Topics in Computational Linguistics
— Grammar Engineering —

Dan Flickinger
CSLI Stanford & Saarland University

danf@csli.stanford.edu

Stephan Oepen
Universitetet i Oslo & CSLI Stanford

oe@csli.stanford.edu

http://lingo.stanford.edu/courses/05/ge/

The Linguistic Knowledge Builder (LKB)

General & History
e Specialized grammar engineering environment for TFS grammars;

e main developers: Copestake (original), Carroll, Malouf, and Oepen;

e open-source and binary distributions (Linux, Windows, and Solaris).

Grammar Engineering Fuctionality
e Compiler for typed feature structure grammars — wellformedness;
e parser and generator: map from strings to meaning and vice versa;

e visualization: inspect trees, feature structures, intermediate results;

e debugging and tracing: interactive unification, ‘stepping’, et al.

STANFORD — 6-JAN-05 (0e@csli.stanford.edu)

Computational Linguistics: Grammar Engineering (12)

The Type Hierarchy: Fundamentals

e Types ‘represent’ groups of entities with similar properties (‘classes’);

e types ordered by specificity: subtypes inherit properties of (all) parents;

e type hierarchy determines which types are compatible (and which not).

*

“top

list *string”* feat-struc

ne-list *null* expression 0S
_— /1N

word phrase noun verb det

root

STANFORD — 6-JAN-05 (0oe@csli.stanford.edu)

Computational Linguistics: Grammar Engineering (13)

Properties of (Our) Type Hierarchies

e Unique Top a single hierarchy of all types with a unique top node;
e No Cycles no path through the hierarchy from one type to itself;

e Unique Greatest Lower Bounds Any two types in the hierarchy are
either (a) incompatible (i.e. share no descendants) or (b) have a unique
most general (‘highest’) descendant (called their greatest lower bound);

e Closed World all types that exist have a known position in hierarchy;

e Compatibility type compatibility in the hierarchy determines feature
structure unifiability: two types unify to their greatest lower bound.

STANFORD — 6-JAN-05 (0e@csli.stanford.edu)

Computational Linguistics: Grammar Engineering (14)

Multiple Inheritance

e flyer and swimmer no common descendants: they are incompatible;

e flyer and bee stand in hierarchical relationship: they unify to subtype;

e flyer and invertebrate have a unique greatest common descendant.

top

animal

N

flyer swimmer invertebrate vertebrate

~,

fish

7N

cod guppy

STANFORD — 6-JAN-05 (0oe@csli.stanford.edu)

Computational Linguistics: Grammar Engineering (15)

An Invalid Type Hierarchy

e swimmer and vertebrate have two joint descendants: fish and whale;

e fish and whale are incomparable in the hierarchy: glb condition violated.

top

animal

T

flyer swimmer invertebrate vertebrate

~__ .h/\

bee mammal

/ N

cod quppy whale dog

STANFORD — 6-JAN-05 (0e@csli.stanford.edu)

Computational Linguistics: Grammar Engineering (16)

Fixing the Type Hierarchy

e LKB system introduces glb types as required: ‘swimmer-vertebrate’. I

top

an/ma/

__——

flyer swimmer /nvertebrate vertebrate

t pe42 mammal

T N

fish whale dog

7N

cod guppy

STANFORD — 6-JAN-05 (0e@csli.stanford.edu)

Computational Linguistics: Grammar Engineering (17)

Properties of Typed Feature Structures

e Finiteness a typed feature structure has a finite number of nodes;

e Unique Root and Connectedness a typed feature structure has a
unique root node; apart from the root, all nodes have at least one parent;

e No Cycles no node has an arc that points back to the root node or to
another node that intervenes between the node itself and the root;:

e Unique Features any node can have any (finite) number of outgoing
arcs, but the arc labels (i.e. features) must be unique within each node;

e Typing each node has single type which is defined in the hierarchy.

STANFORD — 6-JAN-05 (0e@csli.stanford.edu)

Computational Linguistics: Grammar Engineering (18)

Typed Feature Structure Example (as AVM)

phrasel

HEAD verb

ARGS

*ne-list*l

FIRST

REST

word

ne-list

ORTH “chased”
HEAD verb

FIRST | {HEAD noun]
expression

REST *null*

STANFORD — 6-JAN-05 (0e@csli.stanford.edu)

Computational Linguistics: Grammar Engineering (19)

Typed Feature Structure Example (as Graph)

phr.ase ye.rb
HEAD
ARGS
ne;list qurd ORTH “clga.sed”
FIRST HEAD
REST verb
nelist _expression noun
FIRST HEAD
REST
*null”
o

STANFORD — 6-JAN-05 (0e@csli.stanford.edu)

Computational Linguistics: Grammar Engineering (20)

Typed Feature Structure Example (in TDL)

