The LOGON MT infrastructure

Ling 567
February 23, 2016
Overview

- MRS and MT: Some history
- The Grammar Matrix and massively multilingual MT
- The LOGON architecture
 - Processing steps
 - Transfer rules
 - VPM
- Lab 8 practicalities
- Next week: Transfer rules
MRS and MT: Some history

• Copestake et al 1995: Original motivation for MRS included MT applications

• Resolving scope ambiguities is hard, and usually not necessary

 • Logical form equivalence is undecidable even in FOPL (Shieber 1993)

• Mimicking syntactic structure in semantics makes transfer harder

 • fierce black cat <> gato negro y feroz (Spanish)

 • young black bull <> novillo negro

• MRS gives logical forms with less syntactic complexity and underspecification wherever possible.
MRS and MT: Some history

- MRS originally developed in the context of VerbMobil but not fully deployed for transfer-based MT in that project.

- In 2003, LOGON (Oepen et al 2004, 2007) up the thread and builds the first MRS-based MT system. (Norwegian -> English; tourism brochures)

- Input is LFG, with MRSs projected from f-structure.

- Output is generated by the English Resource Grammar (HPSG; Flickinger 2000)
Vauquois Pyramid (ObMT Triangle)

Interlingua

SL strings

TL strings
Is MRS an interlingua?

• Could MRS be used to encode an interlingua?

• Could our grammar produce such an MRS-encoded interlingua?
Copestake Volcano

SL strings

TL strings
Massively Multilingual MT

- Problem of combinatory explosion \((n \times n)\):
 - 2 languages: 2 sets of transfer rules
 - 4 languages: 9 sets of transfer rules
 - 24 languages: 552 sets of transfer rules
 - 6000 languages: 35,994,000 sets of transfer rules
What are the alternatives?

• Design an interlingua (or select a pivot language), and create two grammars for each language
 • strings <> ordinary MRS
 • ordinary MRS <> interlingua (transfer grammar)
• Hybrid interlingual/transfer-based model
 • partial lexical interlingua or PanDictionary-derived rules
 • TL-side “accommodation” transfer grammars: O(n)
 • transfer matrix to capture generalizations
• How far will approach 2 scale?
• How much mismatch is there?
Mismatch: Translation divergences (Dorr 1994)

- Categorial divergence: Translation of words in one language into words that have a different part of speech in another language.

- Conflational divergence: The translation of two or more words in one language into one word in another language.

- Structural divergence: The realization of verb arguments in different syntactic configurations in different languages.

- Head swapping divergence: The inversion of the structural dominance relation between two semantically equivalent words when translating from one language to another.

- Thematic divergence: The realization of verb arguments in different configurations that reflect different thematic to syntactic mapping orders.
MRS ‘harmonization’ helps

• Just because it’s not an interlingua doesn’t mean the grammars can’t be brought closer together.

• Example 1: Demonstratives (adjectives v. determiners)

• Example 2: COG-ST et al, reduction in quantifier-rel inventory

• Further potential for harmonization: pronouns v. pro-drop (but cf. information structure marking on overt pronouns)

• Other examples?
LOGON processing steps

• Parse in source language
 • visualization tools for parses and MRSs

• Apply source language’s transfer grammar to produce new MRS
 • visualization tools for transfer outputs

• Generate in target language from new MRSs
 • visualization tools for input MRSs
 • compare to MRS produced by parsing expected output

• generator chart
Anatomy of a transfer rule

• Quadruple: [CONTEXT:] INPUT ![FILTER] -> OUTPUT

• Each item above is a (partial) MRS

• Rules apply to complete MRSs to produce partially rewritten MRSs.

• Resource sensitive: INPUT is consumed in producing OUTPUT.

• CONTEXT: Additional properties beyond the INPUT that must be satisfied. (Not consumed.)

• FILTER: Negative constraints; contexts in which the rule should not apply.
Anatomy of a transfer rule

• Rules can be obligatory or optional.

• Optional rules produce non-determinism in the transfer process.

