
MRS

Ling 567
January 26, 2016

Overview

• Lab 3 grading/Lab 4 announcements

• MRS

• Goals, design principles

• Flat semantics

• Underspecified quantifier scope

• Linguistic questions

• MRS in feature structures

Lab 3 feedback

• Currently half-way through grading Lab 3, in reverse alphabetical order by iso
code

• I see evidence of questions people didn’t post to GoPost!

• Many people are not providing enough information about how they
implemented their analyses

• See the sample write-up

• I’m looking for specific statements of what went into your choices file and
why. “This was straightfoward” doesn’t cut it!

Lab 4

• Data/description only (not handled through the customization system):

• wh questions, embedded clauses, adverbs, non-verbal predicates other
than predicative adjectives

• Data, description, and at least partial coverage through the customization
system:

• yes-no questions, coordination, adjectives (attributive & predicative),

• By tonight/tomorrow, I’d like to see questions on GoPost about analyses in
the customization system/what’s going on in your grammar

• For interactive debugging, send choices file, examples, and question by noon
on Thursday

MRS Preface

• Most of today’s lecture covers stuff that is already implemented in the Matrix.

• The goal of this presentation is to increase your understanding of what’s
already there, and how to have your code interact with it.

• In the near term, you’ll need to be able to look at the semantic
representations and understand them.

• In later labs, you’ll also be working on compositionality.

MRS: Goals

• The design of the MRS formalism answers the following four general goals:

• Adequate representation of NL semantics

• Grammatical compatibility

• Computational tractability

• Underspecifiability

MRS: Design Principles

• The design of the representations of particular linguistic phenomena follow
the following general strategies/design principles

• Represent all semantic distinctions which are syntactically or
morphologically marked

• Underspecify semantic distinctions which aren’t: These can be spelled-
out/ambiguated if necessary in post-processing

• Abstract away from non-semantic information (word order, case, ...)

• Close paraphrases should have comparable or identical MRS
representations

• Aim for consistency across languages

• Allow for semantic differences across languages

A quick reminder about quantifier scope

• Quantifiers (predicate logic or NL) take three arguments:

• A variable to bind

• A restriction

• A body

• Every dog sleeps:

• When one quantifier appears within the restriction or body of another, we say
the second has wider scope:

8x dog(x)sleep(x)

8x dog(x) 9y cat(y) see(x, y)

Working towards MRS (1/4)

• Every big white horse sleeps

• every(x,^big(x),^(white(x), horse(x))), sleep(x))

Working towards MRS (2/4)

Working towards MRS (3/4)

• And finally:

h0:every(x, h1, h2), h1:big(x), h1:white(x), h1:horse(x), h2:sleep(x)

Working towards MRS (4/4)

• This is a flat representation, which is a good start.

• Next we need to underspecify quantifier scope, and it’s easier to see why with
multiple quantifiers.

• At the same time, we want to be able to partially specify it, since this is
required for adequate representations of NL semantics.

Underspecified quantifier scope (1/2)

• Every dog chases some white cat.

Underspecified quantifier scope (2/2)

• h1:every(x,h3,h4), h3:dog(x), h7:white(y), h7:cat(y),
h5:some(y,h7,h1), h4:chase(x,y)

• h1:every(x,h3,h5), h3:dog(x), h7:white(y), h7:cat(y),
h5:some(y,h7,h4), h4:chase(x,y)

• h1:every(x,h3,hA), h3:dog(x), h7:white(y), h7:cat(y),
h5:some(y,h7,hB), h4:chase(x,y)

Partially constrained quantifier scope (1/4)

• For the BODY of quantifiers, we have no particular constraints to add.

• In turns out that the RESTRICTION needs to have partially underconstrained
scope:

• Every nephew of some famous politician runs.

• every(x,some(y,famous(y) ∧ politician(y), nephew(x,y)) run(x))

• some(y,famous(y) ∧ politician(y), every(x, nephew(x,y),run(x)))

• But not:

• every(x,run(x),some(y,famous(y) ∧ politician(y), nephew(x,y)))

• ‘Everyone who runs is a nephew of a famous politician.’

Partially constrained quantifier scope (2/4)

Partially constrained quantifier scope (3/4)

Partially constrained quantifier scope (4/4)

hh0, {h1 : every(x, h2, h3), h4 : dog(x),

h5 : probably(h6), h7 : chase(x, y),

h8 : some(y, h9, h10), h11 : white(y), h11 : cat(y)},
{h0 =q h5, h2 =q h4, h6 =q h7, h9 =q h11}i

hh0, {h2 : every(x, h3, h4), h5 : nephew(x, y),

h6 : some(y, h7, h8), h9 : politician(y), h9 : famous(y),

h10 : run(x)},
{h0 =q h10, h7 =q h9, h3 =q h5}i

We’ve arrived at MRS!

• Flat structure

• Underspecification & partial specification of quantifier scope are possible

Linguistic Questions

• How do we build MRS representations compositionally?

• Is it linguistically adequate to insist that no process suppress relations?

• Under what circumstances do NLs (partially) constrain scope?

• Is it linguistically adequate to give scopal elements (esp. quantifiers, but also
scopal modifiers) center-stage?

