more powerful?

© 2003 CSLI Publications

Reading Questions

• Why did we have to add the lexeme type,
and why we didn't just make the pos type as
complex as the lexeme type described? I
understand the distinction between the two,
but why do we need both?

© 2003 CSLI Publications

Reading Questions
• How does overriding a defeasible constraint

compare to fully specifying an underspecified
feature?

• Why bother stating which constraints are
defeasible rather than assuming they all are?

• How do we know which lexical entries override
defeasible constraints? In other words, when do
we know when we are dealing with idiosyncratic
lexical entries or classes of idiosyncratic
expressions? Do we use our own judgements of
acceptability?

© 2003 CSLI Publications

Reading Questions

• In (25) I don’t understand why only MOD
is stated especially since it is a defeasible
constraint. Why aren’t the other defeasible
constraints also listed?

© 2003 CSLI Publications

Reading Questions

• Type constraints for predp-lxm: why is SPR
not empty and why can MOD also be
included in this constraint? Where are Y and
Z being defined from?

© 2003 CSLI Publications

Reading Questions

• Is overriding with defeasible constraints
analogous to what we saw with the Valence
Principle?

• Why do we go through the process of
separating out inflected lexemes from
uninflected lexemes when we could use a
default?