• Pairing each optional rule with one obligatory rule cuts down the transfer search space.

• Rules can also be grouped into sets for ‘extrinsic’ ordering (which we probably won’t need).

• Handled with chart-based processing.
Types and translation

• Many transfer rules share most of their properties, differing only in lexical predicates/other small details.

 ▸ Define types of transfer rules, with particular instances, analogous to lexical types and lexical entries.

• Types mentioned in transfer rules will unify with compatible types in actual MRS.

• In addition, the generator will allow some unification of different (but compatible) types for feature values.
Example type

monotonic_mtr := mrs_transfer_rule &
[CONTEXT.HOOK.LTOP #h,
 INPUT.HOOK.LTOP #h,
 OUTPUT.HOOK.LTOP #h].
Example rule instance

pro-insert-arg1-mtr := monotonic_mtr &
 [INPUT.RELS <! !>,
 CONTEXT.RELS <! [ARG0.SF prop-or-ques,
 ARG1 #x & x] !>,
 FILTER.RELS <! [ARG0 #x] !>,
 OUTPUT [RELS <! [PRED "_pronoun_n_rel",
 ARG0 #x,
 LBL #larg],
 [PRED "exist_q_rel",
 ARG0 #x,
 RSTR #harg] !>,
 HCONS <! qeq &
 [HARG #harg,
 LARG #larg] !>,
 FLAGS.EQUAL < #x >].
What about features of indices?

- Can’t change value from input to output while maintaining identity of index with other positions.

- Person and number can be harmonized (in principle at least) by extending hierarchies on both sides, but we can’t harmonize between PERNUM and separate PER and NUM features.

- Tense and aspect (and others) can likewise be harmonized at least somewhat, but inventories vary greatly.

- Variable property mapping allows grammar-internal variable properties to differ from grammar-external universe.

 - We’ll use this for harmonization (e.g., of PERNUM) and setting of defaults.
A side note on gender

• Represented in MRS because of its role in reference resolution.

• Pretty language specific.

• You might think you want to keep it on pronouns and discard it on nouns, but even that only works for closely related languages.

• Long term solution: Anaphora resolution on the SL language side and assignment of gender properties to pronouns based on projections of this information.

• For now: drop gender through vpm.
A basic VPM for Matrix grammars.

- event: e
- ref-ind: x
- individual: i
- handle: h
- non_event: p

* >> u

semarg: u

SORT: SORT

* <> *

semsort: *

E.TENSE: TENSE

* <> *

SF: SF

prop: prop
ques: ques
prop-or-ques: prop-or-ques
prop: prop-or-ques
comm: comm

PNG.PER: PER

1st: 1st
2nd: 2nd
3rd: 3rd

* <> !
PNG.NUM : NUM
 sg <> sg
 pl <> pl
 du <> du
 dist <> dist
 coll <> coll
 * <> !

PNG.GEND : GEND
 animate <> animate
 inanimate <> inanimate
 human <> human
 nonhuman <> nonhuman
 * <> !

E.MOOD : MOOD
 irrealis <> irrealis
 resemblative <> resemblative
 quotative <> quotative
 apparitional <> apparitional
 iterative <> iterative
 potential <> potential
 * <> !

E.ASPECT : ASPECT
 continuative <> continuative
 * <> !
PNG.PERNUM : PER NUM
1singular <> 1st singular
2singular <> 2nd singular
3singular <> 3rd singular
1plural <> 1st plural
Practicalities

• Get one more test corpus example working

• Grammar clean-up

 • Reduce number of strings generated per input to (ideally) those that are motivated.

• Harmonize MRSs

• Use VPM to set defaults for e.g., ASPECT

 * >> no-aspect
 no-aspect << [e]

• Attempt translation

• Work on VPM
Overview

• MRS and MT: Some history
• The Grammar Matrix and massively multilingual MT
• The LOGON architecture
 • Processing steps
 • Transfer rules
 • VPM
• Lab 8 practicalities
• Next week: Transfer rules