
Grammar Matrix (incl morphotactics)
AGGREGATION
Test suites

Ling 567

Jan 13, 2020

Overview

• Grammar Matrix customization system

• Morphotactics in the Grammar Matrix

• AGGREGATION

• Testsuites & [incr tsdb()]

Questionnaire

(accepts user

input)

Questionnaire

definition

Choices file

Validation

Customization

Customized

grammar

Core

grammar

HTML

generation

Stored

analyses

Elicitation of typological
information

Grammar
creation

(Bender et al 2010)

567_english.tdl
head-types.tdl
irules.tdl
labels.tdl
lexicon.tdl
lrules.tdl
matrix.tdl
mtr.tdl
pet.tdl
roots.tdl
rules.tdl

LICENSE
METADATA
README
Version.lsp
567_english-pet.tdl
ace/
choices
irregs.tab
lkb/
pet/
repp/
semi.vpm
test_sentences
trigger.mtr
tsdb/

Creating a library for the customization system

• Choose phenomenon

• Review typological on
phenomenon

• Refine definition of phenomenon

• Conceptualize range of variation
within phenomenon

• Review HPSG (& broader
syntactic) literature on
phenomenon

• Pin down target MRSs

• Develop HPSG analyses for
each variant

• Implement analyses in tdl

• Develop questionnaire

• Run regression tests

• Test with pseudo-languages

• Test with illustrative languages

• Test with held-out languages

• Add tests to regression tests

• Add to MatrixDoc pages

Overview

• Grammar Matrix customization system

• Morphotactics in the Grammar Matrix

• AGGREGATION

• Testsuites & [incr tsdb()]

Morphology: Basics

• Morpheme: The smallest meaningful unit of language/smallest pairing of
“form” and “meaning”

• But:

• “form” can be lots of things, including empty but also messy changes
to word form

• “meaning” can be just syntactic features

• Morphotactics: Which morphemes can combine, in what order

• Morphophonology: Relationship between underlying word forms and
surface forms

• Morphosyntax: Relationship between morphemes and syntactic and
semantic features

Morphology: Example

slolmáyaye
slol-ma-ya-yÁ
know-1SG.PAT-2SG.AGT-know

‘you know/knew me’ [lkt]

• Infixation, vowel harmony: Morphophonology

• Relative order of PAT and AGT marker, optionality of same: Morphotactics

• Mapping to constraints that the patient argument be 1sg and the agent
1pl: Morphosyntax

• Actually parsing the string: priceless!

LKB Customization System
polite concatenative X X

morphology
zero morphemes X X
morphologically X X

conditioned allomorphy
phon. chnages at X

morpheme boundary
ablaut

infixation
vowel harmony

suppletion

What morphophonolgy can the LKB & the
customization system handle?

Assume a morphophonological analyzer...

• Morphophonological analyzers map surface forms to underlying strings of
morphemes

• FSTs are up to the task (except for open-class reduplication)

• XFST (Beesley & Karttunen 2003) is a very linguist-friendly set up;
FOMA (Holden & Algeria 2010) is a open-source package with similar
functionality

• But you don’t need to build one for this class!

• Use the morpheme segmented line of your IGT to represent what it would
map to, and then (if you have any interesting morphophonology) have that
line be the target for your grammar.

Morphophonology/morphosyntax boundary:
Where to draw the line?

• Underlying morphemes can be represented as a sequence of phonemes or
as symbols representing morphological features.

• A canonical XFST-derived analyzer will also include POS tags as a
morphological feature in the underlying form.

• From the point of view of the LKB:

• The POS tag adds nothing

• Spelling the morphemes as morphological features adds nothing: we
still need a lexical rule that maps those strings to constraints on avms

Morphophonology/morphosyntax boundary:
Where to draw the line?

• On the other hand: for XFST/FOMA, the POS tags (and maybe features)
can be useful intermediate stages in processing

• The features can make it easier to create gloss lines automatically.

• On the third hand: using sequences of morphemes might make LKB input/
output comprehensible to speakers

• So what should the upper tape have?

Basic concepts

• Position class: A supertype to lexical rules which fit in the same slot

• Lexical rule type: lex-rule and its subtypes, all have DTR feature

• Lexical rule instance: A grammar entity (manipulatable by the LKB) which
inherits from a lexical rule type and specifies a spelling change (including
no change).

• Forbids constraint: A specification in the customization system stating that
a stem lexical rule type (including a position class) cannot co-occur with
another lexical rule type, instance, pc or stem.

• Requires constraint: A specification in the customization system stating
that a stem lexical rule type (including a position class) must co-occur with
another lexical rule type, instance, pc or stem.

Position classes, inputs and lexical rule hierarchies

(Goodman 2013)

To define a position class

• Required:

• Whether or not it is obligatory

• Possible inputs and prefix/suffix

• = position in the string

• Optional:

• Requires/forbids constraints

To define a lex rule type

• Required

• Nothing (though defaults fill in)

• Optional

• Name

• Supertype (if it doesn’t inherit directly from its position class)

• Feature/value pairs (optional, but this is usually the point!)