MRS in feature structures

• RELS: List (diff-list) of relations

• HCONS: List (diff-list) of handle constraints

• ICONS: List (diff-list) of individual constraints

• HOOK: Collection of features ‘published’ for further compisition: INDEX,
LTOP, XARG

• ARGn: Roles within relations

Anatomy of an MRS

• An MRS consists of:

• A top handle

• A list of relations, each labeled by a handle

• A list of handle constraints

• (A list of individual constraints)

• An (underspecified) MRS is well-formed iff the constraints can be resolved
to form one or more trees (singly-rooted, connected, directed acyclic
graphs).

Anatomy of a relation

• A relation has:

• A predicate (string or type)

• A label (handle)

• One or more arguments: ARG0-n
(ARG0 canonically being the
event or individual introduced by
the relation)

• The value of each ARGn is either:

• An index, canonically identified
with the ARG0 of another
relation

• A handle: identified with the
label of another relation, the
HARG of a handle constraint, or
not identified with anything

Anatomy of a handle constraint

• Current sole handle constraint type: qeq

• ‘Equal modulo quantifiers’

• Features: HARG, LARG

• → Unless some quantifier scopes in between, the value of this ARGn is the
same as the label of that relation.

• When the label of a relation is the value of an ARGn, this corresponds to a
branch in an MRS tree.

• When the value of an ARGn is qeq the label of a relation, this corresponds to
a ‘dotted’ branch – i.e., a dominance relation.

When else are handles identified?

• Relations with the same handle value share the same scope.

• Typically, we see this with intersective modifiers (adverbs, adjectives, PPs)
which share their handles with their modifies.

Composition: Overview

• RELS and HCONS (and ICONS) on mother nodes

• HOOK, LKEYS

• ARGn <> indices

• ARGn <> handles

• LBL <> LBL

• Building qeqs

RELS and HCONS on mother nodes

• The RELS and HCONS (and ICONS) value of the mother is the append of the
values from the daughter(s) and the C-CONT of the mother.

• C-CONT is the ‘constructional content’: allows phrase structure rules to
introduce relations.

• Examples?

• From a semantic point of view, the C-CONT is just another daughter.

Appending lists with unification

• A diff-list embeds an open-ended list into a container structure providing a
‘pointer’ to the end of the ordinary list.

• To append : (i) unify the front of [B] (i.e. the value of its LIST feature) into the
tail of [A] (its LAST value) and

• (ii) use the tail of difference list [B] as the new tail for the result of the
concatenation.

Result of appending lists

Matrix type: dl-append

• NB: Not for direct use in the grammar; this type is just meant as reference

Diff-lists: practicalities

• Typically errors with diff-lists involve circularity and not direct unification
failure.

• If the LKB complains about circular feature structures, check your difference
lists.

• Don’t try to constrain the length of a difference list.

• Unifying structures which include diff lists in an append relation can result in
diff lists constrained to be empty.

Returning to our regularly scheduled
programming...

• Why do we need diff-lists?

• Why do we need append?

Semantic compositionality in action

Now what?

• Phrase structure rules (and lexical rules) gather up RELS and HCONS from
daughters.

• Phrase structure rules also (optionally) introduce further RELS and HCONS.

• How do we link the ARGn positions of the relations to the right things?

• How do we link the HARG/LARG of qeqs to the right things?

HOOK

• The CONT.HOOK is the information
that a given sign exposes for further
composition.

• By hypothesis, this includes only:

• INDEX (the individual or event
denoted by the sign, linked to
some ARG0)

• LTOP (the local top handle of the
sign)

• XARG (the external argument of
the sign)

• The HOOK of a sign is identified its
with the C-CONT.HOOK.

• The C-CONT.HOOK in turn is
identified with the semantic head
daughter, if there is one.

• Otherwise, the LTOP, INDEX, and
XARG inside C-CONT.HOOK need
to be constrained appropriately.

LKEYS

• The feature LKEYS houses pointers to important relations on the RELS list,
most notably LKEYS.KEYREL.

• Only appropriate for lexical items.

• Serves as a uniform place to state linking constraints.

• Linking constraints: equality between HOOK.INDEX or HOOK.LTOP of
arguments/modifiees and LKEYS.KEYREL.ARGn.

ARGn <> indices

ARGn <> handles (1/2)

ARGn <> handles (2/2)

LBL <> LBL

• The rule for intersective modifiers identifies the LTOP of the two daughters,
and thus the LBL of the main relation introduced by each.

• The HOOK value of the whole thing comes from the syntactic head, thanks to
the type head-compositional.

Scopal modifiers (1/2)

• No identification of LTOPs.

• Non-head (adjunct) daughter is the semantic head.

Scopal modifiers (2/2)

• Builds qeq between its ARG1 and the MOD’s LTOP

Building qeqs

• Determiners

• Scopal adverbs

• Clausal complement verbs (and nouns, adjectives, adpositions...)

Summary

• Phrase structure and lexical rules:

• ... gather up RELS and HCONS
(and ICONS)

• ... potentially add further RELS
and HCONS

• ... unify elements on valence/
mod lists with signs

• ... pass up and/or modify HOOK
information

• Lexical entries:

• ... orchestrate the linking
between valence/mod lists and
the ARGn positions in the
relations they contribute

• ... expose certain information in
the HOOK

Composition: Overview

• RELS and HCONS (and ICONS) on mother nodes

• HOOK, LKEYS

• ARGn <> indices

• ARGn <> handles

• LBL <> LBL

• Building qeqs

