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But first:

• https://www.washington.edu/uwem/plans-and-procedures/uw-
emergency-procedures/


• Mass Assembly Point: Denny Yard

https://www.washington.edu/uwem/plans-and-procedures/uw-emergency-procedures/
https://www.washington.edu/uwem/plans-and-procedures/uw-emergency-procedures/


What is grammar engineering?

• The implementation of natural language grammars in software.


• Grammars can be used for parsing and/or generation.


• Relate surface strings to semantic representations


• Grammars can be practically focused or theoretically focused.


• Knowledge-engineering approach to parsing.


• “Precision” grammars can give deeper representations


• ... but tend to be less robust.



How is grammar engineering different from other 
approaches to syntax?

• Implementation requires fully explicit analyses


• Implementation allows automated verification of analyses


• Parse test suites


• Parse test corpora


• Generate from stored semantic representations


• Implementations allows/requires incremental development


• Interrelatedness of analyses becomes more apparent



Pen and paper syntax work-flow
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Grammar engineering work flow  
(Bender et al 2011)
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How is grammar engineering different from other 
approaches to parsing?

• All parsers require linguistic knowledge --- information about possible and 
probable pairings of strings and linguistic structure


• Grammar engineering: Rules behind possible strings are hand-coded 
(Flickinger 2000, Riezler et al 2002, ...); probabilities derived from grammar-
based treebank


• Treebank-trained parsers: Knowledge extracted from treebank, which in turn 
is (mostly) hand-coded (Charniak 1997, Collins 1999, Petrov et al 2006, ...)


• Unsupervised parsers: Knowledge extracted from co-occurrence patterns of 
words (Clark 2001, Klein and Manning 2004)


• Hybrid-approaches: Skeleton grammar built by hand, complemented by 
information from treebank (O’Donovan et al 2004, Miyao et al 2004, ...)



Applications of grammar engineering

• Language documentation


• Linguistic hypothesis testing


• MT


• IR (“semantic search” --- PowerSet)


• Automated email response


• Augmentative and assistive communication


• Computer assisted language learning (CALL)


• ...



Challenges for grammar engineering

• efficient processing (Oepen et al 2002)


• ambiguity resolution (Toutanova et al 2005)


• domain portability


• lexical acquisition (Baldwin 2005)


• extragrammatical/ungrammatical input


• scaling to many languages



Hybrid approaches

• Naturally occurring language is noisy


• typos


• “mark up”


• addresses and other non-linguistic strings


• false starts


• hesitations


• Allowing for noise within the grammar would reduce precision


• And then there’s ambiguity, unknown words, ...



Hybrid approaches

• Combine knowledge engineering and machine learning approaches:


• Statistical parse selection


• (Statistical) named-entity recognition and POS tagging in a pre-
processing step (for unknown word handling)


• Tiered systems with shallow parser as fallback for precision grammar


• Other direction:


• Deep grammars providing richer linguistic resources or seed 
information to train machine learners
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Goals: Of Grammar Engineering

• Build useful, usable resources


• Test linguistic hypotheses


• Represent grammaticality/minimize ambiguity


• Build modular systems: maintenance, reuse



Goals: Of this course

• Mastery of tfs formalism


• Hands-on experience with grammar engineering


• A different perspective on natural language syntax


• Practice building (and debugging!) extensible system


• Contribute to on-going research in multilingual grammar engineering & 
automated grammar inference


• Contribute to language documentation efforts



Goals: Of this course

• Understand a range of grammatical facts about a language, plus how to 
get them from descriptive materials


• Learn more about using HPSG to model grammatical facts


• Deeper understanding of relationship between syntax and semantics


• Lean how to use the computational tools of grammar engineering to test 
and develop formalizations



Testing and developing formalizations

• Tools: LKB, [incr tsdb()]


• Steps:


• Identify intended analysis (primarily semantic)


• Hypothesize new rules/lexical entries or new constraints on existing 
rules/lexical entries that will produce intended analyses


• Implement constraints (and debug until grammar compiles)


• Test and examine results: Overconstrained? Underconstrained?



Relationship between syntax and semantics

• What does syntax do?


• Constrain ambiguity


• Provide scaffolding for building semantic representations


• Handle grammaticality (agreement, word order, case, ...)


• What do semantic representations do?


