
© 2003 CSLI Publications

Ling 566
Feb 4, 2019

Lexical Types

© 2003 CSLI Publications

Overview

• Motivation for lexical hierarchy

• Default inheritance

• Tour of the lexeme hierarchy

• The Case Constraint

• pos vs. lexeme

• Reading Questions

© 2003 CSLI Publications

• We've streamlined our grammar rules...
• ...by stating some constraints as general principles

• ...and locating lots of information in the lexicon.

• Our lexical entries currently stipulate a lot of
information that is common across many entries and
should be stated only once.

• Examples?

• Ideally, particular lexical entries need only
give phonological form, the semantic
contribution, and any constraints truly
idiosyncratic to the lexical entry.

Motivation

© 2003 CSLI Publications

• Lexeme: An abstract proto-word which gives
rise to genuine words. We refer to lexemes by
their ‘dictionary form’, e.g. ‘the lexeme run’ or
‘the lexeme dog’.

• Word: A particular pairing of form and
meaning. Running and ran are different words

Lexemes and Words

© 2003 CSLI Publications

• Lexemes capture the similarities among run, runs,
running, and run.

• The lexical type hierarchy captures the similarities among
run, sleep, and laugh, among those and other verbs like
devour and hand, and among those and other words like
book.
Q: What do devour and book have in common?
A: The SHAC

• Lexical rules capture the similarities among runs, sleeps,
devours, hands,...

Lexical Types & Lexical Rules

© 2003 CSLI Publications

Q: Why do we have default inheritance?

A: Generalizations with exceptions are common:
• Most nouns in English aren't marked for CASE, but

pronouns are.
• Most verbs in English only distinguish two agreement

categories (3sing and non-3sing), but be distinguishes
more.

• Most prepositions in English are transitive, but here and
there are intransitive.

• Most nominal words in English are 3rd person, but some
(all of them pronouns) are 1st or 2nd person.

• Most proper nouns in English are singular, but some
(mountain range names, sports team names) are plural.

Default Inheritance

© 2003 CSLI Publications

Default Inheritance, Technicalities

If a type says
ARG-ST / < NP >,

and one of its
subtypes says
ARG-ST < >,

then the ARG-ST
value of instances of
the subtype is < >.

If a type says
ARG-ST < NP >,

and one of its
subtypes says
ARG-ST < >,

then this subtype can
have no instances,
since they would
have to satisfy
contradictory
constraints.

© 2003 CSLI Publications

• If a type says MOD / < S >, and one of its subtypes says
MOD <[SPR < NP>] >, then the MOD value of
instances of the subtype is what?

Default Inheritance, More Technicalities

⎡

⎢

⎢

⎢

⎣

MOD

〈

⎡

⎢

⎢

⎣

HEAD / verb

SPR
〈

NP
〉

COMPS / ⟨ ⟩

⎤

⎥

⎥

⎦

〉

⎤

⎥

⎥

⎥

⎦

• That is, default constraints are ‘pushed down’

© 2003 CSLI Publications

Q: Can a grammar rule override a default
constraint on a word?

A: No. Defaults are all ‘cached out’ in the
lexicon.

• Words as used to build sentences have only
inviolable constraints.

Question on Default Inheritance

© 2003 CSLI Publications

Our Lexeme Hierarchy
synsem

[SYN, SEM]

lexeme
[ARG-ST]

infl-lxm

.

.

verb-lxm

siv-lxm piv-lxm tv-lxm

stv-lxm dtv-lxm ptv-lxm

cn-lxm

cntn-lxm massn-lxm

const-lxm

.

adj -lxm conj -lxm det-lxm predp-lxm argmkp-lxm

pn-lxm pron-lxm

expression

word
[ARG-ST]

phrase

© 2003 CSLI Publications

Functions of Types

• Stating what features are appropriate for
what categories

• Stating generalizations

• Constraints that apply to (almost) all
instances

• Generalizations about selection -- where
instances of that type can appear

 11

© 2003 CSLI Publications

Every synsem has the features SYN and SEM
synsem

[SYN, SEM]

lexeme
[ARG-ST]

infl-lxm

.

