POS tagging

LING 570

Fei Xia
Outline

• The POS tagging task

• Rule-based approach

• Statistical approach
 – N-gram model: HMM
 – MaxEnt model: in Week 8-9
 – Other models: in Ling572
The task

• Training data: a tagged corpus

• Build a system:
 – Input: $w_1 \ w_2 \ \ldots \ \ w_n$
 – Output: $w_1/t_1 \ w_2/t_2 \ \ldots \ w_n/t_n$

• POS tags:
 – Open class: noun, verb, adj, adv
 – Closed class: prep, det, pron, conj, particles, …

• Tagsets: 30 tags or more
Why POS tagging?

- As a preprocessing step for parsing, chunking, etc.
 - Chunking: /Det? Adj* N* N/
 - Parsing: VP ➔ V NP vs. VP ➔ buy NP

- Text-to-speech: Please record the lecture

- Morphological analysis:
 - Ex: saw ➔ see +V +past
 saw ➔ saw +N + PL
Main problem: ambiguity

• Example: book a flight; buy a book

• How hard is the tagging problem?
 – Many frequent words are ambiguous.
 – Penn English Treebank (PTB):
 • Unigram: 91%
 • Trigram: 93%
 • Best result: 97%
 • Upper bound: 97-98% (?)
 – The tagging problem may be harder for
 • other domains
 • other languages
Main approaches

- Rule-based approach:

- Stochastic approach: Choose $t_1 \ t_2 \ldots \ t_n$ that maximizes $P(t_1^n | w_1^n)$
 - N-gram models:
 - Use a classifier with beam search
 - Ex: Decision Tree, MaxEnt, Boosting, SVM, ...
 - Use sequence labeling algorithms
 - Ex: HMM, CRF, TBL

⇒ Most of the algorithms will be covered in LING 572.
⇒ Today we will focus on N-gram models.
Evaluation

• Train your model on the training data

• Test on unseen test data to obtain the best tag sequence.

• Accuracy: the percentage of words in the test data that are correctly tagged:
 – System: John/N called/V this/PN number/N
 – Gold: John/N called/V this/DT number/N
 – Accuracy is 3/4
Rule-based approach
POS tagger for English

- Human knowledge

- Annotated data:
 - John/NNP will/MD book/VB the_DT flight/NN tomorrow/NN
 - Mary/NNP bought/VBD a_DT book/NN

- Rules:
 - NN => VB if the word follows a MD

- Transformation-based learning (TBL)
N-gram tagger
Building a statistical system

• Collect data and divide it into training, development, and testing or use n-fold cross validation

• Modeling:
 – What is the function to optimize? e.g., \(P(y \mid x) \), \(P(x, y) \)
 – How to decompose it to something that can be estimated?

• Training: estimate the parameters from the training data

• Decoding: run the model on the test data

• Evaluation: compare the system output with the gold standard
Notation

$\omega_1^n: \ w_1 \ w_2 \ \ldots \ w_n$

$t_1^n: \ t_1 \ t_2 \ \ldots \ t_n$

$\max_y P(y|x)$

$y^* = \arg \max_y P(y|x)$
N-gram POS tagger: modeling

\[
\begin{align*}
\arg \max_{t_1^n} P(t_1^n | w_1^n) \\
= \arg \max_{t_1^n} \frac{P(t_1^n) \cdot P(w_1^n | t_1^n)}{P(w_1^n)} \\
= \arg \max_{t_1^n} P(t_1^n) \cdot P(w_1^n | t_1^n)
\end{align*}
\]

\[
P(t_1^n) \approx \prod_i P(t_i | t_{i-N+1}^{i-1})
\]

\[
P(w_1^n | t_1^n) = \prod_i P(w_i | t_1^n, w_1^{i-1}) \approx \prod_i P(w_i | t_i)
\]
N-gram POS tagger (cont)

$$\arg\max_{t_1^n} P(t_1^n | w_1^n)$$

$$\approx \arg\max_{t_1^n} \prod_i P(w_i | t_i) P(t_i | t_{i-1}^{i-N+1})$$

Bigram model:

$$\prod_i P(w_i | t_i) P(t_i | t_{i-1})$$

Trigram model:

$$\prod_i P(w_i | t_i) P(t_i | t_{i-2}, t_{i-1})$$
Bigram model: training

\[\prod_{i} P(w_i | t_i) P(t_i | t_{i-1}) \]

Training: How to estimate \(P(w_i | t_i) \) and \(P(t_i | t_{i-1}) \)?

- Supervised learning (tags in the training data are known): ML estimation
- Unsupervised learning (tags in the training data are unknown): forward-backward algorithm
Bigram training: ML estimation

\[P(w_i | t_i) = \frac{Cnt(w_i, t_i)}{Cnt(t_i)} \]

\[P(t_i | t_{i-1}) = \frac{Cnt(t_{i-1}, t_i)}{Cnt(t_{i-1})} \]
Bigram model: decoding

• Given $P(w_i | t_i)$ and $P(t_i | t_{i-1})$, how to find the best tag sequence for a sentence?

→ Use Viterbi algorithm for HMM

• The task of determining which sequence of variables is the underlying source of observations is called the **decoding** task.
Coming next

• Hidden Markov Model (HMM): Week 6-7

• Classification: Week 8

• MaxEnt tagger: Week 9