
© 2003 CSLI Publications

Ling 566
Oct 29, 2020

Lexical Types

© 2003 CSLI Publications

Overview

• Motivation for lexical hierarchy

• Default inheritance

• Tour of the lexeme hierarchy

• The Case Constraint

• pos vs. lexeme

• Reading Questions

© 2003 CSLI Publications

• We've streamlined our grammar rules...
• ...by stating some constraints as general principles

• ...and locating lots of information in the lexicon.

• Our lexical entries currently stipulate a lot of
information that is common across many entries and
should be stated only once.

• Examples?

• Ideally, particular lexical entries need only
give phonological form, the semantic
contribution, and any constraints truly
idiosyncratic to the lexical entry.

Motivation

© 2003 CSLI Publications

• Lexeme: An abstract proto-word which gives
rise to genuine words. We refer to lexemes by
their ‘dictionary form’, e.g. ‘the lexeme run’ or
‘the lexeme dog’.

• Word: A particular pairing of form and
meaning. Running and ran are different words

Lexemes and Words

Q: Is lexeme the same as lemma?

© 2003 CSLI Publications

• Lexemes capture the similarities among run, runs,
running, and run.

• The lexical type hierarchy captures the similarities among
run, sleep, and laugh, among those and other verbs like
devour and hand, and among those and other words like
book.
Q: What do devour and book have in common?
A: The SHAC

• Lexical rules capture the similarities among runs, sleeps,
devours, hands,...

Lexical Types & Lexical Rules

Poll!

© 2003 CSLI Publications

Q: Why do we have default inheritance?

A: Generalizations with exceptions are common:
• Most nouns in English aren't marked for CASE, but

pronouns are.
• Most verbs in English only distinguish two agreement

categories (3sing and non-3sing), but be distinguishes
more.

• Most prepositions in English are transitive, but here and
there are intransitive.

• Most nominal words in English are 3rd person, but some
(all of them pronouns) are 1st or 2nd person.

• Most proper nouns in English are singular, but some
(mountain range names, sports team names) are plural.

Default Inheritance

© 2003 CSLI Publications

Default Inheritance, Technicalities

If a type says
ARG-ST / < NP >,

and one of its
subtypes says
ARG-ST < >,

then the ARG-ST
value of instances of
the subtype is < >.

If a type says
ARG-ST < NP >,

and one of its
subtypes says
ARG-ST < >,

then this subtype can
have no instances,
since they would
have to satisfy
contradictory
constraints.

© 2003 CSLI Publications

• If a type says MOD / < S >, and one of its subtypes says
MOD <[SPR < NP>] >, then the MOD value of
instances of the subtype is what?

Default Inheritance, More Technicalities











MOD

〈









HEAD / verb

SPR
〈

NP
〉

COMPS / 〈 〉









〉











• That is, default constraints are ‘pushed down’

© 2003 CSLI Publications

Q: Can a grammar rule override a default
constraint on a word?

A: No. Defaults are all ‘cached out’ in the
lexicon.

• Words as used to build sentences have only
inviolable constraints.

Question on Default Inheritance

© 2003 CSLI Publications

Our Lexeme Hierarchy
synsem

[SYN, SEM]

lexeme
[ARG-ST]

infl-lxm

.

.

verb-lxm

siv-lxm piv-lxm tv-lxm

stv-lxm dtv-lxm ptv-lxm

cn-lxm

cntn-lxm massn-lxm

const-lxm

.

adj -lxm conj -lxm det-lxm predp-lxm argmkp-lxm

pn-lxm pron-lxm

expression

word
[ARG-ST]

phrase

© 2003 CSLI Publications

Functions of Types

• Stating what features are appropriate for
what categories

• Stating generalizations

• Constraints that apply to (almost) all
instances

• Generalizations about selection -- where
instances of that type can appear

11

© 2003 CSLI Publications

Every synsem has the features SYN and SEM
synsem

[SYN, SEM]

lexeme
[ARG-ST]

infl-lxm

.

.

verb-lxm

siv-lxm piv-lxm tv-lxm

stv-lxm dtv-lxm ptv-lxm

cn-lxm

cntn-lxm massn-lxm

const-lxm

.

adj -lxm conj -lxm det-lxm predp-lxm argmkp-lxm

pn-lxm pron-lxm

expression

word
[ARG-ST]

phrase

© 2003 CSLI Publications

No ARG-ST on phrase
synsem

[SYN, SEM]

lexeme
[ARG-ST]

infl-lxm

.

.

verb-lxm

siv-lxm piv-lxm tv-lxm

stv-lxm dtv-lxm ptv-lxm

cn-lxm

cntn-lxm massn-lxm

const-lxm

.

adj -lxm conj -lxm det-lxm predp-lxm argmkp-lxm

pn-lxm pron-lxm

expression

word
[ARG-ST]

phrase

© 2003 CSLI Publications

A Constraint on infl-lxm: the SHAC
synsem

[SYN, SEM]

lexeme
[ARG-ST]

infl-lxm

.