.

verb-lxm

siv-lxm piv-lxm tv-lxm

stv-lxm dtv-lxm ptv-lxm

cn-lxm

cntn-lxm massn-lxm

const-lxm

.

adj -lxm conj -lxm det-lxm predp-lxm argmkp-lxm

pn-lxm pron-lxm

expression

word
[ARG-ST]

phrase

© 2003 CSLI Publications

No ARG-ST on phrase
synsem

[SYN, SEM]

lexeme
[ARG-ST]

infl-lxm

.

.

verb-lxm

siv-lxm piv-lxm tv-lxm

stv-lxm dtv-lxm ptv-lxm

cn-lxm

cntn-lxm massn-lxm

const-lxm

.

adj -lxm conj -lxm det-lxm predp-lxm argmkp-lxm

pn-lxm pron-lxm

expression

word
[ARG-ST]

phrase

© 2003 CSLI Publications

A Constraint on infl-lxm: the SHAC
synsem

[SYN, SEM]

lexeme
[ARG-ST]

infl-lxm

.

.

verb-lxm

siv-lxm piv-lxm tv-lxm

stv-lxm dtv-lxm ptv-lxm

cn-lxm

cntn-lxm massn-lxm

const-lxm

.

adj -lxm conj -lxm det-lxm predp-lxm argmkp-lxm

pn-lxm pron-lxm

expression

word
[ARG-ST]

phrase

© 2003 CSLI Publications

A Constraint on infl-lxm: the SHAC

infl-lxm :

⎡

⎢

⎣

SYN

⎡

⎢

⎣

VAL

[

SPR
〈

[AGR 1]
〉

]

HEAD [AGR 1]

⎤

⎥

⎦

⎤

⎥

⎦

© 2003 CSLI Publications

Constraints on cn-lxm
synsem

[SYN, SEM]

lexeme
[ARG-ST]

infl-lxm

.

.

verb-lxm

siv-lxm piv-lxm tv-lxm

stv-lxm dtv-lxm ptv-lxm

cn-lxm

cntn-lxm massn-lxm

const-lxm

.

adj -lxm conj -lxm det-lxm predp-lxm argmkp-lxm

pn-lxm pron-lxm

expression

word
[ARG-ST]

phrase

© 2003 CSLI Publications

Constraints on cn-lxm

cn-lxm :

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

SYN

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

HEAD

[

noun

AGR [PER 3rd]

]

VAL

⎡

⎣SPR ⟨

[

HEAD det

INDEX i

]

⟩

⎤

⎦

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

SEM

[

MODE / ref

INDEX i

]

ARG-ST ⟨X⟩ ⊕ /⟨ ⟩

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

© 2003 CSLI Publications

Formally Distinguishing Count vs. Mass Nouns
synsem

[SYN, SEM]

lexeme
[ARG-ST]

infl-lxm

.

.

verb-lxm

siv-lxm piv-lxm tv-lxm

stv-lxm dtv-lxm ptv-lxm

cn-lxm

cntn-lxm massn-lxm

const-lxm

.

adj -lxm conj -lxm det-lxm predp-lxm argmkp-lxm

pn-lxm pron-lxm

expression

word
[ARG-ST]

phrase

© 2003 CSLI Publications

Formally Distinguishing Count vs. Mass Nouns

cntn-lxm :

[

SYN

[

VAL
[

SPR ⟨ [COUNT +] ⟩
]

]

]

massn-lxm :

[

SYN

[

VAL
[

SPR ⟨ [COUNT −] ⟩
]

]

]

© 2003 CSLI Publications

Constraints on verb-lxm
synsem

[SYN, SEM]

lexeme
[ARG-ST]

infl-lxm

.

.

verb-lxm

siv-lxm piv-lxm tv-lxm

stv-lxm dtv-lxm ptv-lxm

cn-lxm

cntn-lxm massn-lxm

const-lxm

.

adj -lxm conj -lxm det-lxm predp-lxm argmkp-lxm

pn-lxm pron-lxm

expression

word
[ARG-ST]

phrase

© 2003 CSLI Publications

Constraints on verb-lxm

verb-lxm:

⎡

⎢

⎢

⎢

⎣

SYN
[

HEAD verb

]

SEM
[

MODE prop
]

