
Knowledge Engineering for NLP

January 26, 2009

Minimal Recursion Semantics

Overview

• Software review

• MRS: goals

• MRS: representations

• MRS: composition

Software review

• What are the various pieces of software we’re using?

Software review

• What are the various pieces of software we’re using?

• emacs

• makeitem.pl

• customization system

• lkb

• [incr tsdb()]

• What do they each do?

MRS Preface

• Most of today’s lecture covers stuff that is already

implemented in the Matrix.

• The goal of this presentation is to increase your

understanding of what’s already there, and how to have

your code interact with it.

• In the near term, you’ll need to be able to look at the

semantic representations and understand them.

• In later labs, you’ll also be working on compositionality.

Semantics: Overall strategy

• Represent all semantic distinctions which are

syntactically (or morphologically) marked.

• Underspecify semantic distinctions which don’t
correspond to differences in form.

• (These can be ‘spelled out’ in post-processing.)

• Abstract away from non-semantic information (case,

word order)

• Aim for consistency across languages (for purposes of

downstream processing).

• Allow for semantic differences between languages.

Semantics: Scope

• Quantifiers (predicate logic or natural language) take

three arguments:

• A variable to bind

• A restriction

• A body

• Every dog sleeps:∀x dog(x)sleep(x)

• When one quantifier appears within the restriction or

body of another, we say the first has wider scope.

MRS: Goals

• Adequate representation of natural language semantics

• Grammatical compability

• Computational tractability

• Underspecifiability

Working towards MRS (1/4)

• Every big white horse sleeps.

• every (x, ∧(big(x), ∧(white(x),horse(x))), sleep(x))

every(x)

∧

big(x) ∧

white(x) horse(x)

sleep(x)

Working towards MRS (2/4)

every(x)

∧

big(x) white(x) horse(x)

sleep(x)

every(x)

big(x),white(x),horse(x)sleep(x)

Working towards MRS (3/4)

h0:every(x)

h1 h2

h1:big(x), h1:white(x), h1:horse(x) h2:sleep(x)

• And finally:

h0:every(x, h1, h2), h1:big(x), h1:white(x),

h1:horse(x), h2:sleep(x)

Working towards MRS (4/4)

• This is a flat representation, which is a good start.

• Next we need to underspecify quantifier scope, and it’s

easier to see why with multiple quantifiers.

• At the same time, we want to be able to partially specify

it, since this is required for adequate representations of

NL semantics.

Underspecified quantifier scope (1/2)

• Every dog chases some white cat.

some(y)

white(y),cat(y) every(x)

dog(x) chase(x,y)

every(x)

dog(x) some(y)

white(y),cat(y) chase(x,y)

Underspecified quantifier scope (2/2)

• h1:every(x,h3,h4), h3:dog(x), h7:white(y), h7:cat(y),

h5:some(y,h7,h1), h4:chase(x,y)

• h1:every(x,h3,h5), h3:dog(x), h7:white(y), h7:cat(y),

h5:some(y,h7,h4), h4:chase(x,y)

• h1:every(x,h3,hA), h3:dog(x), h7:white(y), h7:cat(y),

h5:some(y,h7,hB), h4:chase(x,y)

Partially constrained quantifier scope (1/5)

• For theBODY of quantifiers, we have no particular

constraints to add.

• In turns out that theRESTRICTIONneeds to have

partially underconstrained scope:

• Every nephew of some famous politican runs.

• every(x,some(y,famous(y) ∧ politican(y),

nephew(x,y)) run(x))

• some(y,famous(y) ∧ politican(y), every(x,

newphew(x,y),run(x)))

Partially constrained quantifier scope (2/5)

• Every nephew of some famous politican runs.

• But not:

• every(x,run(x),some(y,famous(y) ∧ polician(y),

nephew(x,y)))

• ‘Everyone who runs is a newphew of a famous

politician.’

Partially constrained quantifier scope (3/5)

top

. . .

run(x)

every(x)

. . .

nephew(x,y)

some(y)

. . .

famous(y),politician(y)

Partially constrained quantifier scope (4/5)

top

. . .

probably

. . .

chase(x,y)

every(x)

. . .

dog(x)

some(y)

. . .

white(y),cat(y)

Partially constrained quantifier scope (5/5)

• 〈h0, {h2 : every(x, h3, h4), h5 : nephew(x, y), h6 :

some(y, h7, h8), h9 : politician(y), h9 : famous(y), h10 :

run(x)}, {h1 =q h10, h7 =q h9, h3 =q h5}〉

• 〈h0, {h1 : every(x, h2, h3), h4 : dog(x), h5 :

probably(h6), h7 : chase(x, y), h8 :

some(y, h9, h10), h11 : white(y), h11 : cat(y)}, {h0 =q

h5, hw =q h4, h6 =q h7, h9 =q h11}〉

We’ve arrived at MRS!

