# The Matrix: Future Directions Wrap up

Ling 567 March 8, 2016

### Overview

- Wrap up/reflections
- Matrix: Future directions
  - More libraries
  - More robust MMT
  - Applications, including language documentation

# Goals: Of Grammar Engineering

- Build useful, usable resources
- Test linguistic hypotheses
- Represent grammaticality/minimize ambiguity
- Build modular systems: maintenance, reuse

### Goals: Of this course

- Mastery of tfs formalism
- Hands-on experience with grammar engineering
- A different perspective on natural language syntax
- Practice building (and debugging!) extensible system
- Contribute to on-going research in multilingual grammar engineering

# Reflections

- Where have the analyses provided by the Matrix (or suggested by the labs) seemed like a good fit?
- Where have they been awkward?
- What have you learned in this class about syntax?
- ... about knowledge engineering for NLP?
- ... about computational linguistics in general?
- ... about linguistics in general?
- What did working with a test corpus show you about the process of scaling to real-world text?

### Feedback: Pair projects

- How did you divide the work?
- In what ways was having a partner helpful?
- Would you have learned more working on your own?

### More reflections

- Semantic representations are important
  - It's easier to work on them if they serve as an interface to something
- Analyses of phenomena interact
  - The more streamlined/motivated the analysis of each phenomenon is, the smoother the interactions
  - What interactions did you encounter?

# More reflections: model and modeling domain

- From 566: Distinction between the model (HPSG grammar fragment) and the modeling domain (there: English).
- How did this play out in 567?

### Future directions overview

- More libraries (and semantic harmonization)
- How this class will evolve
- MT: Auto-generated transfer rules, typological seeding of statistical NLP (including SMT)
- Lexical acquisition
- Ontological annotation
- AGGREGATION

# More libraries

- In progress: Valence-changing lexical rules, agreement in coordination
- Next up?
  - Pronouns
  - Extensions/retrofits to questions, coordination
  - (more) extensions to word order
  - Other non-verbal predicates
  - Other intersective modifiers
  - Numeral classifiers
  - More verb subcategorization
  - Embedded clauses

### How to make a library

- 1. Delineate a phenomenon
- 2. Survey the typological literature: How is this phenomenon expressed across the world's languages?
- 3. Review the syntactic literature for analyses of the phenomenon in its various guises
- 4. Design target semantic representations
- 5. Develop HPSG analyses for each variant and implement in tdl
- 6. Decide what information is required from the user to select the right analysis, and extend questionnaire accordingly
- 7. Extend customization script to add tdl based on questionnaire answers
- 8. Add regression tests documenting functionality
- 9. Add prose documenting how to use

### How to evaluate a library

- Pseudo-languages
- Illustrative languages
- Held-out languages

- Test suites
- Choices files
- Error analysis

# More libraries/reflection from current class

- What do you most wish was available in the customization system, based on what came up in your test suite?
- In your test corpus?

# Evolution of 567

- New phenomena: Wh-questions, possessives, relative clauses, whileclauses ...?
- Ever bigger jump start --- reaching the limit on this one?
  - Would working in groups of three make it possible to get to even bigger grammar fragments?
- How did these work out?:
  - Partnership with field linguists
  - Work with small corpora
- Coverage-driven labs seem most satisfying (MT demo, corpus coverage). Is this true? Can the course be rebalanced to do more of this?

### Lexical acquisition

- How can we import lexical entries from other linguistic resources (e.g., FIELD lexicons, ODIN, other IGT collections)?
- How big do the grammars have to get before we can embark on (semi-)automated lexical acquisition?
- To what extent do the lexical properties of translational equivalents predict lexical properties in another language?
- How can we most effectively leverage human effort?
- How do we know when we're missing an appropriate type?

### Autogenerated transfer rules

- Identify "grammaticized" differences in MRSs
- "Publish" choices along these dimensions for each grammar
- Create a library of transfer rules from property to property:
  - pro-drop to pronouns (and vice versa)
  - mismatches in demonstrative distinctions
  - can <> the possibility exists
  - hurt/cause feel+pain/cause harm

### Autogenerated transfer rules

- Use language-specific PRED values
- Create transfer rules on the basis of PanLex or other lexical resources
- Measure the extent of translation divergence (Francesca Gola's MS thesis)
- Use bitexts and statistical methods to detect word pairs requiring more than straight pred-mapping transfer rules

