Lexical Types
Overview

• Motivation for lexical hierarchy
• Default inheritance
• Tour of the lexeme hierarchy
• The Case Constraint
• pos vs. lexeme
• Guest appearance by Will
Motivation

• We've streamlined our grammar rules...
 • ...by stating some constraints as general principles
 • ...and locating lots of information in the lexicon.
 • Our lexical entries currently stipulate a lot of information that is common across many entries and should be stated only once.

• Examples?

• Ideally, particular lexical entries need only give phonological form, the semantic contribution, and any constraints truly idiosyncratic to the lexical entry.
Lexemes and Words

- **Lexeme**: An abstract proto-word which gives rise to genuine words. We refer to lexemes by their ‘dictionary form’, e.g. ‘the lexeme *run*’ or ‘the lexeme *dog*’.

- **Word**: A particular pairing of form and meaning. *Running* and *ran* are different words.
Lexical Types & Lexical Rules

- Lexemes capture the similarities among run, runs, running, and run.

- The lexical type hierarchy captures the similarities among run, sleep, and laugh, among those and other verbs like devour and hand, and among those and other words like book.

Q: What do devour and book have in common?
A: The SHAC

- Lexical rules capture the similarities among runs, sleeps, devours, hands,
Q: Why do we have default inheritance?

A: Generalizations with exceptions are common:

- Most nouns in English aren't marked for CASE, but pronouns are.
- Most verbs in English only distinguish two agreement categories (3sing and non-3sing), but be distinguishes more.
- Most prepositions in English are transitive, but here and there are intransitive.
- Most nominal words in English are 3rd person, but some (all of them pronouns) are 1st or 2nd person.
- Most proper nouns in English are singular, but some (mountain range names, sports team names) are plural.
Default Inheritance, Technicalities

If a type says \(\text{ARG-ST} / < \text{NP} > \), and one of its subtypes says \(\text{ARG-ST} < > \), then the ARG-ST value of instances of the subtype is \(< > \).

If a type says \(\text{ARG-ST} < \text{NP} > \), and one of its subtypes says \(\text{ARG-ST} < > \), then this subtype can have no instances, since they would have to satisfy contradictory constraints.
Default Inheritance, More Technicalities

• If a type says MOD / < S >,
 and one of its subtypes says MOD <[SPR < NP>] >,
 then the ARG-ST value of instances of the subtype is

\[
\begin{align*}
\text{MOD} & \begin{cases} \\
\text{HEAD} & \text{/ verb} \\
\text{SPR} & \langle \text{NP} \rangle \\
\text{COMPS} & \langle \rangle \\
\end{cases}
\end{align*}
\]

• That is, default constraints are ‘pushed down’
Question on Default Inheritance

Q: Can a grammar rule override a default constraint on a word?

A: No. Defaults are all ‘cached out’ in the lexicon.

- Words as used to build sentences have only inviolable constraints.
Our Lexeme Hierarchy

lexeme
[ARG-ST]

expression

word
[ARG-ST]

phrase

synsem
[SYN, SEM]

infl-lxm

const-lxm

pn-lxm

pron-lxm

adj-lxm

conj-lxm

det-lxm

predp-lxm

argmkp-lxm

verb-lxm

cn-lxm

siv-lxm

piv-lxm

tv-lxm

cntn-lxm

massn-lxm

stv-lxm

dtr-lxm

ptv-lxm
Functions of Types

• Stating what features are appropriate for what categories

• Stating generalizations

 • Constraints that apply to (almost) all instances

 • Generalizations about selection -- where instances of that type can appear
Every synsem has the features SYN and SEM
No ARG-ST on phrase
A Constraint on *infl-lxm*: the SHAC
A Constraint on \(\text{infl-}lxm: \) the SHAC

\[
\text{infl-}lxm: \begin{bmatrix}
\text{SYN} \\
\text{VAL} \\
\text{HEAD}
\end{bmatrix}
\begin{bmatrix}
\text{SPR} \\
\langle \text{AGR } 1 \rangle
\end{bmatrix}
\begin{bmatrix}
\text{AGR} \\
1
\end{bmatrix}
\]
Constraints on cn-lxm
Constraints on cn-lxm

cn-lxm:

- **SYN**
 - HEAD
 - VAL
 - SPR

- **SEM**
 - MODE
 - INDEX

- **ARG-ST**
 - $\langle X \rangle \oplus / \langle \rangle$
Formally Distinguishing Count vs. Mass Nouns

![Diagram of linguistic structure with nodes and arrows indicating relationships between lexical and syntactic categories.]
Formally Distinguishing Count vs. Mass Nouns

cntn-lxm : \[\text{SYN} \ [\text{VAL} \ [\text{SPR} \ (\text{COUNT } + \text{])}]\]

massn-lxm : \[\text{SYN} \ [\text{VAL} \ [\text{SPR} \ (\text{COUNT } - \text{])}]\]
Constraints on \textit{verb-lxm}
Constraints on *verb-lxm*

\[
\begin{array}{c}
verb-lxm: \\
\begin{bmatrix}
SYN & [\text{HEAD} \ \text{verb}] \\
SEM & [\text{MODE} \ \text{prop}] \\
\text{ARG-ST} & \langle \text{NP}, \ldots \rangle
\end{bmatrix}
\end{array}
\]
Subtypes of *verb-lxm*

- **verb-lxm**: \([\text{ARG-ST} / \langle \text{NP}, ... \rangle]\)
- **siv-lxm**: \([\text{ARG-ST} / \langle \text{NP} \rangle]\)
- **piv-lxm**: \([\text{ARG-ST} / \langle \text{NP}, \text{PP} \rangle]\)
- **tv-lxm**: \([\text{ARG-ST} / \langle \text{NP}, \text{NP}, ... \rangle]\)
 - **stv-lxm**: \([\text{ARG-ST} / \langle \text{NP}, \text{NP}, \rangle]\)
 - **dtv-lxm**: \([\text{ARG-ST} / \langle \text{NP}, \text{NP}, \text{NP} \rangle]\)
 - **ptv-lxm**: \([\text{ARG-ST} / \langle \text{NP}, \text{NP}, \text{PP} \rangle]\)
Proper Nouns and Pronouns

`synsem` [SYN, SEM]

`lexeme` [ARG-ST]

`infl-lxm` `const-lxm`

`verb-lxm` `cn-lxm`

`siv-lxm` `piv-lxm` `tv-lxm` `cntn-lxm` `massn-lxm`

`stv-lxm` `dtx-lxm` `ptv-lxm`
Proper Nouns and Pronouns

```
pron-lxm:
SYN       HEAD     noun
SEM       [MODE / ref]
ARG-ST    ⟨ ⟩
```

```
prn-lxm:
SYN       HEAD     noun
SEM       [MODE / ref]
ARG-ST    ⟨ ⟩
```

```

pn-lxm:
SYN       [HEAD noun]
SEM       [MODE / ref]
ARG-ST    ⟨ ⟩
```

```
```
The Case Constraint

An outranked NP is [CASE acc].

- object of verb ✓
- second object of verb ✓
- object of argument-marking preposition ✓
- object of predicational preposition (✓)
The Case Constraint, continued

An outranked NP is [CASE acc].

- Subjects of verbs
 - Should we add a clause to cover nominative subjects?
 - No.

 We expect them to leave. (Chapter 12)

 - Lexical rules for finite verbs will handle nominative subjects.

- Any other instances of case marking in English?

- Case systems in other languages?

 No: The Case Constraint is an English-specific constraint.
Apparent redundancy

• Why do we need both the *pos* subhierarchy and lexeme types?

• *pos*:
 • Applies to words and phrases; models relationship between then
 • Constrains which features are appropriate (no AUX on *noun*)

• *lexeme*:
 • Generalizations about combinations of constraints
Overview

• Motivation for lexical hierarchy
• Default inheritance
• Tour of the lexeme hierarchy
• The Case Constraint
• pos vs. lexeme
• Guest appearance by Will