• Flat structure

• Underspecification/partial specification of scope is

possible

Linguistic questions

• How do we build MRS representations compositionally?

• Is it linguistically adequate to insist that no process

suppress relations?

• Under what circumstances do NLs (partially) constrain

scope?

• Is it linguistically adequate to give scopal elements (esp.

quantifiers, but also scopal modifiers) center-stage?

MRS in feature structures

• RELS: List (diff-list) of relations

• HCONS: List (diff-list) of handle constraints

• HOOK: Collection of features ‘published’ for further

compisition: INDEX, LTOP, XARG

• ARGn: Roles within relations

Summary: Anatomy of an MRS

• An MRS consists of:

• A top handle

• A list of relations, each labeled by a handle

• A list of handle constraints

• An (underspecified) MRS is well-formed iff the

constraints can be resolved to form one or more trees

(singly-rooted, connected, directed acyclic graphs).

Anatomy of a relation (1/2)

• A relation has:

• A predicate (string or type)

• A label (handle)

• One or more arguments: ARG0-n (ARG0 canonically

being the event or individual introduced by the

relation)

Anatomy of a relation (2/2)

• The value of each ARGn is either:

• An index, canonically identified with the ARG0 of

another relation

• A handle: identified with the label of another

relation, the HARG of a handle constraint, or not

identified with anything

Anatomy of a handle constraint

• Current sole handle constraint type:qeq

• ‘Equal modulo quantifiers’

• Features: HARG, LARG

• → Unless some quantifier scopes in between, the value

of this ARGn is the same as the label of that relation.

• When the label of a relation is the value of an ARGn, this

corresponds to a branch in an MRS tree.

• When the value of an ARGn is qeq the label of a relation,

this corresponds to a ‘dotted’ branch – i.e., a dominance

relation.

When else are handles identified?

• Relations with the same handle value share the same

scope.

• Typically, we see this with intersective modifiers

(adverbs, adjectives, PPs) which share their handles with

their modifies.

Composition: Overview

• RELS and HCONS on mother nodes

• HOOK, LKEYS

• ARGn↔ indices

• ARGn↔ handles

• LBL ↔ LBL

• Building qeqs

RELS and HCONS on mother nodes

• The RELS and HCONS value of the mother is the

append of the values from the daughter(s) and the

C-CONT of the mother.

• C-CONT is the ‘constructional content’: allows phrase

structure rules to introduce relations.

• Examples?

• From a semantic point of view, the C-CONT is just

another daughter.

Appending lists with unification

• A diff-list embeds an open-ended list into a container structure

providing a ‘pointer’ to the end of the ordinary list.

A

dlist

LIST 1

ne-list

FIRST item1

REST 2 list

LAST 2

B

dlist

LIST 3

ne-list

FIRST item2

REST 4 list

LAST 4

• To append : (i) unify the front ofB (i.e. the value of its LIST

feature) into the tail ofA (its LAST value) and

• (ii) use the tail of difference listB as the new tail for the result

of the concatenation.

Result of appending lists

A

dlist

LIST 1

ne-list

FIRST item1

REST

ne-list

FIRST item2

REST 2 list

LAST 2

Matrix type: dl-append

• Not for direct use in the grammar: this type is just meant

as a reference.

dl-append := avm & [APPARG1 [LIST #first,

LAST #between],

APPARG2 [LIST #between,

LAST #last],

RESULT [LIST #first,

LAST #last]].

Diff-lists: practicalities

• Typically errors with diff-lists involve circularity and not

direct unification failure.

• If the LKB complains about circular feature structures,

check your difference lists.

• Don’t try to constrain the length of a difference list.

• Unifying structures which include diff lists in an append

relation can result in diff lists constrained to be empty.

Returning to our regularly scheduled

programming...

• Why do we need diff-lists?

• Why do we need append?

Semantic compositionality in action

basic-unary-phrase := phrase &

[SYNSEM.LOCAL.CONT [RELS [LIST #first,

LAST #last]],

C-CONT [RELS [LIST #mid,

LAST #last]],

ARGS < sign & [SYNSEM.LOCAL

[CONT [RELS [LIST #first,

LAST #mid]]]]>].

Now what

• Phrase structure rules (and lexical rules) gather up RELS

and HCONS from daughters.

• Phrase structure rules also (optionally) introduce further

RELS and HCONS.

• How do we link the ARGn positions of the relations to

the right things?

