
Introduction, organization 
LKB formalism

Ling 567

April 2, 2019



Overview

• The BIG picture


• Goals (of grammar engineering, of this course)


• The LinGO Grammar Matrix


• Other approaches


• Course requirements/workflow


• Pick a language


• Components


• Lab 1 preview


• LKB formalism



But first:

• https://www.washington.edu/uwem/plans-and-procedures/uw-
emergency-procedures/


• Mass Assembly Point: Denny Yard

https://www.washington.edu/uwem/plans-and-procedures/uw-emergency-procedures/
https://www.washington.edu/uwem/plans-and-procedures/uw-emergency-procedures/


What is grammar engineering?

• The implementation of natural language grammars in software.


• Grammars can be used for parsing and/or generation.


• Relate surface strings to semantic representations


• Grammars can be practically focused or theoretically focused.


• Knowledge-engineering approach to parsing.


• “Precision” grammars can give deeper representations


• ... but tend to be less robust.



How is grammar engineering different from other 
approaches to syntax?

• Implementation requires fully explicit analyses


• Implementation allows automated verification of analyses


• Parse test suites


• Parse test corpora


• Generate from stored semantic representations


• Implementations allows/requires incremental development


• Interrelatedness of analyses becomes more apparent



Pen and paper syntax work-flow

Identify 
phenomena to 

analyze

Develop 
analysis

Identify key 
examples

Identify cases 
of interesting 
predictions

Test acceptability of 
new key examples

Refine 
analysis



Grammar engineering work flow  
(Bender et al 2011)

Develop 
initial test 

suite

Identify 
phenomena 
to analyze Extend test suite 

with examples 
documenting 

analysis

Implement 
analysis

Compile 
grammar

Debug 
implementation Parse sample 

sentences

Parse full 
test suite

Treebank

Develop 
analysis



How is grammar engineering different from other 
approaches to parsing?

• All parsers require linguistic knowledge --- information about possible and 
probable pairings of strings and linguistic structure


• Grammar engineering: Rules behind possible strings are hand-coded 
(Flickinger 2000, Riezler et al 2002, ...); probabilities derived from grammar-
based treebank


• Treebank-trained parsers: Knowledge extracted from treebank, which in turn 
is (mostly) hand-coded (Charniak 1997, Collins 1999, Petrov et al 2006, ...)


• Unsupervised parsers: Knowledge extracted from co-occurrence patterns of 
words (Clark 2001, Klein and Manning 2004)


• Hybrid-approaches: Skeleton grammar built by hand, complemented by 
information from treebank (O’Donovan et al 2004, Miyao et al 2004, ...)



Applications of grammar engineering

• Language documentation


• Linguistic hypothesis testing


• MT


• IR (“semantic search” --- PowerSet)


• Automated email response


• Augmentative and assistive communication


• Computer assisted language learning (CALL)


• ...



Challenges for grammar engineering

• efficient processing (Oepen et al 2002)


• ambiguity resolution (Toutanova et al 2005)


• domain portability


• lexical acquisition (Baldwin 2005)


• extragrammatical/ungrammatical input


• scaling to many languages



Hybrid approaches

• Naturally occurring language is noisy


• typos


• “mark up”


• addresses and other non-linguistic strings


• false starts


• hesitations


• Allowing for noise within the grammar would reduce precision


• And then there’s ambiguity, unknown words, ...



Hybrid approaches

• Combine knowledge engineering and machine learning approaches:


• Statistical parse selection


• (Statistical) named-entity recognition and POS tagging in a pre-
processing step (for unknown word handling)


• Tiered systems with shallow parser as fallback for precision grammar


• Other direction:


• Deep grammars providing richer linguistic resources or seed 
information to train machine learners



Overview

• The BIG picture


• Goals (of grammar engineering, of this course)


• The LinGO Grammar Matrix


• Other approaches


• Course requirements/workflow


• Pick a language


• Components


• LKB formalism



Goals: Of Grammar Engineering

• Build useful, usable resources


• Test linguistic hypotheses


• Represent grammaticality/minimize ambiguity


• Build modular systems: maintenance, reuse



Goals: Of this course

• Mastery of tfs formalism


• Hands-on experience with grammar engineering


• A different perspective on natural language syntax


• Practice building (and debugging!) extensible system


• Contribute to on-going research in multilingual grammar engineering & 
automated grammar inference


• Contribute to language documentation efforts



Goals: Of this course

• Understand a range of grammatical facts about a language, plus how to 
get them from descriptive materials


• Learn more about using HPSG to model grammatical facts


• Deeper understanding of relationship between syntax and semantics


• Lean how to use the computational tools of grammar engineering to test 
and develop formalizations



Testing and developing formalizations

• Tools: LKB, [incr tsdb()]


• Steps:


• Identify intended analysis (primarily semantic)


• Hypothesize new rules/lexical entries or new constraints on existing 
rules/lexical entries that will produce intended analyses


• Implement constraints (and debug until grammar compiles)


• Test and examine results: Overconstrained? Underconstrained?



Relationship between syntax and semantics

• What does syntax do?


• Constrain ambiguity


• Provide scaffolding for building semantic representations


• Handle grammaticality (agreement, word order, case, ...)


• What do semantic representations do?