## Ontological annotation

- Annotate grammars with links to GOLD (Farrar & Langendoen 2003)
  - Locate which constraints contribute to which phenomena
  - Index analyses for discovery in grammars and treebanks
- Annotations in Matrix core
- Annotations in customization system
- Support for user annotation

### AGGREGATION: Research goals

- Precision implemented grammars are a kind of structured annotation over linguistic data (cf. Good 2004, Bender et al 2012).
- They map surface strings to semantic representations and vice-versa.
- They can be used in the development of *grammar checkers* and *treebanks*, making them useful for language documentation and revitalization (Bender et al 2012)
- But they are expensive to build.
- The AGGREGATION project asks whether existing products of documentary linguistic research (IGT collections) can be used to boot-strap the development of precision implemented grammars.

## Combining linguistic knowledge



### **RiPLes:** Goals

- RiPLes: information engineering and synthesis for Resource Poor Languages
- Support rapid development of NLP resources for RPLs by bootstrapping through IGT
- Support cross-linguistic study through creating 'language profiles' based on IGT analysis

(Xia & Lewis 2007, Lewis & Xia 2008)

#### RiPLes: IGT projection methodology



(Xia & Lewis 2009)

#### **RiPLes:** Results

|             | WOrder | VP   | DT  | Dem | JJ  | PRP\$ | Poss | Р   | N    | N     | V   | Def | Indef | Avg   |
|-------------|--------|------|-----|-----|-----|-------|------|-----|------|-------|-----|-----|-------|-------|
|             |        | +OBJ | +N  | +N  | +N  | +N    | +N   | +NP | +num | +case | +TA |     |       |       |
| basic CFG   | 0.8    | 0.5  | 0.8 | 0.8 | 1.0 | 0.8   | 0.6  | 0.9 | 0.7  | 0.8   | 0.8 | 1.0 | 0.9   | 0.800 |
| sum(CFG)    | 0.8    | 0.5  | 0.8 | 0.8 | 0.9 | 0.7   | 0.6  | 0.8 | 0.6  | 0.8   | 0.7 | 1.0 | 0.9   | 0.762 |
| CFG w/ func | 0.9    | 0.6  | 0.8 | 0.9 | 1.0 | 0.8   | 0.7  | 0.9 | 0.7  | 0.8   | 0.8 | 1.0 | 0.9   | 0.831 |
| both        | 0.9    | 0.6  | 0.8 | 0.8 | 0.9 | 0.7   | 0.5  | 0.8 | 0.6  | 0.8   | 0.7 | 1.0 | 0.9   | 0.769 |

Table 3: Experiment 1 Results (Accuracy)

Table 5: Word Order Accuracy for 97 languages

| # of IGT instances | Average Accuracy |
|--------------------|------------------|
| 100+               | 100%             |
| 40-99              | 99%              |
| 10-39              | 79%              |
| 5-9                | 65%              |
| 3-4                | 44%              |
| 1-2                | 14%              |

(Lewis & Xia 2008)

# Word order options

- Lewis & Xia 2008, Dryer 2011 (WALS)
  - SOV
  - SVO
  - OSV
  - OVS
  - VSO
  - VOS
  - no dominant order

- Grammar Matrix
  - SOV
  - SVO
  - OSV
  - OVS
  - VSO
  - VOS
  - Free (pragmatically determined)
  - V-final
  - V-initial
  - V2

# Word order in the Grammar Matrix

- More than a simple descriptive statement
- Affects phrase structure rules output by the system, but also interacts with other libraries (e.g., argument optionality)
- These phrase structure rules help model the mapping of syntactic to semantic arguments
- Underlying word order is not reflected in every sentence; testsuites won't have the same distribution as naturally occuring corpora
- Matrix users advised to choose fixed word order if deviations from that order can be attributed to specific syntactic constructions

# Methodology

- Parse English translation and project the parsed structure onto the language line (per RiPLes)
- Add -SBJ and -OBJ function tags to the English parse trees (by heuristic), and project these too
- Observed word orders: counts of the 10 patterns SOV, SVO, OSV, OVS, VSO, VOS, SV, VS, OV, and VO in the source language trees
- Decompose SOV, SVO, OSV, OVS, VSO, VOS into order of S/O, S/V and O/V

# Methodology

- SOV, SVO, OSV, OVS, VSO, VOS
- Measure Euclidean distance to
  positions of canonical word orders
- In a separate step, distinguish free from V2