.

verb-lxm

siv-lxm piv-lxm tv-lxm

stv-lxm dtv-lxm ptv-lxm

cn-lxm

cntn-lxm massn-lxm

const-lxm

.

adj -lxm conj -lxm det-lxm predp-lxm argmkp-lxm

pn-lxm pron-lxm

expression

word
[ARG-ST]

phrase

© 2003 CSLI Publications

A Constraint on infl-lxm: the SHAC

infl-lxm :







SYN







VAL

[

SPR
〈

[AGR 1]
〉

]

HEAD [AGR 1]













© 2003 CSLI Publications

Constraints on cn-lxm
synsem

[SYN, SEM]

lexeme
[ARG-ST]

infl-lxm

.

.

verb-lxm

siv-lxm piv-lxm tv-lxm

stv-lxm dtv-lxm ptv-lxm

cn-lxm

cntn-lxm massn-lxm

const-lxm

.

adj -lxm conj -lxm det-lxm predp-lxm argmkp-lxm

pn-lxm pron-lxm

expression

word
[ARG-ST]

phrase

© 2003 CSLI Publications

Constraints on cn-lxm

cn-lxm :

































SYN

















HEAD

[

noun

AGR [PER 3rd]

]

VAL



SPR 〈

[

HEAD det

INDEX i

]

〉





















SEM

[

MODE / ref

INDEX i

]

ARG-ST 〈X〉 ⊕ /〈 〉

































© 2003 CSLI Publications

Formally Distinguishing Count vs. Mass Nouns
synsem

[SYN, SEM]

lexeme
[ARG-ST]

infl-lxm

.

.

verb-lxm

siv-lxm piv-lxm tv-lxm

stv-lxm dtv-lxm ptv-lxm

cn-lxm

cntn-lxm massn-lxm

const-lxm

.

adj -lxm conj -lxm det-lxm predp-lxm argmkp-lxm

pn-lxm pron-lxm

expression

word
[ARG-ST]

phrase

© 2003 CSLI Publications

Formally Distinguishing Count vs. Mass Nouns

cntn-lxm :

[

SYN

[

VAL
[

SPR 〈 [COUNT +] 〉
]

]

]

massn-lxm :

[

SYN

[

VAL
[

SPR 〈 [COUNT −] 〉
]

]

]

© 2003 CSLI Publications

Constraints on verb-lxm
synsem

[SYN, SEM]

lexeme
[ARG-ST]

infl-lxm

.

.

verb-lxm

siv-lxm piv-lxm tv-lxm

stv-lxm dtv-lxm ptv-lxm

cn-lxm

cntn-lxm massn-lxm

const-lxm

.

adj -lxm conj -lxm det-lxm predp-lxm argmkp-lxm

pn-lxm pron-lxm

expression

word
[ARG-ST]

phrase

© 2003 CSLI Publications

Constraints on verb-lxm

verb-lxm:











SYN
[

HEAD verb

]

SEM
[

MODE prop
]

ARG-ST / 〈 NP, ... 〉











© 2003 CSLI Publications

Subtypes of verb-lxm
verb-lxm

siv-lxm piv-lxm tv-lxm

stv-lxm dtv-lxm ptv-lxm

• verb-lxm: [ARG-ST < NP, ... >]
• siv-lxm: [ARG-ST < NP >]
• piv-lxm: [ARG-ST < NP, PP >]
• tv-lxm: [ARG-ST < NP, NP, ... >]

• stv-lxm: [ARG-ST < NP, NP >]
• dtv-lxm: [ARG-ST < NP, NP, NP >]
• ptv-lxm: [ARG-ST < NP, NP, PP >]

© 2003 CSLI Publications

Proper Nouns and Pronouns
synsem

[SYN, SEM]

lexeme
[ARG-ST]

infl-lxm

.

.

verb-lxm

siv-lxm piv-lxm tv-lxm

stv-lxm dtv-lxm ptv-lxm

cn-lxm

cntn-lxm massn-lxm

const-lxm

.

adj -lxm conj -lxm det-lxm predp-lxm argmkp-lxm

pn-lxm pron-lxm

expression

word
[ARG-ST]

phrase

© 2003 CSLI Publications

Proper Nouns and Pronouns

pn-lxm:























SYN









HEAD









noun

AGR

[

PER 3rd

NUM / sg

]

















SEM
[

MODE ref
]

ARG-ST / 〈 〉























pron-lxm:











SYN
[

HEAD noun
]

SEM
[

MODE / ref
]

ARG-ST 〈 〉











© 2003 CSLI Publications

The Case Constraint

An outranked NP is [CASE acc].

• object of verb ✓

• second object of verb ✓

• object of argument-marking preposition ✓

• object of predicational preposition (✓)

© 2003 CSLI Publications

The Case Constraint, continued
An outranked NP is [CASE acc].

• Subjects of verbs

• Should we add a clause to cover nominative subjects?

• No.

We expect them to leave. (Chapter 12)

• Lexical rules for finite verbs will handle nominative subjects.

• Any other instances of case marking in English?

• Does it apply to case systems in other languages?

No: The Case Constraint is an English-specific constraint.

© 2003 CSLI Publications

Apparent redundancy

• Why do we need both the pos
subhierarchy and lexeme types?

