K

Ling

Nntroductio

S forma

567

March 28, 2017

N, organization

1ISIM

Overview

» The BIG picture

» Goals (of grammar engineering, of this course)
* The LinGO Grammar Matrix

» Other approaches

» Course requirements/workflow

* Pick a language, (almost) any language

- Components

- Lab 1 preview

« LKB formalism

Sut first:

- https://www.ehs.washington.edu/fsoemerprep/evacinfo.shtm

https://www.ehs.washington.edu/fsoemerprep/evacinfo.shtm

What is grammar engineering”

* The implementation of natural language grammars in software.
- Grammars can be used for parsing and/or generation.

* Relate surface strings to semantic representations
- Grammars can be practically focused or theoretically focused.
- Knowledge-engineering approach to parsing.

* “Precision” grammars can give deeper representations

* ... but tend to be less robust.

How IS grammar engineering different from other
approaches to syntax?

* Implementation requires fully explicit analyses

* Implementation allows automated verification of analyses
- Parse test suites
 Parse test corpora
« Generate from stored semantic representations

- Implementations allows/requires incremental development

* Interrelatedness of analyses becomes more apparent

Pen and paper syntax work-flow

()

|dentify
phenomena to
analyze

|dentify key
examples

o

()

—

Refine
analysis

T

Develop
analysis

()

|dentify cases
of interesting
predictions

r

Test acceptability of
new key examples

—

~\

Grammar engineering work flow
(Bender et al 2011)

Develop
initial test
suite

/_\‘ Develop
. analysis
|dentify
phenomena ’ _ .
to analyze Extend test suite

with examples
documenting
analysis

—

Implement
analysis

Treebank

Parse full
test suite

arse sample
sentences

Debug
implementation

Compile
grammar

How IS grammar engineering different from other
approaches to parsing?

» All parsers require linguistic knowledge --- information about possible and
probable pairings of strings and linguistic structure

- Grammar engineering: Rules behind possible strings are hand-coded

(Flickinger 2000, Riezler et al 2002, ...); probabilities derived from grammar-
based treebank

 Treebank-trained parsers: Knowledge extracted from treebank, which in turn
Is (mostly) hand-coded (Charniak 1997, Collins 1999, Petrov et al 2006, ...)

» Unsupervised parsers: Knowledge extracted from co-occurrence patterns of
words (Clark 2001, Klein and Manning 2004)

- Hybrid-approaches: Skeleton grammar built by hand, complemented by
information from treebank (O’Donovan et al 2004, Miyao et al 2004, ...)

Applications of grammar engineering

- Language documentation

* Linguistic hypothesis testing

« MT

* IR (“semantic search” --- PowerSet)

« Automated email response

* Augmentative and assistive communication

- Computer assisted language learning (CALL)

Challenges for grammar engineering

- efficient processing (Oepen et al 2002)

» ambiguity resolution (Toutanova et al 2005)

- domain portability

- |lexical acquisition (Baldwin 2005)

« extragrammatical/ungrammatical input

 scaling to many languages

Hybrid approaches

 Naturally occurring language is noisy

* typos
* “mark up”

- addresses and other non-linguistic strings
- false starts

* hesitations

 Allowing for noise within the grammar would reduce precision

- And then there’s ambiguity, unknown words, ...

Hybrid approaches

« Combine knowledge engineering and machine learning approaches:

 Statistical parse selection

* (Statistical) named-entity recognition and POS tagging in a pre-
processing step (for unknown word handling)

- Tiered systems with shallow parser as fallback for precision grammar

« Other direction:

- Deep grammars providing richer linguistic resources or seed
iInformation to train machine learners

Overview

» The BIG picture

» Goals (of grammar engineering, of this course)
* The LinGO Grammar Matrix

« Other approaches

» Course requirements/workflow

 Pick a language, (almost) any language

- Components

 LKB formalism

Goals: Of Grammar Engineering

- Build useful, usable resources

* Test linguistic hypotheses

* Represent grammaticality/minimize ambiguity

- Build modular systems: maintenance, reuse

Goals: Of this course

* Mastery of tfs formalism

- Hands-on experience with grammar engineering

* A different perspective on natural language syntax

* Practice building (and debugging!) extensible system

 Contribute to on-going research in multilingual grammar engineering

» Contribute to language documentation efforts (optional)

