K

3

—orma

ISM

_ab 1 ques

Ling 567
January 6, 2010

1oNs

Overview

* Type hierarchies, inheritance, unification
* Typed feature structures, subsumption, unification

¢ [ype constraints, making typed feature structures well-
formed

e Notational conventions
e Grammar rules in the LKB

e| ab 1 questions

tdl and typed feature structures

o td| = type description language
o tdl files encode type descriptions.

* The LKB reads in the tdl files and compiles the type
descriptions into a well-formed type hierarchy.

e NB: Actual trees are not subject to the constraint that
they be fully specified, but they must be well-typed (all
features appropriate for a type are present, though
types need not be maximally specific).

Properties of our type hierarchies

e Unique top: All types ultimately inherit from one top
node

e No cycles: No path through the hierarchy from a type to
itself

e Unique greatest lower bounds (glbs): Any two types in
the hierarchy are either incompatible (share no
descendants) or have a unigue most general subtype

e Closed world: All types that exist have a known position
In the hierarchy

e Compatibility: Two compatible types unify to their glb

Multiple inheritance and unification

o flyer and swimmer are incompatible (no common
descedants)

e flyer and bee unify to subtype (hierarchical relationship)
o flyer and invertebrate unify to glb (bee)

top

animal

T

flyer swimmer invertebrate vertebrate

~, —

fish

RN

cod guppy

An invalid type hierarchy

e swimmer and invertebrate have two common subtypes:
fish and whale

e fish and whale are incomparable in the hierarchy: glb
condition is violated

top

animal

T

flyer swimmer invertebrate vertebrate

. .h/\

bee mammal

/ N

cod auppy whale dog

FIXing the type hierachy

e [he LKB introduces glb types as required

top

anlma/

PR

flyer swimmer mvertebrate vertebrate

><bt pe42 mammal

fish whale dog

7N

cod guppy

Properties of typed feature structures

* Finiteness: A typed feature structure has a finite number of nodes

e Unigque root and connectedness: A tfs has a unique root parent; all
other nodes have at least one parent

® No cycles: No node has an arc that points back to the root node or
to another node that intervenes between the node itself and the
root

e Unique features: Any node can any (finite) number of outgoing arcs,
but the arc labels (i.e., features) must be unique within each node

¢ Typing: Each node has a single type which is defined in the
hierarchy

tdl example

type := supertypel & supertype2 &
[FEAT1 vall,
FEAT2 val2 & [FEAT3 #same,
FEAT4 #same] |].

Typed feature structure subsumption

e tfss can be partially ordered by information content

®* a more general structure Is said to subsume a more
specific one

**top* is the most general feature structure, while L
IS Inconsistent

e Feature structure F subsumes feature structure G iff: (1)
if path p is defined in F then p is also defined in G and
the type of the value of p in F is as supertype or equal
to the value of p in G, and (2) all paths that are reentrant
in F are also reentrant in G.

Subsumption examples

TFSq: r00 X TFSs. r00 X Slgnature
BAR X BAR y
at : al : ,, FOO
F0 Y FOO 11x ‘ -
TFS3. |BAR X TFSy4. —
BAZ X a_BAR 1
bl _ b BAZ

Which tfss subsume which other tfss?

Typed Feature Structure Unification

e Decide whether the two typed feature structures are
compatible

e Determine the combination of the two tfss which gives
the most general feature structure which retains all of
the information they each individually contain

e Unification monotonically combines information from
both ‘input’ tfss

e The unification of F and G is the most general tfs that is
subsumed by both F and G (if it exists).

Unification examples

F00 X FOO x

TFS: | oo TFSy: BAR y
dal] al |
FOOy SN
FOO 1 Xx
TFS3. |BAR X TFS4: é
BAR 1
b BAZ X al

What is the unification of
1&37 3&47

Signature

FOO

4 paAR

b BAZ

-51827

Type constraints and appropriate features

¢ \Well-formed tfss satisfy all type constraints from the
type hierarchy

e [ype constraints are typed feature structures associated
with a type

* The top-level features of a type constraint are its
appropriate features

type constraint appropriate features

FIRST *fop*

REST *fist* FIRST and REST

ne-list

ne-list

Type inference: Making a tfs well-formed

e Apply all type constraints to convert tfs to well-formed
tfs

e Determine most general well-formed tfs subsumed by
input tfs

e Specialize all types so that all features are appropriate

e Expand all nodes with the type constraint of the type on
that node

Examples

HEAD pos | HEAD pos

.. _.|ARGS *list* ARGS *list*
top™l - phrasel _
| | HEAD poS

HEAD pos | ARGS *fist”

ARGS “list* SPR “list*
phrase! ‘ COMPS *list*
phrase! -

More interesting well-formed unification

Type Constraints Associated to Earlier animal Hierarchy

swimmer — . [FINS bool} mammal — {FRIENDLY bool
swimmer mammal

BALEEN bool
whale — FINS true
FRIENDLY boo!

whale

BALEEN bool
FINS bool} = FINS true

FRIENDLY ir ue] [
FRIENDLY frue

mammal [swimmer[

whalel

{FRIENDLY true} M [FINS false] =1

mammal swimmer

Recursion In the type hierachy

* Type hierarchy must be finite after type inference; illegal
type constraint:

1ist := *top* & [FIRST *top*, REST *listx*].

® Needs additional provision for empty lists; indirect

recursion:
1ist := *xtop*.
ne-list := *1listx & [FIRST *top*, REST *list*].
xnull*x := *1ist.
e Recursive types allow for parameterized list types:
*s—1list*x := *xtopx*.
s-ne—-list := *ne-listx & *s-listx &
[FIRST *top*, REST *listx].
*s—null*x := xlistx & *s-listx.

Notational conventions

| ists are not available as a built-in data type;
abbreviatory notation in tdl:

< a, b >=[FIRST a, REST [FIRST b, REST *nullx*]]
e Underspecified (variable-length) list:
<a ... >=1][FIRST a, REST *listx* |

¢ Difference (open-ended) lists; allow concatenation by
unification:

<! a !>= [LIST [FIRST a, REST #tail], LAST #tail]

Notational conventions

e strings (e.qg., “chased”) need no declaration; they are
always subtypes of *string”

e strings cannot have subtypes, and are (thus) mutually
iIncompatible

Format of grammar rules in the LKB

HEAD 11 HEAD |1
SPR 2
— SPR 2
COMPS () COMPS (
mother. daughter; !
HEAD |1
SPR
COMPS ()
HEAD 1
ARGS < SPR 2|
COMPS ((3)
mother. daughter, |

3
daughter,!|

Overview

* Type hierarchies, inheritance, unification
* Typed feature structures, subsumption, unification

¢ [ype constraints, making typed feature structures well-
formed

e Notational conventions
e Grammar rules in the LKB

e| ab 1 questions

