
LKB Formalism
Lab 1 questions

Ling 567
January 6, 2010

Overview

•Type hierarchies, inheritance, unification

•Typed feature structures, subsumption, unification

•Type constraints, making typed feature structures well-
formed

•Notational conventions

•Grammar rules in the LKB

•Lab 1 questions

tdl and typed feature structures

•tdl = type description language

•.tdl files encode type descriptions.

•The LKB reads in the tdl files and compiles the type
descriptions into a well-formed type hierarchy.

•NB: Actual trees are not subject to the constraint that
they be fully specified, but they must be well-typed (all
features appropriate for a type are present, though
types need not be maximally specific).

Properties of our type hierarchies

•Unique top: All types ultimately inherit from one top
node

•No cycles: No path through the hierarchy from a type to
itself

•Unique greatest lower bounds (glbs): Any two types in
the hierarchy are either incompatible (share no
descendants) or have a unique most general subtype

•Closed world: All types that exist have a known position
in the hierarchy

•Compatibility: Two compatible types unify to their glb

Multiple inheritance and unification

•flyer and swimmer are incompatible (no common
descedants)

•flyer and bee unify to subtype (hierarchical relationship)

•flyer and invertebrate unify to glb (bee)

An invalid type hierarchy

•swimmer and invertebrate have two common subtypes:
fish and whale

•fish and whale are incomparable in the hierarchy: glb
condition is violated

Fixing the type hierachy

•The LKB introduces glb types as required

Properties of typed feature structures

• Finiteness: A typed feature structure has a finite number of nodes

• Unique root and connectedness: A tfs has a unique root parent; all
other nodes have at least one parent

• No cycles: No node has an arc that points back to the root node or
to another node that intervenes between the node itself and the
root

• Unique features: Any node can any (finite) number of outgoing arcs,
but the arc labels (i.e., features) must be unique within each node

• Typing: Each node has a single type which is defined in the
hierarchy

type := supertype1 & supertype2 &
[FEAT1 val1,
FEAT2 val2 & [FEAT3 #same,

FEAT4 #same]].

tdl example

Typed feature structure subsumption

•tfss can be partially ordered by information content

•a more general structure is said to subsume a more
specific one

•*top* is the most general feature structure, while
is inconsistent

•Feature structure F subsumes feature structure G iff: (1)
if path p is defined in F then p is also defined in G and
the type of the value of p in F is as supertype or equal
to the value of p in G, and (2) all paths that are reentrant
in F are also reentrant in G.

Subsumption examples

Which tfss subsume which other tfss?

Typed Feature Structure Unification

•Decide whether the two typed feature structures are
compatible

•Determine the combination of the two tfss which gives
the most general feature structure which retains all of
the information they each individually contain

•Unification monotonically combines information from
both ‘input’ tfss

•The unification of F and G is the most general tfs that is
subsumed by both F and G (if it exists).

Unification examples

What is the unification of TFS1&2?
1&3? 3&4?

Type constraints and appropriate features

•Well-formed tfss satisfy all type constraints from the
type hierarchy

•Type constraints are typed feature structures associated
with a type

•The top-level features of a type constraint are its
appropriate features

Type inference: Making a tfs well-formed

•Apply all type constraints to convert tfs to well-formed
tfs

•Determine most general well-formed tfs subsumed by
input tfs

•Specialize all types so that all features are appropriate

•Expand all nodes with the type constraint of the type on
that node

Examples

More interesting well-formed unification

Recursion in the type hierachy

•Type hierarchy must be finite after type inference; illegal
type constraint:

•Needs additional provision for empty lists; indirect
recursion:

•Recursive types allow for parameterized list types:

list := *top* & [FIRST *top*, REST *list*].

list := *top*.
ne-list := *list* & [FIRST *top*, REST *list*].
null := *list.

s-list := *top*.
s-ne-list := *ne-list* & *s-list* &

[FIRST *top*, REST *list*].
s-null := *list* & *s-list*.

Notational conventions

•Lists are not available as a built-in data type;
abbreviatory notation in tdl:

•Underspecified (variable-length) list:

•Difference (open-ended) lists; allow concatenation by
unification:

Notational conventions

•strings (e.g., “chased”) need no declaration; they are
always subtypes of *string*

•strings cannot have subtypes, and are (thus) mutually
incompatible

Format of grammar rules in the LKB

Overview

•Type hierarchies, inheritance, unification

•Typed feature structures, subsumption, unification

•Type constraints, making typed feature structures well-
formed

•Notational conventions

•Grammar rules in the LKB

•Lab 1 questions