• pos:
• Applies to words and phrases; models

relationship between then
• Constrains which features are

appropriate (no AUX on noun)
• lexeme:
• Generalizations about combinations of

constraints

© 2003 CSLI Publications

• Lexemes capture the similarities among run, runs,
running, and run.

• The lexical type hierarchy captures the similarities among
run, sleep, and laugh, among those and other verbs like
devour and hand, and among those and other words like
book.

• Lexical rules capture the similarities among runs, sleeps,
devours, hands,...

Lexical Types & Lexical Rules

Poll!

© 2003 CSLI Publications

Overview

• Motivation for lexical hierarchy

• Default inheritance

• Tour of the lexeme hierarchy

• The Case Constraint

• pos vs. lexeme

• Reading Questions

© 2003 CSLI Publications

HW4 tips

• Ch 7 Problem 1:

• Not grading you on the judgments, but on
the sentences constructed and matching
classification to the judgments

• Be sure to keep the same verb +
preposition pair

• Ch 8 grammar summary is in Ch 9

© 2003 CSLI Publications

Reading Questions
• Notation question. On p.237 we have example (24)

which has COMPS /<> and (25) which has MOD /<>,
which I understand to mean it's empty by default but
can possible have arguments. In this case, are we using /
<> instead of an optional flag like (NP) to keep the
definition general? If so couldn't we have something
like (X) as just an optional arg or list of arg in COMPS
or MOD?

• Is it safe to say that “inviolable constraints” are all other
constraints that are NOT inherited from the supertype?
(because we are allowing these to override the default/
defensible ones, it feels a little wild to me to allow
basically anything else to be inviolable)

© 2003 CSLI Publications

Reading Questions

• Why do we have "/" representing two different
things? In the textbook, it said that "/" can be used
to indicate that a certain specification is defeasible
but it can also be used to indicate that two
features are identical by default. Why not have
two different symbols?

• Can we override a defeasible constraint to make it
underspecified? If so, how is this notated?

© 2003 CSLI Publications

Reading Questions

• p. 243 states that when predicational prepositions
appear as complements of verbs (as in I wrapped
the blanket around me), non-empty MOD is
irrelevant. Does this mean that we can just say
[MOD <>] for the structure of 'around' in this
particular sentence? Otherwise, should we say
[MOD / <>] following the default from its
lexeme?

© 2003 CSLI Publications

Reading Questions

• When developing lexeme categories/
subcategories/subsubcategories/etc, what sorts of
heuristics do linguistics use to draw the line
between what warrants a new subcategory versus
what are considered exceptions that should go
onto lexical entries?

© 2003 CSLI Publications

Reading Questions
• Why is the ARG-ST list written on its own level,

outside of SYN or SEM? Does it fall into neither of
those categories, or both?

• Is there a reason that in (32) on page 239 we can't
have the same DP entry in both the SPR and ARG-
ST Lists?

• In (30) on page 239, constraints are given for count
nouns and mass nouns to take COUNT+ and
COUNT- determiners. Is there a reason that these
types of constraints are defined in ARG-ST rather
than in SPR/COMPS? Is there a preference for one
or the other?

© 2003 CSLI Publications

Reading Questions

• On p. 242, why do we use <X, Y, Z> for the
ARG-ST list on the lexical entry of give in (38),
but we use <NP, NP, NP> as the ARG-ST list for
the lexical sequence in (39)? Why not use <NP,
NP, NP> for both?

© 2003 CSLI Publications

Reading Questions

• To account for verbs which take PPs headed by
certain prepositions, will we simply be able to add
subtypes of piv-lxm and ptv-lxm that specify
which preposition or set of prepositions they take
in ARG-ST?

• How do optionally transitive verbs like “eat” fit
into the new verb-lxm class? It doesn’t seem to fit
into any of the subclasses - do we need a new
subclass, or to make the complement on stv-lxm
defeasible, or something else?

© 2003 CSLI Publications

Reading Questions

• When does a family of lexical sequences become
a lexeme? Do lexemes have to be "leaves" of the
*-lxm subtypes?

• Why are there infinitely many lexical sequences
that satisfy the lexical entry in (31)? And why
does (32) represent a family of sequences?

• How would lexemes be reflected in parse trees
(such as what we have done in HWs)?

© 2003 CSLI Publications

Reading Questions

• What is the motivation for separating lexemes and
words as separate entities. Is it that a lexical entry
like (38) for give would encompass a family of
lexical sequences which would include things like
give, gives, and given? Or would gives and given
still be separate from the lexical entry for give?

• What is the difference between inflection and
lexical rules?

© 2003 CSLI Publications

Reading Questions

• Is it possible to use lexeme constraints to
constraint honorific speech patterns in languages
such as Japanese, where three different types of
honorific speech require different kinds of words?

• How does the lexeme paradigm with defeasible
constraints generalize to other languages? Are
there examples of this paradigm faltering?

© 2003 CSLI Publications

Reading Questions

• Does the development of HPSG grammar in this
book reflect the development of HPSG in the real
world (for example, the introduction of
Lexemes)? Or is this just for learning purposes?