• How do we link the HARG/LARG of qeqs to the right

things?

HOOK (1/2)

• The CONT.HOOK is the information that a given sign

exposes for further composition.

• By hypothesis, this includes only:

• INDEX (the individual or event denoted by the sign,

linked to some ARG0)

• LBL (the local top handle of the sign)

• XARG (the external argument of the sign)

HOOK (2/2)

• The HOOK of a sign is identified its with the

C-CONT.HOOK.

• The C-CONT.HOOK in turn is identified with the

semantic head daughter, if there is one.

• Otherwise, the LBL, INDEX, and XARG inside

C-CONT.HOOK need to be constrained appropriately.

LKEYS

• The feature LKEYS houses pointers to important

relations on the RELS list, most notably

LKEYS.KEYREL.

• Only appropriate for lexical items.

• Serves as a uniform place to state linking constraints.

• Linking constraints: equality between HOOK.INDEX or

HOOK.LBL of arguments/modifiees and

LKEYS.KEYREL.ARGn.

ARGn↔ indices

intransitive-lex-item := basic-one-arg-no-hcons &

[ARG-ST < [LOCAL.CONT.HOOK.INDEX ref-ind &

#ind] >,

SYNSEM.LKEYS.KEYREL.ARG1 #ind].

intersective-mod-lex := no-hcons-lex-item &

[SYNSEM [LOCAL.CAT.HEAD.MOD

< [..INDEX #ind]] >,

LKEYS.KEYREL.ARG1 #ind]].

ARGn↔ handles (1/2)

clausal-second-arg-trans-lex-item := basic-two-arg &

[ARG-ST < [LOCAL.CONT.HOOK.INDEX ref-ind & #ind],

[LOCAL.CONT.HOOK.LTOP #larg] >,

SYNSEM [LOCAL.CONT.HCONS <! qeq &

[HARG #harg,

LARG #larg] !>,

LKEYS.KEYREL [ARG1 #ind,

ARG2 #harg]]].

ARGn↔ handles (2/2)

basic-determiner-lex := norm-hook-lex-item &

[SYNSEM [LOCAL

[CAT [HEAD det,

VAL..HOOK [INDEX #ind,

LTOP #larg]],

CONT [HCONS <! qeq &

[HARG #harg,

LARG #larg] !>,

RELS <! relation !>]],

LKEYS.KEYREL quant-relation &

[ARG0 #ind,

RSTR #harg]]].

LBL↔ LBL

isect-mod-phrase :=

head-mod-phrase-simple &

head-compositional &

[HEAD-DTR.SYNSEM.LOCAL.CONT.HOOK.LTOP #hand],

NON-HEAD-DTR.SYNSEM.LOCAL.CONT.HOOK.LTOP #hand

• The rule for intersective modifiers identifies the LTOP of

the two daughters, and thus the LBL of the main relation

introduced by each.

• The HOOK value of the whole thing comes from the

syntactic head, thanks to the typehead-compositional.

Scopal modifiers (1/2)

scopal-mod-phrase :=

head-mod-phrase-simple &

[NON-HEAD-DTR.SYNSEM.LOCAL

[CAT.HEAD.MOD < [LOCAL scopal-mod] >,

CONT.HOOK #hook],

C-CONT [HOOK #hook,

HCONS <! !>]].

• No identification of LTOPs.

• Non-head (adjunct) daughter is the semantic head.

Scopal modifiers (2/2)

scopal-mod-lex := lex-item &

[SYNSEM [LOCAL [

CAT.HEAD.MOD < [LOCAL scopal-mod &

[..LTOP #larg]] >,

CONT.HCONS <! qeq &

[HARG #harg,

LARG #larg] !>],

LKEYS.KEYREL.ARG1 #harg]].

• Builds qeq between its ARG1 and the MOD’s LTOP

Building qeqs

• Determiners

• Scopal adverbs

• Clausal complement verbs (and nouns, adjectives,

adpositions...)

Summary

• Phrase structure rules:

• . . . gather up RELS and HCONS

• . . . potentially add further RELS and HCONS

• . . . unify elements on valence/mod lists with signs

• . . . pass up and/or modify HOOK information

• Lexical entries:

• . . . orchestrate the linking between valence/mod lists

and the ARGn positions in the relations they

contribute

• . . . expose certain information in the HOOK

Composition: Summary

• RELS and HCONS on mother nodes

• HOOK, LKEYS

• ARGn↔ indices

• ARGn↔ handles

• LBL ↔ LBL

• Building qeqs

Overview

• Software review

• MRS: goals

• MRS: representations

• MRS: composition

