Grammar files, PR
llocutionary force

D values, clause types,

Ling 567
May 2, 2017

Overview

- tdl detalls:
- Grammar files, instances v. types
- PRED values
- Tdl style

* lllocutionary force

- Embedded clauses

* Non-verbal predicates

- Lab 6 overview

- Trigger rules

Grammar files

matrix.tdl, head-types.tdl: Type files (core grammar)
my_language.tdl: Type file (language specific)

rules.tdl: Instance file for phrase structure rules

irules.tdl: Instance file for spelling changing lexical rules
Irules.tdl: Instance file for non-spelling changing lexical rules
lexicon.tdl: Instance file for lexical entries

roots.tdl: Instance file for root condition(s)

labels.tdl: Instance file for node labels

trigger.mtr: Instance file for trigger rules for generation

my_langauge-pet.tdl: Grammar spec file for compilation with ‘flop’

lkb/, ace/, pet/: Directories of files for Ikb/ace/pet interaction

Roots, Labels

* Why do we sometimes see ADJ or CP as the label on the root node?

adj-label := label &
| SYNSEM.LOCAL[CAT.HEAD adj,
COORD-STRAT "],
LABEL-NAME "ADJ"].

cp-label = label &
| SYNSEM.LOCAL.CAT [HEAD comp,
VAL.COMPS < > |,
LABEL-NAME "CP"|.

Types v. iInstances

 Types define the feature geometry, possibilities for unification, and
constraints inherited by instances.

* Instances are what the LKB actually uses to parse and generate.
* Types can have multiple supertypes.
* Instances can only inherit from one type.

- Types and instances exist in separate name spaces.

Features and types

* Features can only be “declared” for one type. Any type mentioning that
feature must inherit from the declaring supertype.

- Features can only be “declared” at the outermost level.

typel := supertype &

+ Good: T FEATURE BOOL 7.
type2 := typel &
[FEATURE +].
type2 := supertype &
[FEATURE +].
- Bad:

typed := typel &
[PATH.NEW-FEAT +].

RED values

For the MT exercise, we need to coordinate on pred values.

Convention is _English+lemma_pos_rel, where pos is drawn from {n, v, q,
a, p}

Grammar types don’t have leading underscore: exist_qg_rel

*

Featural information isn’t replicated in PRED values: *_went_v_rel,

* the_q_rel

Tdl style: Bad

demonstrative-determiner-lex := determiner-lex-supertype &
[SYNSEM.LOCAL.CONT.RELS
<!
[PRED "exist_q_rel"],
#altkeyrel & argl-ev-relation &
[LBL #1bl,
ARG1 #index]
1>,
SYNSEM.LKEYS.ALTKEYREL #altkeyrel,
SYNSEM.LOCAL.CAT.VAL.SPEC.FIRST.LOCAL.CONT.HOOK[INDEX #index &
[COG-ST acti+fam]
LTOP #1bl]].

Tdl style: Good

demonstrative-determiner-lex := determiner-lex-supertype &
[SYNSEM [LOCAL [CONT.RELS <! [PRED "exist_qg_rel" 1],
#altkeyrel & argl-ev-relation &
[LBL #1bl,
ARG1 #index] !>,
CAT.VAL.SPEC.FIRST.LOCAL.CONT.HOOK [INDEX #index &
[COG-ST activ+fam],
LTOP #1bl 11,
LKEYS.ALTKEYREL #altkeyrel]].

Overview

- tdl detalls:
- Grammar files, instances v. types
- PRED values
- Tdl style

* lllocutionary force

- Embedded clauses

* Non-verbal predicates

- Lab 6 overview

- Trigger rules

llocutionary force: Why clausal semantics?

* lllocutionary force correlates with syntactic form.

* MRS representations should include all semantic information that is
syntactically marked.

Aside: Perlocutionary, Locutionary, lllocutionary

- Locutionary act: The act of saying something

* lllocutionary act: The act of asking, asserting, commanding, etc. by saying
something

 Perlocutionary act: The act of getting someone to do or believe something
by asking, asserting, etc. something.