#### Dev and test data

31 testsuite + choices file pairs, developed in Linguistics 567 at UW (Bender 2007)

|                      | DEV1                         | DEV2                     | TEST                       |
|----------------------|------------------------------|--------------------------|----------------------------|
| Languages            | 10                           | 10                       | 11                         |
| Grammatical examples | $16-359 \pmod{91}$           | $11-229 \pmod{87}$       | 48–216 (median: 76)        |
| Language families    | Indo-European $(4)$ , Niger- | Indo-European $(3)$ ,    | Indo-European (2), Afro-A  |
|                      | Congo (2), Afro-Asiatic,     | Dravidian $(2)$ , Algic, | Austro-Asiatic, Austronesi |
|                      | Japanese, Nadahup,           | Creole, Niger-Congo,     | Arauan, Carib, Karvelian,  |
|                      | Sino-Tibetan                 | Quechuan, Salishan       | N. Caucasian, Tai-Kadai, I |

### Results

• Compare to most-frequent-type (SOV, Dryer 2011)

| Dataset | Inferred WO | Baseline |
|---------|-------------|----------|
| DEV1    | 0.900       | 0.200    |
| DEV2    | 0.500       | 0.100    |
| TEST    | 0.727       | 0.091    |

- Sources of error:
  - Testsuite bias
  - Misalignment in projections

# Case system options in the Grammar Matrix: Case marking on core arguments of (in)transitives

- None
- Nominative-accusative
- Ergative-absolutive
- Tripartite
- Split-S
- Fluid-S
- Split conditioned on features of the arguments
- Split conditions on features of the V
- Focus-case (Austronesian-style)

- The choice among these options makes further features available on the lexicon page, including case frames
- There is always the option to define more cases and case frames

## Two methods

- GRAM: Assume Leipzig Glossing Rules-compliance (Bickel et al 2008)
- Search gloss line for case grams, and assign system as follows:

| Case               | Case gram      | ns present     |  |  |  |  |  |  |
|--------------------|----------------|----------------|--|--|--|--|--|--|
| sysem              | NOM $\lor$ ACC | ERG $\lor$ ABS |  |  |  |  |  |  |
| none               |                |                |  |  |  |  |  |  |
| nom-acc            | $\checkmark$   |                |  |  |  |  |  |  |
| erg-abs            |                | $\checkmark$   |  |  |  |  |  |  |
| split-erg          | $\checkmark$   | $\checkmark$   |  |  |  |  |  |  |
| (conditioned on V) |                |                |  |  |  |  |  |  |

- SAO: Use RiPLes to identify S, A, and O arguments
- Collect most frequent gram for each
- Compare most frequent grams across S/A/O to determine case system

#### Results

| Dataset | GRAM  | SAO   | Baseline |
|---------|-------|-------|----------|
| DEV1    | 0.900 | 0.700 | 0.400    |
| DEV2    | 0.900 | 0.500 | 0.500    |
| TEST    | 0.545 | 0.545 | 0.455    |

- GRAM confused by non-NOM/ACC style glossing
- SAO confused by testsuite bias (spurious most-frequent elements)
- SAO confused by alignment errors (e.g. case marking adpositions)

# MOM: Matrix-ODIN Morphology

- David Wax MS thesis (near completion)
- Use RiPLeS-like methodology to identify verbs
- Use GIZA++ again to align morphemes to glosses
- Extract lexical rule definitions: input, form, features (in some cases)
- Compress lexical rules into shared position classes based on shared inputs
- Output choices files

#### MOM: Results (French)



### MOM Results: ODIN data (Turkish, Tagalog)

| % input overlap | No. Choices | Verb Classes | Position Classes | Coverage |
|-----------------|-------------|--------------|------------------|----------|
| Baseline        | N/A         | N/A          | N/A              | 0.803    |
| No Compression  | 1445        | 43           | 62               | 0.794    |
| 100%            | 1356        | 43           | 22               | 0.824    |
| 80%             | 1356        | 43           | 22               | 0.824    |
| 60%             | 1356        | 43           | 22               | 0.824    |
| 40%             | 1346        | 43           | 17               | 0.824    |
| 20%             | 1342        | 43           | 15               | 0.824    |