• Make explicit who did what to whom


• Serve as input for tactical generation


• Relate multiple surface forms to each other


• Differentiate multiple analyses of same surface form



Overview

• The BIG picture


• Goals (of grammar engineering, of this course)


• The LinGO Grammar Matrix


• Other approaches


• Course requirements/workflow


• Pick a language


• Components


• LKB formalism



The LinGO Grammar Matrix

• Addresses the scalability challenge by reducing the cost of creating 
grammars


• Starter-kit which allows for quick initial development while supporting 
long-term expansion


• Represents a set of hypotheses about cross-linguistic universals and 
cross-linguistic variation


• Includes typologically grounded “libraries” exploring the range of variation 
in certain phenomena



A sampling of hypotheses

• Words and phrases combine to make larger phrases.


• The semantics of a phrase is determined by the words in the phrase and 
how they are put together.


• Some rules for phrases add semantics (but some don’t).


• Most phrases have an identifiable head daughter.


• Heads determine which arguments they require and how they combine 
semantically with those arguments.


• Modifiers determine which kinds of heads they can modify, and how they 
combine semantically with those heads.


• No lexical or syntactic rule can remove semantic information.



Multilingual grammar engineering:  
Other approaches

• The DELPH-IN consortium specializes in large HPSG grammars


• Other broad-coverage precision grammars have been built by/in/with


• LFG (ParGram: Butt et al 1999)


• F/XTAG (Doran et al 1994)


• ALE/Controll (Götz & Meurers 1997)


• SFG (Bateman 1997)


• GF (Ranta 2007)


• OpenCCG (Baldridge et al 2007)


• Proprietary formalisms and Microsoft and Boeing and IBM 



Overview

• The BIG picture


• Goals (of grammar engineering, of this course)


• The LinGO Grammar Matrix


• Other approaches


• Course requirements/workflow


• Pick a language


• Components


• LKB formalism



Course requirements/workflow

• Tuesdays lecture, Thursdays discussion


• Office/lab hours on (most) Tuesdays and Fridays


• Weekly lab assignments, posted one week ahead, due on Friday


• Be sure to start the lab early in the week, so you can bring useful questions


• At least half of each lab grade will be on the documentation


• Labs 2-8 as partner projects, taking turns doing the write-up


• No exams; front-loaded course schedule


• “Uncheatable”



Course requirements/workflow

• Week 1: Getting to know the LKB (English exercise); pick your language


• Weeks 2-4: Test suite construction, iteratively customize starter grammar


• Weeks 5-9: Build out your grammar


• Week 10: MT extravaganza



Surviving the course

• Communication is key: Please ask questions!


• Get started early, to have time for collaboration and question turn-
around


• Use Canvas discussions


• Subscribe to Canvas notifications


• Read my feedback on labs quickly & ask for clarification if necessary


• Read (and contribute to!) FAQs, glossary (-> demo)


• EMB’s office hours


• 10 minute rule




Surviving this course

• Invest the time to get comfortable with emacs


• Resist the urge to build a perfect grammar


• Read the assignments carefully/ask questions to clarify what exactly is being asked for


• Ask lots of questions, ask early and often!


• 2017: 2,016 (15)


• 2016: 1,074 (12)


• 2015: 1,248 (18)


• 2014: 1,224 (14)



Languages

• This year we’re working from field resources. 


• Find a partner


• Languages we have resources for so far: Abui (abz), Chintang (ctn), Yupik 
(esu), Ik (ikx), Matsigenka (mcb), Wambaya (wmb), [Nuuchahnulth (nuk)]



Why assume a morphophonological analyzer?

• Easy case: Swahili [swh]


• Impossible case: Slave [scs]

(Reynolds & Eastman 1989:64)



Respectful communication

• There’s a history of conflict between documentary & theoretical linguistics, 
with theoretical linguists not fully appreciating the difficulty and importance 
of the work done by field linguists.


• When working with field linguists, please be respectful of both the effort 
they have already put in and the time they give for answering your 
questions.


• When working with data/describing your work, please be respectful of the 
intellectual property of field linguists and speaker communities.  Ask the 
field linguist what to cite, what can be shared, etc.



Overview

• The BIG picture


• Goals (of grammar engineering, of this course)


• The LinGO Grammar Matrix


• Other approaches


• Course requirements/workflow


• Pick a language


• Components


• LKB formalism



Components

• HPSG: Theoretical foundations


• LKB


• Grammar (Matrix-provided, plus extensions)


• Emacs: editor, interaction with LKB


• [incr tsdb()]



LKB

• tdl reader/compiler


• parser


• generator


• grammar exploration tools


• parse chart


• interactive unification


• type and hierarchy exploration



Grammar

• A set of tdl files:


• Grammar Matrix core

• Additions from the customization system

• Your additions


• Actually separated into:


• Type definitions

• Instances of grammar rules, lexical rules, lexical entries

• Root symbols

• Node label abbreviations


• Also includes: Lisp code for LKB interaction



[incr tsdb()]

• Pronounced “tee ess dee bee plus plus”


• Loading in test suites


• Running test suites (batch processing)


• Comparing multiple test suite runs:


• Changes in which examples parse


• Changes in number of analyses per item


• Changes in representations per item


• Treebanking



Overview

• The BIG picture


• Goals (of grammar engineering, of this course)


• The LinGO Grammar Matrix


• Other approaches


• Course requirements/workflow


• Pick a language


• Components


• Lab 1 preview


• LKB formalism