Goals: Of this course

- Understand a range of grammatical facts about a language, plus how to
get them from descriptive materials

* Learn more about using HPSG to model grammatical facts
» Deeper understanding of relationship between syntax and semantics

- Lean how to use the computational tools of grammar engineering to test
and develop formalizations

Testing and developing formalizations

 Tools: LKB, [incr tsdb()]
» Steps:
» Identify intended analysis (primarily semantic)

» Hypothesize new rules/lexical entries or new constraints on existing
rules/lexical entries that will produce intended analyses

* Implement constraints (and debug until grammar compiles)

« Test and examine results: Overconstrained? Underconstrained?

Relationship between syntax and semantics

* What does syntax do?

» Constrain ambiguity
* Provide scaffolding for building semantic representations

- Handle grammaticality (agreement, word order, case, ...)
- What do semantic representations do?

- Make explicit who did what to whom
» Serve as input for tactical generation
» Relate multiple surface forms to each other

* Differentiate multiple analyses of same surface form

Overview

» The BIG picture

» Goals (of grammar engineering, of this course)
* The LinGO Grammar Matrix

« Other approaches

» Course requirements/workflow

 Pick a language, (almost) any language

- Components

 LKB formalism

The LINnGO Grammar Matrix

- Addresses the scalability challenge by reducing the cost of creating
grammars

» Starter-kit which allows for quick initial development while supporting
long-term expansion

* Represents a set of hypotheses about cross-linguistic universals and
cross-linguistic variation

* Includes typologically grounded “libraries” exploring the range of variation
In certain phenomena

A sampling of hypotheses

* Words and phrases combine to make larger phrases.

* The semantics of a phrase is determined by the words in the phrase and
how they are put together.

« Some rules for phrases add semantics (but some don'’t).
- Most phrases have an identifiable head daughter.

- Heads determine which arguments they require and how they combine
semantically with those arguments.

* Modifiers determine which kinds of heads they can modify, and how they
combine semantically with those heads.

* No lexical or syntactic rule can remove semantic information.

Multilingual grammar engineering:
Other approaches

* The DELPH-IN consortium specializes in large HPSG grammars

» Other broad-coverage precision grammars have been built by/in/with

» LFG (ParGram: Butt et al 1999)

* F/XTAG (Doran et al 1994)

- ALE/Controll (Gétz & Meurers 1997)
» SFG (Bateman 1997)

- GF (Ranta 2007)

* OpenCCG (Baldridge et al 2007)

* Proprietary formalisms and Microsoft and Boeing and IBM

Overview

» The BIG picture

» Goals (of grammar engineering, of this course)
* The LinGO Grammar Matrix

« Other approaches

» Course requirements/workflow

 Pick a language, (almost) any language

- Components

 LKB formalism

Course requirements/workflow

 Tuesdays lecture, Thursdays discussion
 Office/lab hours on (most) Tuesdays and Fridays
- Weekly lab assignments, posted one week ahead, due on Friday

* Be sure to start the lab early in the week, so you can bring useful
guestions

- At least half of each lab grade will be on the documentation
» Labs 2-9 as partner projects, taking turns doing the write-up
* No exams; front-loaded course schedule

* “Uncheatable”

Course requirements/workflow

- Week 1: Getting to know the LKB (English exercise); pick your language

- Weeks 2-4: Test suite construction, iteratively customize starter grammar

- Weeks 5-9: Build out your grammar

- Week 10: MT extravaganza

Surviving the course

- Communication is key: Please ask questions!