• Requires/forbids constraints

To define a lex rule instance

• Required

• Affix v. no affix

• Spelling for affix

• Optional

• Nothing

tdl files

• matrix.tdl: Supertypes for lex-rules, which handle the copying up of
everything you’re not changing

• my_language.tdl: Position classes and lex rule types defined through the
customization system; features for inside INFLECTED

• lrules.tdl: Instances for non-spelling-changing lex rules (zero morphemes)

• irules.tdl: Instances for spelling-changing lex rules

Handling of morphotactics

• Rule order handled through super types and typing the DTR feature

• Requires/forbids through the INFLECTED feature

case-lex-rule-super := representative-rule-dtr &
 add-only-no-ccont-rule &
 noun-telic-rule-dtr &
[INFLECTED [CASE-FLAG +,
 INNER-NEGATION-FLAG #inner-negation,
 NUMBERED-FLAG #numbered],
 DTR case-rule-dtr &
 [INFLECTED [INNER-NEGATION-FLAG
 #inner-negation,
 NUMBERED-FLAG #numbered]]].

Overview

• Grammar Matrix customization system

• Morphotactics in the Grammar Matrix

• AGGREGATION

• Testsuites & [incr tsdb()]

AGGREGATION: Research goals

• Precision implemented grammars are a kind of structured annotation over
linguistic data (cf. Good 2004, Bender et al 2012).

• They map surface strings to semantic representations and vice-versa.

• They can be used in the development of grammar checkers and treebanks,
making them useful for language documentation and revitalization (Bender
et al 2012)

• But they are expensive to build.

• The AGGREGATION project asks whether existing products of
documentary linguistic research (IGT collections) can be used to boot-
strap the development of precision implemented grammars.

AGGREGATION: Recent developments

• See ComputEL-3 slides

Overview

• Grammar Matrix customization system

• Morphotactics in the Grammar Matrix

• AGGREGATION

• Testsuites & [incr tsdb()]

Evaluation and Computational Linguistics

• Why is evaluation so prominent in computational linguistics?

• Why is it not so prominent in other subfields of linguistics?

• What about CS?

Intrinsic v. extrinsic evaluation

• Intrinsic: How well does this system perform its own task, including
generalizing to new data?

• Extrinsic: To what extent does this system contribute to the solution of
some problem?

• Examples of intrinsic and extrinsic evaluation of parsers?

Test data

• Test suites

• Hand constructed examples

• Positive and negative examples

• Controlled vocabulary

• Controlled ambiguity

• Careful grammatical coverage

Test data

• Test corpora

• Naturally occurring

• More open vocabulary

• Haphazard ungrammatical examples

• Application-focused

Uses of test data

• How far do I have left to go?

• Internal metric

• Objective comparison of different systems

• Where have I been?

• Regression testing

• Documentation

Grammar engineering workflow
Develop
initial test

suite

Identify
phenomena
to analyze Extend test suite

with examples
documenting

analysis

Implement
analysis

Compile
grammar

Debug
implementation Parse sample

sentences

Parse full
test suite

Treebank

Develop
analysis

Evaluating precision grammars

• Coverage over some corpus

• Which corpus?

• Challenges of lexical acquisition

• Coverage of phenomena

• How does one choose phenomena?

• Comparison across languages

Levels of adequacy

• grammaticality

• “right” structure

• “right” dependencies

• “right” full semantics

• only legit parses (how can you tell?)

• some set of parses including the preferred one

• preferred parse only/within first N

Typical 567 test suites

• Map out territory we hope to cover

• Include both positive and negative examples

• Serve as an exercise in understanding the description of the language

• IGT format

• Creating examples where necessary

On the importance of simple examples

• Why keep examples simple?

• How simple is too simple?

• What kinds of things make an example not simple enough?

On the importance of simple examples

• Awtuw [awt] (Feldman 1986:67)

• Basque [eus] (adapted from Joppen and Wunderlich 1995:129)

On the importance of simple examples

• Russian [rus] (Bender 2013:92)

But this year we have test corpora!

• Might include both elicited and naturally occurring examples

• Lots more data to play with (yay!)

• Will be messy: Spoken language, lots of interacting phenomena, possibility of
inconsistent transcription & glossing

• But more satisfying because it’s way more authentic

• Possibly too large: Okay to cut down or break into smaller chunks if
processing is slow

• Possibly consider using ace & art for batch processing

[incr tsdb()] basics

• [incr tsdb()] stores test suite profiles as (plain text) relational databases:
Each is a directory with a fixed set of files in it.

• Most files are empty.

• A profile that has not been processed has only two non-empty files: item
(the items to be processed) and relations (always the same)

• Once the profile has been processed, the result of the processing is stored
in some of the other files (in particular, parse and result)

[incr tsdb()] basics

• A test suite skeleton consists of just the item and relations files and can be
used to create new test suite profiles

• [incr tsdb()] allows the user to compare two profiles to see how they differ

• It can also produce graphs plotting summary data from many profiles to
visualize grammar evolution over time

• -> If time: Demo

Wednesday = demo day

• Send me questions by noon on Thursday; all should include:

• Question

• Choices file

• Data:

• Testsuite profile

• IGT that should parse if we can just fix the thing

• … or should stop parsing, if we can just fix the thing, in the case of
ungrammatical examples