4 N

vp := phrase &
[HEAD verb,
ARGS *ne-listx* &
[FIRST word &
[ORTH "chased",
HEAD verb 1],
REST *ne-listx* &
[FIRST expression &
[HEAD noun],
REST *nullx*]]]

STANFORD — 6-JAN-05 (0e@csli.stanford.edu)

Computational Linguistics: Grammar Engineering (21)

Reentrancy in a Typed Feature Structure (Graph)

phr.ase ye.rb
HEAD
ARGS HEAD
“ne-list” word ‘chased”
FIRST ORTH
REST
nelist __expression noun
FIRST HEAD
REST

‘nyll*

STANFORD — 6-JAN-05 (0e@csli.stanford.edu)

Computational Linguistics: Grammar Engineering (22)

Reentrancy in a Typed Feature Structure (AVM)

HEAD |1|verb

ORTH “chased”

FIRST
RS HEAD

word

ARGS : |
FIRST | {HEAD noun]
REST expression

REST *null*

* y *
. ne-list
*ne-list*l

phrasel

STANFORD — 6-JAN-05 (0e@csli.stanford.edu)

Computational Linguistics: Grammar Engineering (23)

Reentrancy in a Typed Feature Structure (TDL)

4 N

vp := phrase &
[HEAD #head & verb,
ARGS *ne-listx* &
[FIRST word &
[ORTH "chased",
HEAD #head],
REST *ne-listx &
[FIRST expression &
[HEAD noun],
REST *nullx*]]]

STANFORD — 6-JAN-05 (0e@csli.stanford.edu)

Computational Linguistics: Grammar Engineering (24)

Typed Feature Structure Subsumption

e Typed feature structures can be partially ordered by information content;

e a more general structure is said to subsume a more specific one;

. *top*” is the most general feature structure (while _L is inconsistent);

e C (‘square subset or equal’) conventionally used to depict subsumption.

Feature structure F subsumes feature structure G (F C Q) iff: (1) if path
p is defined in F then p is also defined in G and the type of the value
of pin F is a supertype or equal to the type of the value of p in G, and
(2) all paths that are reentrant in F are also reentrant in G.

STANFORD — 6-JAN-05 (0e@csli.stanford.edu)

Computational Linguistics: Grammar Engineering (25)

Feature Structure Subsumption: Examples

Signature
FOO
T BAR "(
b BAZ y

Feature structure F subsumes feature structure G (F C Q) iff: (1) if path
p is defined in F then p is also defined in G and the type of the value
of pin F is a supertype or equal to the type of the value of p in G, and
(2) all paths that are reentrant in F are also reentrant in G.

STANFORD — 6-JAN-05 (0e@csli.stanford.edu)

Computational Linguistics: Grammar Engineering (26)

Typed Feature Structure Unification

e Decide whether two typed feature structures are mutually compatible;

e determine combination of two TFSs to give the most general feature
structure which retains all information which they individually contain;

e if there is no such feature structure, unification fails (depicted as _1);
e unification monotonically combines information from both ‘input’ TFSs;

e relation to subsumption the unification of two structures F and G is
the most general TFS which is subsumed by both F and G (if it exists).

e [(‘square set intersection’) conventionally used to depict unification.

STANFORD — 6-JAN-05 (0oe@csli.stanford.edu)

Computational Linguistics: Grammar Engineering (27)

Typed Feature Structure Unification: Examples

Signature
FOO
T BAR "(
b BAZ y

FOO 1]y
TFS{ T1TFSy = TFSy TFS;{ 1 TFS3 = TFS;3 TFS3 "1 TFS; = |BAR
b BAZ X

STANFORD — 6-JAN-05 (0e@csli.stanford.edu)

Computational Linguistics: Grammar Engineering (28)

Type Constraints and Appropriate Features

e Well-formed TFSs satisfy all type constraints from the type hierarchy;

e type constraints are typed feature structures associated with a type;

e the top-level features of a type constraint are appropriate features;

e type constraints express generalizations over a ‘class’ (set) of objects.

type constraint appropriate features
PESTI FIRST *fop*
ne-list IREST “*fist* FIRST and REST
ne-list

STANFORD — 6-JAN-05 (0e@csli.stanford.edu)

Computational Linguistics: Grammar Engineering (29)

Type Inference: Making a TFS Well-Formed

e Apply all type constraints to convert a TFS into a well-formed TFS;
e determine most general well-formed TFS subsumed by the input TFS;

e specialize all types so that all features are appropriate:

HEAD pos

HEAD pos
. E—
ARGS *list*

ARGS *list*

“top* phrase

e expand all nodes with the type constraint of the type of that node:

HEAD pOS |
HEAD pos ARGS “*list”
’ *[, *
ARGS “list* SPR “list
phrase

COMPS *list”

phrase

STANFORD — 6-JAN-05 (0e@csli.stanford.edu)

