
Knowledge Engineering for NLP

February 5, 2007

Discourse status

Optional arguments, Modification,

Overview

• Discourse status

• Optional arguments

Semantic classification

Syntactic classification

Typological claims

• Analysis of optional arguments

• Modification

Discourse status: What’s that? (1/2

• A property of referents, describing their relationship to

the common ground of a conversation.

• Tends to be reflected syntactically in markers of

‘definiteness’ as well as demonstratives and constraints

on the availability of types of NPs in particular

constructions.

• Closely related to information structure:

• Classification parts of a sentence into topic and

comment

• Sentential focus

Discourse status: What’s that? (2/2)

• The binary disctinction “definite/indefinite” is not

sufficient to capture this.

• Furthermore, discourse status can be broken down into

hearer-oriented “cognitive status” and speaker-oriented

“specificity.”

Givenness hierarchy (Gundel et al 1993, Prince

1981)

In focus> Activated> Familiar> Uniq. id.> Referential> Type id.

it that, this that N the N indefinite a N

this N this N

Borthen & Haugereid’s proposal (1/3)

cogn-st

activ-or-less uniq-or-more

uniq/fam/activ

fam-or-less fam-or-more

uniq/fam fam/activ

uniq-or-less activ-or-more

type-id uniq-id fam activ in-foc

Borthen & Haugereid’s proposal (2/3)











































SS.LOC.CONT.REF-PROP









































ref-prop

INDEX













ref

PER per

NUM num

GEND gend













COGN-ST cogn-st

SPECI bool

PART bool

UNIV bool



















































































Borthen & Haugereid’s proposal (3/3)

• SPECI indicates specificity (speaker-oriented)

• Compatible with both “definite” and “indefinite” NPs:

• The best student won.

• The next customer will receive a reward.

• Corresponds to overt syntactic phenomena in at least

Norwegian (specificity adjectives) and Turkish

(accusative case precluses specific interpretation).

First-pass Matrix-based proposal























HOOK.INDEX























PNG









PER person

NUM number

GEND gender









COG-ST





cog-st

SPECI bool

















































Optional arguments

• There are many cases in which an argument may be

semantically present but syntactically absent.

• Semantically, these cases can be categorized by how the

missing argument is interpreted.

• Syntactically, these cases can be categorized by how the

missing argument is licensed.

Semantic classification

• Indefinite null instantiation: I ate.

The referent of the missing argument is indefinite, not

(necessarily) recoverable from context.

• Definite null instantiation: I told you already.

The referent of the missing argument is definite, i.e., it

should be recoverable from context.

• Constructional null instantiation: Eat!, I told Kim to eat

The referent of the missing argument is determined by

the syntactic construction.

Syntactic classification

• Lexical: The potential for an argument to be missing is

determined by the lexical type/entry of the selecting

head.

• eat allows indefinite null instantiation of its object

• devour does not.

• Systematic: Arguments (perhaps of a certain syntactic

type, such as NP or a particular grammatical function) in

general can be missing.

• Japanese-style any argument pro-drop

• Spanish-style subject pro-drop.

Syntactic classification (2/2)

• By hypothesis, systematic pro-drop is given the definite

interpretation (i.e., it corresponds to one use of overt

pronouns in other languages).

• Pronoun incorporation: Verbal affixes are actually

interpreted as pronouns. I would expect these cases to

involve definite null instantiation.

Lining up syntactic and semantic classifications

• Claim 1: A language with systematic pro-drop will allow

definite interpretations of all dropped arguments.

• Claim 2: A language with systematic pro-drop will also allow

indefinite interpretations of some dropped arguments,

corresponding roughly to where a language without systematic

pro-drop would allow indefinite null instantiation.

• Claim 3: Indefinite null instantiation of subjects involves

special verb marking (e.g., impersonal passives).

• Claim 4: It follows from these hypotheses that there is no need

for lexically licensed definite null instantiation in languages

with Japanese-style pro-drop.

Example (Japanese)

Tabeta

Ate

‘I/you/he... ate.’/‘I/you/he... ate it.’

• Japanese has systematic pro-drop of all arguments.

• It also appears to have lexically licensed INI.

• Thus Tabeta is ambiguous, and we would like to be able
to translate it into two different English strings.

• Nonetheless, it would be nice to avoid assigning two
different tree structures, and rather provide an
underspecified semantic representation.

Proposed analysis in the Matrix: Overview (1/2)

• Constructional null instantiation covered by analysis of
imperatives, raising, etc.

• Distinction between definite and indefinite null
instantiation handled by a feature on indices representing
definiteness.
• Pronouns, arguments subject to DNI (and possibly definite NPs)

are [COG-ST fam-or-more & [SPECI +]].

• Arguments subject to INI (and possibly indefinite NPs) are
[COG-ST type-id & [SPECI −]].

• Caveat: I’m not quite sure yet how to implement the
cognitive status information, nor how it aligns with this
distinction.

Proposed analysis in the Matrix: Overview (2/2)

• Posit opt-comp and opt-subj rules parallel to the bare-np

rules.

• Use a feature [OPT bool] to code lexically licensed null

instantiation (leaving it underspecified in languages

where there is systematic pro-drop).

• Use a second feature [OPT-CS cog-st] to allow lexical

items to specify whether any given optional argument

would be interpreted as definite or indefinite in case of

null instantiation. (As a stand-in for a semantic-interface

based approach.)

