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What is grammar engineering?

• The implementation of natural language grammars in software.

• Grammars can be used for parsing and/or generation.

• Relate surface strings to semantic representations

• Grammars can be practically focused or theoretically focused.

• Knowledge-engineering approach to parsing.

• “Precision” grammars can give deeper representations

• ... but tend to be less robust.



How is grammar engineering different from other 
approaches to syntax?

• Implementation requires fully explicit analyses

• Implementation allows automated verification of analyses

• Parse test suites

• Parse test corpora

• Generate from stored semantic representations

• Implementations allows/requires incremental development

• Interrelatedness of analyses becomes more apparent
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Grammar engineering work flow
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Applications

• Language documentation

• Linguistic hypothesis testing

• MT

• IR (“semantic search” --- PowerSet)

• Automated email response

• Augmentative and assistive communication

• Computer assisted language learning (CALL)

• ...



Challenges	

• efficient processing (Oepen et al 2002)

• ambiguity resolution (Toutanova et al 2005)

• domain portability

• lexical acquisition (Baldwin 2005)

• extragrammatical/ungrammatical input

• scaling to many languages



Hybrid approaches

• Naturally occurring language is noisy

• typos

• “mark up”

• addresses and other non-linguistic strings

• false starts

• hesitations

• Allowing for noise within the grammar would reduce precision

• And then there’s ambiguity, unknown words, ...



Hybrid approaches

• Combine knowledge engineering and machine learning approaches:

• Statistical parse selection

• (Statistical) named-entity recognition and POS tagging in a pre-processing 
step (for unknown word handling)

• Tiered systems with shallow parser as fallback for precision grammar

• Other direction:

• Deep grammars providing richer linguistic resources or seed information to 
train machine learners
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Goals: Of Grammar Engineering

• Build useful, usable resources

• Test linguistic hypotheses

• Represent grammaticality/minimize ambiguity

• Build modular systems: maintenance, reuse



Goals: Of this course

• Mastery of tfs formalism

• Hands-on experience with grammar engineering

• A different perspective on natural language syntax

• Practice building (and debugging!) extensible system

• Contribute to on-going research in multilingual grammar engineering



Goals: Of this course

• Understand a range of grammatical facts about a language, plus how to get 
them from descriptive materials

• Learn more about using HPSG to model grammatical facts

• Deeper understanding of relationship between syntax and semantics

• Lean how to use the computational tools of grammar engineering to test and 
develop formalizations



Testing and developing formalizations

• Tools: LKB, [incr tsdb()]

• Steps:

• Identify intended analysis (primarily semantic)

• Hypothesize new rules/lexical entries or new constraints on existing rules/
lexical entries that will produce intended analyses

• Implement constraints (and debug until grammar compiles)

• Test and examine results: Overconstrained? Underconstrained?



Relationship between syntax and semantics

• What does syntax do?

• Constrain ambiguity

• Provide scaffolding for building semantic representations

• Handle grammaticality (agreement, word order, case, ...)

• What do semantic representations do?

• Make explicit who did what to whom

• Serve as input for tactical generation

• Relate multiple surface forms to each other

• Differentiate multiple analyses of same surface form
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The LinGO Grammar Matrix

• Addresses the scalability challenge by reducing the cost of creating 
grammars

• Starter-kit which allows for quick initial development while supporting long-
term expansion

• Represents a set of hypotheses about cross-linguistic universals and cross-
linguistic variation

• Includes typologically grounded “libraries” exploring the range of variation in 
certain phenomena



A sampling of hypotheses

• Words and phrases combine to make larger phrases.

• The semantics of a phrase is determined by the words in the phrase and how 
they are put together.

• Some rules for phrases add semantics (but some don’t).

• Most phrases have an identifiable head daughter.

• Heads determine which arguments they require and how they combine 
semantically with those arguments.

• Modifiers determine which kinds of heads they can modify, and how they 
combine semantically with those heads.

• No lexical or syntactic rule can remove semantic information.



Multilingual grammar engineering: 
Other approaches

• The DELPH-IN consortium specializes in large HPSG grammars

• Other broad-coverage precision grammars have been built by/in/with

• LFG (ParGram: Butt et al 1999)

• F/XTAG (Doran et al 1994)

• ALE/Controll (Götz & Meurers 1997)

• SFG (Bateman 1997)

• Proprietary formalisms and Microsoft and Boeing
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Course requirements/workflow

• Mondays lecture, Wednesdays discussion

• Office/lab hours on (most) Fridays

• Weekly lab assignments, posted one week ahead, due on Friday

• Be sure to start the lab by class on Wednesday, so you can bring useful 
questions

• At least half of each lab grade will be on the documentation

• Labs 2-9 as partner projects, taking turns doing the write-up

• No exams; front-loaded course schedule

• “Uncheatable”



Course requirements/workflow

• Week 1: Getting to know the LKB (English exercise); pick your language

• Weeks 2-4: Test suite construction, iteratively customize starter grammar

• Weeks 5-9: Build out your grammar

• Week 10: MT extravaganza



Surviving the course

• Communication is key: Please ask questions!

• Get started early, to have time for collaboration and question turn-around

• Use GoPost (link on course page)

• Subscribe to the GoPost

• Read (and contribute to!) FAQs, glossary (-> demo)

• EB’s lab hours

• 10 minute rule



Pick a language, any language

• And pick a partner.  (Ideally each team should have at least one linguist.)

• Each team must pick a different language.

• Previous languages are on the wiki, only languages from 2004 are available 
for re-treatment.

• No English, non-Indo European preferred.

• Consider using an ascii transliteration.

• Languages with complex morphophonology require abstraction (assume a 
morphophonological preprocessor).

• Pick a language with a good descriptive grammar available.
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Components

• HPSG: Theoretical foundations

• LKB

• Grammar (Matrix-provided, plus extensions)

• Emacs: editor, interaction with LKB

• [incr tsdb()]



LKB

• tdl reader/compiler

• parser

• generator

• grammar exploration tools

• parse chart

• interactive unification

• type and hierarchy exploration



Grammar

• A set of tdl files:

• Grammar Matrix core

• Additions from the customization system

• Your additions

• Actually separated into:

• Type definitions

• Instances of grammar rules, lexical rules, lexical entries

• Root symbols

• Node label abbreviations

• Also includes: Lisp code for LKB interaction



[incr tsdb()]

• Pronounced “tee ess dee bee plus plus”

• Loading in test suites

• Running test suites (batch processing)

• Comparing multiple test suite runs:

• Changes in which examples parse

• Changes in number of analyses per item

• Changes in representations per item
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