ARG-ST / ⟨ NP, ... ⟩

⎤

⎥

⎥

⎥

⎦

© 2003 CSLI Publications

Subtypes of verb-lxm
verb-lxm

siv-lxm piv-lxm tv-lxm

stv-lxm dtv-lxm ptv-lxm

• verb-lxm: [ARG-ST < NP, ... >]
• siv-lxm: [ARG-ST < NP >]
• piv-lxm: [ARG-ST < NP, PP >]
• tv-lxm: [ARG-ST < NP, NP, ... >]

• stv-lxm: [ARG-ST < NP, NP >]
• dtv-lxm: [ARG-ST < NP, NP, NP >]
• ptv-lxm: [ARG-ST < NP, NP, PP >]

© 2003 CSLI Publications

Proper Nouns and Pronouns
synsem

[SYN, SEM]

lexeme
[ARG-ST]

infl-lxm

.

.

verb-lxm

siv-lxm piv-lxm tv-lxm

stv-lxm dtv-lxm ptv-lxm

cn-lxm

cntn-lxm massn-lxm

const-lxm

.

adj -lxm conj -lxm det-lxm predp-lxm argmkp-lxm

pn-lxm pron-lxm

expression

word
[ARG-ST]

phrase

© 2003 CSLI Publications

Proper Nouns and Pronouns

pn-lxm:

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

SYN

⎡

⎢

⎢

⎣

HEAD

⎡

⎢

⎢

⎣

noun

AGR

[

PER 3rd

NUM / sg

]

⎤

⎥

⎥

⎦

⎤

⎥

⎥

⎦

SEM
[

MODE ref
]

ARG-ST / ⟨ ⟩

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

pron-lxm:

⎡

⎢

⎢

⎢

⎣

SYN
[

HEAD noun
]

SEM
[

MODE / ref
]

ARG-ST ⟨ ⟩

⎤

⎥

⎥

⎥

⎦

© 2003 CSLI Publications

The Case Constraint

An outranked NP is [CASE acc].

• object of verb ✓

• second object of verb ✓

• object of argument-marking preposition ✓

• object of predicational preposition (✓)

© 2003 CSLI Publications

The Case Constraint, continued
An outranked NP is [CASE acc].

• Subjects of verbs

• Should we add a clause to cover nominative subjects?

• No.

We expect them to leave. (Chapter 12)

• Lexical rules for finite verbs will handle nominative subjects.

• Any other instances of case marking in English?

• Does it apply to case systems in other languages?

No: The Case Constraint is an English-specific constraint.

© 2003 CSLI Publications

Apparent redundancy

• Why do we need both the pos
subhierarchy and lexeme types?

• pos:
• Applies to words and phrases; models

relationship between then
• Constrains which features are

appropriate (no AUX on noun)
• lexeme:
• Generalizations about combinations of

constraints

© 2003 CSLI Publications

• Lexemes capture the similarities among run, runs,
running, and run.

• The lexical type hierarchy captures the similarities among
run, sleep, and laugh, among those and other verbs like
devour and hand, and among those and other words like
book.

• Lexical rules capture the similarities among runs, sleeps,
devours, hands,...

Lexical Types & Lexical Rules

© 2003 CSLI Publications

Overview

• Motivation for lexical hierarchy

• Default inheritance

• Tour of the lexeme hierarchy

• The Case Constraint

• pos vs. lexeme

• Reading Questions

© 2003 CSLI Publications

Reading Questions

• "[the type hierarchy] allows us to stipulate
common combinations of feature values
only once, using (default) inheritance to
account for their distribution." I thought this
was already the de facto for most principles
(e.g., the Valence Principle). How does a
subtly distinct, lexeme-driven type
hierarchy formalize this?

© 2003 CSLI Publications

Reading Questions

• Is synsem in our reorganized type hierarchy on pg 229
capturing all of the information that was beneath feat-
struc? I see the hierarchy is not at a final state now, but
does synsem continue to stay in that position?

• Why isn't lexeme a subtype of expression / why are
the two on the same level in the tree in (3).
Expressions are made of words and phrases and
lexemes seem to house the same properties. With the
given run example, it makes sense that run, was
running, and will run should all be under the same
lexeme, even counting the auxiliary verbs around
them.

© 2003 CSLI Publications

Our Lexeme Hierarchy
synsem

[SYN, SEM]

lexeme
[ARG-ST]

infl-lxm

.