» Get started early, to have time for collaboration and question turn-
around

- Use Canvas discussions

» Subscribe to Canvas notifications
- Read my feedback on labs quickly & ask for clarification if necessary
* Read (and contribute to!) FAQs, glossary (-> demo)

- EMB’s office hours

* 10 minute rule

Surviving this course

* Invest the time to get comfortable with emacs

* Resist the urge to build a perfect grammar

- Read the assignments carefully/ask questions to clarify what exactly is being
asked for

* Ask lots of questions, ask early and often!
» 2016: 1,074 (12)
» 2015: 1,248 (18)

. 2014: 1,224 (14)

Pick a language, any language

* And pick a partner. (ldeally each team should have at least one linguist.)

- Each team must pick a different language.

* Previous languages are on the wiki, generally only languages most recently
done in 2004 or 2005 are available for re-treatment.

* No English, non-Indo European preferred.

» Consider using an ascii transliteration.

- Languages with complex morphophonology require abstraction (assume a
morphophonological preprocessor).

 Pick a language with a good descriptive grammar available.

Why assume a morphophonological analyzer?

« Easy case: Swabhili [swh]

Mi-ti mi-kubwa hi-i y-a mwitu i-li-anguka jana.
c4-trees c4-big these-c4 of.c4-poss forest c4-psT-fall yesterday.

“These big trees of the forest fell yesterday.” [swh] (Reynolds & Eastman 1989:64)

- Impossible case: Slave [scsS]

a. ya-de-d-@-1dh — yddeht’q
ADV-INC-D-@-be.fooled
“I was fooled.” (Rice 1989:444)

b. id-@-7dh — yit’ah
1PL-@-go
“We two are going.” (Rice 1989:476)

What is good IGT?

- Good enough: Examples on previous page

* Not helpful enough (ex from Aspects of Hopi Grammar):

(147) (a) qa pam hohonaqa

'It's not him who is playing.'’

(b) qgqa mi? wi?ti yi?a%ata

'It's not that woman who is speaking.'

(LaVerne Masayesva 1978:1706)

Field languages!

« Contacted field linguists interested in having grammars built for the
languages they are working on: Abui, Sawila

- Advantages:

» Contribute to documentation of under-described (and in many cases
endangered) languages

» Contribute to emerging intersection of compling and language
documentation

» Work directly with field linguists who can help answer questions in a
way that published materials can’t

Field languages!

* Disadvantages:

» Languages are in process of documentation; some information might
not be available

» Higher level of responsibility to create a good grammar (don’t let the
field linguist and the speakers of the language down!)

 QOverall, field languages should be very interesting

Respectful communication

* There’s a history of conflict between documentary & theoretical linguistics,
with theoretical linguists not fully appreciating the difficulty and importance
of the work done by field linguists.

- When working with field linguists, please be respectful of both the effort
they have already put in and the time they give for answering your
questions.

* When working with data/describing your work, please be respectful of the
intellectual property of field linguists and speaker communities. Ask the
field linguist what to cite, what can be shared, etc.

Overview

» The BIG picture

» Goals (of grammar engineering, of this course)
* The LinGO Grammar Matrix

« Other approaches

» Course requirements/workflow

 Pick a language, (almost) any language

- Components

 LKB formalism

Components

- HPSG: Theoretical foundations

- LKB

- Grammar (Matrix-provided, plus extensions)

 Emacs: editor, interaction with LKB

» [incr tsdb()]

LK

3

tdl reader/compiler

parser

generator

grammar exploration tools

* parse chart

* interactive unification

* type and hierarchy exploration

Grammar

* A set of tdl files:

- Grammar Matrix core
* Additions from the customization system

* Your additions

 Actually separated into:

Type definitions

Instances of grammar rules, lexical rules, lexical entries

Root symbols

Node label abbreviations

* Also includes: Lisp code for LKB interaction

[incr tsdb()]

Pronounced “tee ess dee bee plus plus”

Loading in test suites

Running test suites (batch processing)

Comparing multiple test suite runs:
» Changes in which examples parse

* Changes in number of analyses per item

- Changes in representations per item

Treebanking

Overview

» The BIG picture

» Goals (of grammar engineering, of this course)
* The LinGO Grammar Matrix

» Other approaches

» Course requirements/workflow

* Pick a language, (almost) any language

- Components

- Lab 1 preview

« LKB formalism