Overview

- tdl detalls:
- Grammar files, instances v. types
- PRED values
- Tdl style

* lllocutionary force

- Embedded clauses

* Non-verbal predicates

- Lab 6 overview

- Trigger rules

VWhat’s a clause”?

* Syntactically complete
* Expresses some illocutionary force
» Contrasts with fragments, some of which can also carry illocutionary force

» Marking of illocutionary force is often associated with either the clause as a
whole or with its head verb

» Clauses can be matrix or embedded
- Embedded clauses can be modifiers or arguments

- Embedded clauses can carry illocutionary force, too

Our general strategy

Represent illocutionary force with a feature of events called ‘SF’.

Possible values of SF: comm, prop-or-ques, prop, ques

For Matrix clauses, non-branching rules at the top of the tree set SF
depending on syntactic features.

* OR: Subject attaching rules constrain SF.

* OR: Other characteristic rules/lex items constrain SF.

For embedded clauses, elements higher up the tree (complementizers,
selecting verbs) or unary constructions constrain SF.

Marking of embedded clauses

- Just like matrix clauses
« Special verbal inflection
« Complementizers

* Different word order

« ... others?

» The feature [MC bool] can be helpful here

Overview

- tdl detalls:
- Grammar files, instances v. types
- PRED values
- Tdl style

* lllocutionary force

- Embedded clauses

* Non-verbal predicates

- Lab 6 overview

- Trigger rules

Non-verbal predicates

* This section deals with sentences that have a “copula” verb in some
languages and no verb at all in others.

- APs/PPs have a semantic role available
* Required copula: Treat it as a raising verb
* No copula: Let the APs/PPs be heads in the head-subj rule
- NPs are semantically saturated
* Required copula: Different lex entry that introduces _be_v_id_rel

* No copula: Non-branching rule that introduces _be_v_id_rel and the
subject requirement

Non-verbal predicates

- Some languages have a copula variably:
 Across all contexts
* Only with NPs, but not APs/PPs (etc)
* Only in certain tenses

 First two can be handled with just appropriate combinations of the
strategies discussed

 To get restriction to certain tenses, need to add constraints to the copula
and/or the lexical or phrase structure rules involved in licensing verbless

clauses.

Non-verbal predicates

* Locative NPs

« Some languages use NPs inflected with a particular case where others
use PPs (as both modifiers and predicates)

- We’ll only worry about the predicative use (for now)

- The strategy we’ll take involves a non-headed unary rule that builds a
PP out of a [CASE loc | NP.

* Why non-headed?

* Why not do this with a lexical rule?

Overview

- tdl detalls:
- Grammar files, instances v. types
- PRED values
- Tdl style

* lllocutionary force

- Embedded clauses

* Non-verbal predicates

- Lab 6 overview

- Trigger rules

Lab 6

« Check that matrix polar questions are working, and debug as necessary
* Add sentential complement verbs

« Get sentences with NP, PP, and AP predicates working

- Make sure MRSs are correct, and debug as necessary

- Make sure your grammar can generate (as well as parse), and debug as
necessary

Lab 6 reminders

 Your write up should illustrate each analysis with IGT examples that parse
with the grammar you turn in.

* You should test your grammar both with individual sentences one at a time
in the LKB and with [incr tsdb()] processing of the whole test suite.

 Use [incr tsdb()] to see which examples are ambiguous according to the
grammar, and check to see if the ambiguity is justified.

* Incremental development: If you have lots of similar items to enter, get one
working first, then enter the rest.

Overview

- tdl detalls:
- Grammar files, instances v. types
- PRED values
- Tdl style

* lllocutionary force

- Embedded clauses

* Non-verbal predicates

- Lab 6 overview

- Trigger rules

Trigger rules

« Semantically empty lexical entries cause headaches on generation

* Let them all in as often as the parser wants them: exploded search space

- Keep them all out: somethings won'’t parse

» Solution: trigger rules (trigger.mtr)

- The LKB tells you which items need trigger rules, but the suggested rules
don’t actually ever fire.

» http://moin.delph-in.net/L kbGeneration

http://moin.delph-in.net/LkbGeneration