.

verb-lxm

siv-lxm piv-lxm tv-lxm

stv-lxm dtv-lxm ptv-lxm

cn-lxm

cntn-lxm massn-lxm

const-lxm

.

adj -lxm conj -lxm det-lxm predp-lxm argmkp-lxm

pn-lxm pron-lxm

expression

word
[ARG-ST]

phrase

© 2003 CSLI Publications

Reading Questions

• In 8.3 pg 234 it says "Each (basic) lexical
entry describes a distinct family of lexemes
each of which is an instance of a maximal
type T_m " and I'm confused why a lexical
entry is describing a family of lexemes
instead of an individual lexeme. The lexeme
we develop in 8.4 seem specific enough that
a lexical entry would correspond to just one
or maybe I'm misunderstanding what is
meant by "describes" here.

© 2003 CSLI Publications

Reading Questions

• In the beginning of section 8.4, the textbook
mentions that a certain kind of "lexical
sequence" consisting of a "phonological
form" and a "feature structure of type
lexeme". Does this mean that phonology
will become an important part of
constructing a feature structure/lexical
entry? Or does the phonological
representation not really matter all that
much?

© 2003 CSLI Publications

Reading Questions

• I am confused about the X, Y first notation
introduced in (35) on pg. 241. Could you
explain what exactly is supposed to be going
through my head when I read this notation? I
don't recall it ever being formally laid out, so
it seemed to come out of nowhere for me. I'm
assuming it indicates variables of some sort,
but why is it that we can't just "drag" these
values "down" from the AGR-ST of the parent
type? Is this notation only used for ARG-ST
and the VAL features of lexemes?

© 2003 CSLI Publications

Reading Questions

• Pages 233-234 talk about defeasible constraints
(which can be overridden) and inviolable
constraints (which cannot). I suppose it's possible
for an inviolable constraint to become a defeasible
one (or vice versa) as a language evolves over
time. Are we concerned with this at all, or is our
grammar a snapshot of a grammatical variant only
as it exists at precisely this moment in time? Are
there certain classes of constraints which are
inherently inviolable and are resistant to
defeasibility even as the language changes?

© 2003 CSLI Publications

Reading Questions

• Footnote 7 on Page 234 in Section 8.3 talks
about how final descriptions of a lexeme
have no defeasible constraints and hence the
hierarchy is replaceable with a more
complicated one (where there are no
defeasible constraints to begin with). I am
having trouble in understanding how this
comes about and could you give an example
of two hierarchies equivalent in this
manner?

© 2003 CSLI Publications

Reading Questions

• I'm confused a little by the notation difference
in lists between "..." and ⊕ /<>. Usually I
take "..." to mean there may be more but we
don't know what it is, but doesn't saying "plus
an potentially empty list" achieve the same
thing? I know we've used "..." before for verbs
to indicate tense information that is beyond
the scope of the current discussion, are there
other things here that are similarly being left
out of things like adjectives (45) and nouns
(30)?

© 2003 CSLI Publications

Reading Questions

• We seem to favor the use of ARG-ST a lot,
which puzzles me. Why not separately
specify SPR and COMPS? I don't see any
advantage of using ARG-ST instead of SPR
and COMPS, but one disadvantage is that
the ARG-ST is ambiguous -- you cannot
derive a unique (SPR, COMPS) tuple from
an ARG-ST list.

© 2003 CSLI Publications

Reading Questions

• In the beginning of section 8.4, the textbook
mentions that a certain kind of "lexical
sequence" consisting of a "phonological
form" and a "feature structure of type
lexeme". Does this mean that phonology
will become an important part of
constructing a feature structure/lexical
entry? Or does the phonological
representation not really matter all that
much?

© 2003 CSLI Publications

Reading Questions

• The VAL constraints for type predp-lxm given on
page 243 indicate that a predicational preposition
will always take a specifier and select something
to modify. The text indicates that in the sentence
"I wrapped the blanket around me," the NP "the
blanket" is the specifier of around, however my
first instinct would be that "the blanket" is what is
being modified, and therefore should be indicated
in the MOD list. Why isn't this the case? And
furthermore if "the blanket" is the specifier, then
what element of this sentence would be indicated
in the preposition's MOD list?