Computational Linguistics: Grammar Engineering (30)

More Interesting Well-Formed Unification

Type Constraints Associated to Earlier animal Hierarchy

swimmer — . {FIN S bool] mammal — [FRIENDLY bool
swimmer mammal

‘BALEEN bool
whale — FINS true
FRIENDLY boo/

whale

‘BALEEN bool|
{FINS bool} = FINS true

{FRIENDLY true} [
FRIENDLY frue

mammal swimmer

whale

[FRIENDLY true} [[FINS false} =1

swimmer

mammal

STANFORD — 6-JAN-05 (0e@csli.stanford.edu)

Computational Linguistics: Grammar Engineering (31)

Recursion in the Type Hierarchy

e Type hierarchy must be finite after type inference; illegal type constraint:
x1ist* := *xtop* & [FIRST *top*, REST *listx].

e needs additional provision for empty lists; indirect recursion:

1ist := *topx*.
ne-list := xlist* & [FIRST *top*, REST *listx*].
null := *1list*.

e recursive types allow for parameterized list types (‘list of X):

*g—list*x := *x1listx.
s—-ne—-list := *ne-listx & *s-list &

[FIRST expression, REST *s-listx].
*s-null*x := *xnull*x & *s—-listx.

STANFORD — 6-JAN-05 (0e@csli.stanford.edu)

Computational Linguistics: Grammar Engineering (32)

Notational Conventions

e lists not available as built-in data type; abbreviatory notation in TDL.:
< a, b>=1[FIRST a, REST [FIRST b, REST *nullx*]]

e underspecified (variable-length) list:
<a ... >=][FIRST a, REST *listx*]

e difference (open-ended) lists; allow concatenation by unification:
<! a !>= [LIST [FIRST a, REST #tail], LAST #tail]

e built-in and ‘non-linguistic’ types pre- and suffixed by asterisk (*top*);

e sirings (e.g. “‘chased”) need no declaration; always subtypes of *string*;

e strings cannot have subtypes and are (thus) mutually incompatible.

STANFORD — 6-JAN-05 (0e@csli.stanford.edu)

Computational Linguistics: Grammar Engineering (33)

Recognizing the Language of a Grammar

'S — NP VP h S
VP — V NP T
VP — VP PP NP VP
NP — NP PP o T
VP PP
NP — kim | snow | oslo \‘/ N‘P F" N‘P
\Fi - §nores | adores adores snow in oslo
—in
N J S
All Complete Derivations T
are rooted in the start symbol S NP VP
i y ’ ‘ /\
e label internal nodes with cate- Kim v NP

)

q leafs with wor >,
gories € C, leafs with words < X; 2dores NP PP

e instantiate a grammar rule € P at AN
snow P NP

in oslo

each local subtree of depth one.

STANFORD — 6-JAN-05 (0oe@csli.stanford.edu)

Computational Linguistics: Grammar Engineering (34)

Structured Categories in a Unification Grammar

e All (constituent) categories in the grammar are typed feature structures;
e specific TFS configurations may correspond to ‘traditional’ categories;

e labels like ‘S’ or ‘NP’ are mere abbreviations, not elements of the theory.

HEAD noun HEAD verb HEAD verb|
SPR <”> SPR () SPR <H>
Word_CDMPS Y phrase.COMPS (phrazse.COMPS Y
EN! GS! GVP!
‘lexical’ ‘maximal’ ‘intermediate’

STANFORD — 6-JAN-05 (0e@csli.stanford.edu)

Computational Linguistics: Grammar Engineering (35)

The Format of Grammar Rules in the LKB

P HEAD
comps ()| SPR ,
dauahter COMPS ([3]) Jauahter
mother! ugnter, t : ugnier;\
'HEAD
SPR
COMPS ()
'HEAD
ARGS SPR ,)
COMPS ((3])
mother! daughter, | I daughter,!

STANFORD — 6-JAN-05 (0e@csli.stanford.edu)

Computational Linguistics: Grammar Engineering (36)

Our Grammars: Table of Contents

Type Description Language (TDL)
e types.tdl type definitions: hierarchy of grammatical knowledge;
e lexicon.tdl instances of (lexical) types plus orthography;
e rules.tdl instances of construction types; used by the parser;
e lrules.tdl lexical rules, applied before non-lexical rules;

e irules.tdl lexical rules that require orthographemic variation.

Auxiliary Files (Grammar Configuration for LKB)

e globals.lsp. Parameter settings (e.g. path to orthography et al.);

e user-fns.lsp (small number) of LKB interface functions;

e mrsglobals.lsp MRS parameters (path to semantics et al.)

STANFORD — 6-JAN-05 (0e@csli.stanford.edu)

Computational Linguistics: Grammar Engineering (37)