Table 6.8: Coverage of Test Data for Tagalog

| % input overlap | No. Choices | Verb Classes | Position Classes | Coverage |
|-----------------|-------------|--------------|------------------|----------|
| Baseline        | N/A         | N/A          | N/A              | 0.459    |
| No Compression  | 3975        | 137          | 168              | 0.630    |
| 100%            | 3716        | 137          | 52               | 0.668    |
| 80%             | 3696        | 137          | 42               | 0.668    |
| 60%             | 3696        | 137          | 42               | 0.668    |
| 40%             | 3639        | 137          | 18               | 0.674    |
| 20%             | 3639        | 137          | 18               | 0.674    |

Table 6.9: Coverage of Test Data for Turkish

### Bender et al 2014: End-to-end, for Chintang [ctn]

| Choices file     | # verb entries | # noun entries | # det entries | # verb affixes | # noun affixes |
|------------------|----------------|----------------|---------------|----------------|----------------|
| ORACLE           | 900            | 4751           | 0             | 160            | 24             |
| BASELINE         | 3005           | 1719           | 240           | 0              | 0              |
| FF-AUTO-NONE     | 3005           | 1719           | 240           | 0              | 0              |
| FF-DEFAULT-GRAM  | 739            | 1724           | 240           | 0              | 0              |
| FF-AUTO-GRAM     | 739            | 1724           | 240           | 0              | 0              |
| MOM-DEFAULT-NONE | 1177           | 1719           | 240           | 262            | 0              |
| MOM-AUTO-NONE    | 1177           | 1719           | 240           | 262            | 0              |

#### Table 2: Amount of lexical information in each choices file

|                  |        | Training Data ( $N = 8863$ ) |       |        |       |         |          |      | Test Data ( $N = 930$ ) |     |         |     |          |          |
|------------------|--------|------------------------------|-------|--------|-------|---------|----------|------|-------------------------|-----|---------|-----|----------|----------|
|                  | lex    | tical                        | ite   | ems    | it    | ems     | average  | 16   | exical                  | i   | tems    | i   | items    | average  |
| choices file     | covera | age (%)                      | parse | ed (%) | corre | ect (%) | readings | cove | rage (%)                | par | sed (%) | cor | rect (%) | readings |
| ORACLE           | 1165   | (13)                         | 174   | (3.5)  | 132   | (1.5)   | 2.17     | 116  | (12.5)                  | 20  | (2.2)   | 10  | (1.1)    | 1.35     |
| BASELINE         | 1276   | (14)                         | 398   | (7.9)  | 216   | (2.4)   | 8.30     | 41   | (4.4)                   | 15  | (1.6)   | 8   | (0.9)    | 28.87    |
| FF-AUTO-NONE     | 1276   | (14)                         | 354   | (4.0)  | 196   | (2.2)   | 7.12     | 41   | (4.4)                   | 13  | (1.4)   | 7   | (0.8)    | 13.92    |
| FF-DEFAULT-GRAM  | 911    | (10)                         | 126   | (1.4)  | 84    | (0.9)   | 4.08     | 18   | (1.9)                   | 4   | (0.4)   | 2   | (0.2)    | 5.00     |
| FF-AUTO-GRAM     | 911    | (10)                         | 120   | (1.4)  | 82    | (0.9)   | 3.84     | 18   | (1.9)                   | 4   | (0.4)   | 2   | (0.2)    | 5.00     |
| MOM-DEFAULT-NONE | 1102   | (12)                         | 814   | (9.2)  | 52    | (0.6)   | 6.04     | 39   | (4.2)                   | 16  | (1.7)   | 3   | (0.3)    | 10.81    |
| MOM-AUTO-NONE    | 1102   | (12)                         | 753   | (8.5)  | 49    | (0.6)   | 4.20     | 39   | (4.2)                   | 10  | (1.1)   | 3   | (0.3)    | 9.20     |

Table 3: Results

# Summary

- First steps towards our long-term goal: Automatically create working grammar fragments from IGT, by taking advantage of
  - Grammar Matrix customization system's mapping of relatively simple language description files to working grammars
  - Linguistic analysis encoded in IGT
  - RiPLes methodology for further enriching IGT
- Resulting grammars are of interest for testing the Grammar Matrix as a set of typological hypotheses
- And potentially for field grammarians (when built-out) as they can support the creation of treebanks and exploration of corpora for unanalyzed phenomena

### Overview

- Wrap up/reflections
- Matrix: Future directions
  - More libraries
  - More robust MMT
  - Applications, including language documentation
- Next time: MMT extravaganza and course evals