The feature OPT

• OPT and OPT-CS will both be features of synsems.

• However, nothing constrains its own OPT value (that is,

no phrases are inherently optional or non-optional,

independent of which head they are dependent on).

• Rather, heads constrain certain arguments to be

[OPT −], which blocks the optional complement/subject

rules from applying, since these look for argument which

are (compatible with) [OPT +].

The feature OPT-CS (1/2)

• OPT-CS is a ‘junk slot’ to allow a lexical head to store

information about how an argument will be interpreted if

it is unexpressed.

• The opt-comp rule will identify the OPT-CS and

HOOK.INDEX.COG-ST values of any argument it

caches out as unrealized.

The feature OPT-CS (2/2)

• Because the HOOK.INDEX of every argument is

identified with some ARGn position in the head’s key

relation, this information will be encoded in the

semantics.

• Note that we’re not positing pronoun relations or

associated quantifier relations for these dropped objects.

This point is debatable, especially if your language

appears to have incorporated pronouns.

The Matrix opt-comp type

basic-head-opt-comp-phrase := head-valence-phrase & head-only &

head-compositional &

[INFLECTED #infl,

SYNSEM canonical-synsem &

[..CAT [VAL [SUBJ #subj, COMPS #comps, SPR #spr, SPEC #spec],

MC #mc, POSTHEAD #ph],

MODIFIED #mod],

HEAD-DTR [INFLECTED #infl & +,

..CAT [VAL [SUBJ #subj, SPR #spr, SPEC #spec,

COMPS < unexpressed &

[OPT +, OPT-CS #def,

..INDEX.COG-ST #def] . #comps >],

MC #mc, POSTHEAD #ph],

..CONT.HOOK.INDEX event,

MODIFIED #mod],

C-CONT [RELS <! !>, HCONS <! !>]].

For a language with systematic pro-drop

• Allow definite null instantiation (pro-drop) everywhere.

• Also allow indefinite null instantiation if lexically

specified.

• Same head-opt-comp-rule

• Two types of lexical entry:

• Those that allow both INI and DNI leave OPT-CS

undespecified

• Those that only allow DNI specify [OPT-CS

activ-or-more]

For Lab 6 (1/2)

• Determine whether your language allows systematic

pro-drop, and if so, under what conditions (subjects only,

all arguments, nearly all arguments, complements of

verbs but not of adpositions, ...)

• Determine whether your language allows indefinite null

instantiation for the objects of any verbs in your lexicon

(eat would be a good guess).

• Determine whether your language has incorporated

pronouns.

For Lab 6 (2/2)

• If your language doesn’t allow pro-drop everywhere,

determine whether it nonetheless allows lexically

licensed definite null instantiation.

• Try to find out whether your language allows indefinite

null instantiation of subjects (whether or not it’s a

pro-drop language). Good places to look are translations

of There was dancing at the party, and similar.

Modification: Syntax

• Modifiers select the heads they modify via the MOD

feature (inside HEAD).

• The value of MOD is a list of synsems.

• Head-modifier rules are cross-classified according to

order (head-adj, adj-head) and the intersective/scopal

distinction.

• You might already have head-modifier rules in your

grammar (probably just instances in rules.tdl which

inherit directly from types in matrix.tdl).

Intersective modifiers

• Adjoined via a ‘head-compositional’ PSR (syntactic

head is semantic head)

• ARG1 is MOD’s INDEX (individual)

• LTOP = MOD’s LTOP (constraint on rule)

Scopal modifiers

• Serve as semantic head daughters

What does this mean in tdl?

• Identify their own INDEX with their MOD’s INDEX

(why?)

• Take a handle-valued ARG1

• Insert a qeq between their ARG1 and their MOD’s LTOP

(why?)

Scopal modifiers: examples

• Kim did not read every book.

• Kim probably read every book.

• The most likely winner of every medal was disqualified.

Other non-intersective modifiers

• The alleged criminal

• The fake gun

• . . .

Gate keeping

• The phrase structure rules for intersective and scopal

modifiers need to be different.

• Ponder why (‘an apparently difficult problem’)

• Use subtypes of local to constrain which rule gets used.

No other use for subtypes of local

Modifiers constrain LOCAL inside their MOD value

Scopal mod phrase

scopal-mod-phrase := head-mod-phrase-simple &

[NON-HEAD-DTR.SYNSEM.LOCAL [

CAT.HEAD.MOD < [LOCAL scopal-mod] >,

CONT.HOOK #hook],

C-CONT [HOOK #hook,

HCONS <! !>]].

Intersective mod phrase

isect-mod-phrase := head-mod-phrase-simple &

head-compositional &

[HEAD-DTR.SYNSEM.LOCAL.CONT [

HOOK.LTOP #hand,

MSG no-msg],

NON-HEAD-DTR.SYNSEM.LOCAL [

CAT.HEAD.MOD < [LOCAL intersective-mod] >,

CONT.HOOK.LTOP #hand],

C-CONT.HCONS <! !>].

Open issues

• Possible positions for adverbs (of different classes)

• Semantically, should fake and likely get the same

treatment?

• Non-iterating modifiers (though we’ve made some

progress this quarter)

• Allowing heads to be sensitive to properties of modifiers

(e.g., ADV-aa in Kannada questions)

Overview

• Optional arguments

Semantic classification

Syntactic classification

Typological claims

• Analysis of optional arguments

• Modification