• Make explicit who did what to whom


• Serve as input for tactical generation


• Relate multiple surface forms to each other


• Differentiate multiple analyses of same surface form
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The LinGO Grammar Matrix

• Addresses the scalability challenge by reducing the cost of creating 
grammars


• Starter-kit which allows for quick initial development while supporting 
long-term expansion


• Represents a set of hypotheses about cross-linguistic universals and 
cross-linguistic variation


• Includes typologically grounded “libraries” exploring the range of variation 
in certain phenomena



A sampling of hypotheses

• Words and phrases combine to make larger phrases.


• The semantics of a phrase is determined by the words in the phrase and 
how they are put together.


• Some rules for phrases add semantics (but some don’t).


• Most phrases have an identifiable head daughter.


• Heads determine which arguments they require and how they combine 
semantically with those arguments.


• Modifiers determine which kinds of heads they can modify, and how they 
combine semantically with those heads.


• No lexical or syntactic rule can remove semantic information.



Multilingual grammar engineering:  
Other approaches

• The DELPH-IN consortium specializes in large HPSG grammars


• Other broad-coverage precision grammars have been built by/in/with


• LFG (ParGram: Butt et al 1999)


• F/XTAG (Doran et al 1994)


• ALE/Controll (Götz & Meurers 1997)


• SFG (Bateman 1997)


• GF (Ranta 2007)


• OpenCCG (Baldridge et al 2007)


• Proprietary formalisms and Microsoft and Boeing and IBM 



Overview

• The BIG picture


• Goals (of grammar engineering, of this course)


• The LinGO Grammar Matrix


• Other approaches


• Course requirements/workflow


• Pick a language


• Components


• LKB formalism



Course requirements/workflow

• Tuesdays lecture, Thursdays discussion


• Office/lab hours on (most) Tuesdays and Fridays


• Weekly lab assignments, posted one week ahead, due on Friday


• Be sure to start the lab early in the week, so you can bring useful questions


• At least half of each lab grade will be on the documentation


• Labs 2-8 as partner projects, taking turns doing the write-up


• No exams; front-loaded course schedule


• “Uncheatable”



Course requirements/workflow

• Week 1: Getting to know the LKB (English exercise); pick your language


• Weeks 2-4: Test suite construction, iteratively customize starter grammar


• Weeks 5-9: Build out your grammar


• Week 10: MT extravaganza



Surviving the course

• Communication is key: Please ask questions!


• Get started early, to have time for collaboration and question turn-
around


• Use Canvas discussions


• Subscribe to Canvas notifications


• Read my feedback on labs quickly & ask for clarification if necessary


• Read (and contribute to!) FAQs, glossary (-> demo)


• EMB’s office hours


• 10 minute rule




Surviving this course

• Invest the time to get comfortable with emacs


• Resist the urge to build a perfect grammar


• Read the assignments carefully/ask questions to clarify what exactly is being asked for


• Ask lots of questions, ask early and often!


• 2017: 2,016 (15)


• 2016: 1,074 (12)


• 2015: 1,248 (18)


• 2014: 1,224 (14)



Languages

• This year we’re working from field resources. 


• Find a partner


• Languages we have resources for so far: Abui (abz), Chintang (ctn), Yupik 
(esu), Ik (ikx), Matsigenka (mcb), Wambaya (wmb), [Nuuchahnulth (nuk)]



Why assume a morphophonological analyzer?

• Easy case: Swahili [swh]


• Impossible case: Slave [scs]

(Reynolds & Eastman 1989:64)



Respectful communication

• There’s a history of conflict between documentary & theoretical linguistics, 
with theoretical linguists not fully appreciating the difficulty and importance 
of the work done by field linguists.


• When working with field linguists, please be respectful of both the effort 
they have already put in and the time they give for answering your 
questions.


• When working with data/describing your work, please be respectful of the 
intellectual property of field linguists and speaker communities.  Ask the 
field linguist what to cite, what can be shared, etc.
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Components

• HPSG: Theoretical foundations


• LKB


• Grammar (Matrix-provided, plus extensions)


• Emacs: editor, interaction with LKB


• [incr tsdb()]



LKB

• tdl reader/compiler


• parser


• generator


• grammar exploration tools


• parse chart


• interactive unification


• type and hierarchy exploration



Grammar

• A set of tdl files:


• Grammar Matrix core

• Additions from the customization system

• Your additions


• Actually separated into:


• Type definitions

• Instances of grammar rules, lexical rules, lexical entries

• Root symbols

• Node label abbreviations


• Also includes: Lisp code for LKB interaction



[incr tsdb()]

• Pronounced “tee ess dee bee plus plus”


• Loading in test suites


• Running test suites (batch processing)


• Comparing multiple test suite runs:


• Changes in which examples parse


• Changes in number of analyses per item


• Changes in representations per item


• Treebanking
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