
Meaning 
Representation and 
Semantic Analysis 

Ling 571 
Deep Processing Techniques for NLP 

February 9, 2011 



Roadmap  
�  Meaning representation: 

�  Event representations 

�  Temporal representation 

�  Semantic Analysis 
�  Compositionality and rule-to-rule 
�  Semantic attachments 

�  Basic 

�  Refinements 

�  Quantifier scope 
�  Earley Parsing and Semantics 



FOL Syntax Summary 



Semantics of  FOL 
�  Model-theoretic approach: 

�  FOL terms (objects): denote elements in a domain 

�  Atomic formulas are: 
�  If  properties, sets of  domain elements 

�  If  relations, sets of  tuples of  elements 

�  Formulas based on logical operators: 



Inference 
�  Standard AI-type logical inference procedures 

�  Modus Ponens 

�  Forward-chaining, Backward Chaining 
�  Abduction 

�  Resolution 
�  Etc,.. 

�  We’ll assume we have a prover 



Representing Events 
�  Initially, single predicate with some arguments 

�  Serves(Maharani,IndianFood) 



Representing Events 
�  Initially, single predicate with some arguments 

�  Serves(Maharani,IndianFood) 

�  Assume # ags = # elements in subcategorization frame 



Representing Events 
�  Initially, single predicate with some arguments 

�  Serves(Maharani,IndianFood) 
�  Assume # ags = # elements in subcategorization frame 

�  Example: 
�  I ate. 
�  I ate a turkey sandwich. 
�  I ate a turkey sandwich at my desk. 
�  I ate at my desk. 
�  I ate lunch. 
�  I ate a turkey sandwich for lunch. 
�  I ate a turkey sandwich for lunch at my desk.   



Events 
�  Issues? 



Events 
�  Issues? 

�  Arity – how can we deal with different #s of  arguments? 



Events 
�  Issues? 

�  Arity – how can we deal with different #s of  arguments? 

�  One predicate per frame 
�  Eating1(Speaker) 
�  Eating2(Speaker,TS) 
�  Eating3(Speaker,TS,Desk) 

�  Eating4(Speaker,Desk) 
�  Eating5(Speaker,TS,Lunch) 
�  Eating6(Speaker,TS,Lunch,Desk) 



Events (Cont’d) 
�  Good idea? 



Events (Cont’d) 
�  Good idea? 

�  Despite the names, actually unrelated predicates 



Events (Cont’d) 
�  Good idea? 

�  Despite the names, actually unrelated predicates 
�  Can’t derive obvious info 

�  E.g. I ate a turkey sandwich for lunch at my desk  

�  Entails all other sentences 



Events (Cont’d) 
�  Good idea? 

�  Despite the names, actually unrelated predicates 
�  Can’t derive obvious info 

�  E.g. I ate a turkey sandwich for lunch at my desk  

�  Entails all other sentences 

�  Can’t directly associate with other predicates 



Events (Cont’d) 
�  Good idea? 

�  Despite the names, actually unrelated predicates 
�  Can’t derive obvious info 

�  E.g. I ate a turkey sandwich for lunch at my desk  

�  Entails all other sentences 

�  Can’t directly associate with other predicates 

�  Could write rules to implement implications 



Events (Cont’d) 
�  Good idea? 

�  Despite the names, actually unrelated predicates 
�  Can’t derive obvious info 

�  E.g. I ate a turkey sandwich for lunch at my desk  

�  Entails all other sentences 

�  Can’t directly associate with other predicates 

�  Could write rules to implement implications 
�  But? 

�  Intractable in the large  
�  Like the subcat problem generally. 



Variabilizing 
�  Create predicate with maximum possible arguments 

�  Include appropriate args 

�  Maintains connections 
!w, x, yEating(Speaker,w, x, y)
!w, xEating(Speaker,TS,w, x)
!wEating(Speaker,TS,w,Desk)
Eating(Speaker,TS,Lunch,Desk)



Variabilizing 
�  Create predicate with maximum possible arguments 

�  Include appropriate args 

�  Maintains connections 

�  Better? 

!w, x, yEating(Speaker,w, x, y)
!w, xEating(Speaker,TS,w, x)
!wEating(Speaker,TS,w,Desk)
Eating(Speaker,TS,Lunch,Desk)



Variabilizing 
�  Create predicate with maximum possible arguments 

�  Include appropriate args 
�  Maintains connections 

�  Better? 
�  Yes, but 

�  Too many commitments – assume all details show up  

!w, x, yEating(Speaker,w, x, y)
!w, xEating(Speaker,TS,w, x)
!wEating(Speaker,TS,w,Desk)
Eating(Speaker,TS,Lunch,Desk)



Variabilizing 
�  Create predicate with maximum possible arguments 

�  Include appropriate args 
�  Maintains connections 

�  Better? 
�  Yes, but 

�  Too many commitments – assume all details show up  
�  Can’t individuate – don’t know if  same event 

!w, x, yEating(Speaker,w, x, y)
!w, xEating(Speaker,TS,w, x)
!wEating(Speaker,TS,w,Desk)
Eating(Speaker,TS,Lunch,Desk)



Events - Finalized 
�  Neo-Davidsonian representation: 

�  Distill event to single argument for event itself  

�  Everything else is additional predication 

!eEating(e)"Eater(e,Speaker)"Eaten(e,TS)"Meal(e,Lunch)"Location(e,Desk)



Events - Finalized 
�  Neo-Davidsonian representation: 

�  Distill event to single argument for event itself  

�  Everything else is additional predication 

�  Pros: 

!eEating(e)"Eater(e,Speaker)"Eaten(e,TS)"Meal(e,Lunch)"Location(e,Desk)



Events - Finalized 
�  Neo-Davidsonian representation: 

�  Distill event to single argument for event itself  

�  Everything else is additional predication 

�  Pros: 
�  No fixed argument structure 

�  Dynamically add predicates as necessary 

!eEating(e)"Eater(e,Speaker)"Eaten(e,TS)"Meal(e,Lunch)"Location(e,Desk)



Events - Finalized 
�  Neo-Davidsonian representation: 

�  Distill event to single argument for event itself  

�  Everything else is additional predication 

�  Pros: 
�  No fixed argument structure 

�  Dynamically add predicates as necessary 

�  No extra roles 

!eEating(e)"Eater(e,Speaker)"Eaten(e,TS)"Meal(e,Lunch)"Location(e,Desk)



Events - Finalized 
�  Neo-Davidsonian representation: 

�  Distill event to single argument for event itself  

�  Everything else is additional predication 

�  Pros: 
�  No fixed argument structure 

�  Dynamically add predicates as necessary 

�  No extra roles 
�  Logical connections can be derived 

!eEating(e)"Eater(e,Speaker)"Eaten(e,TS)"Meal(e,Lunch)"Location(e,Desk)



Representing Time 
�  Temporal logic: 

�  Includes tense logic to capture verb tense infor 

�  Basic notion: 
�  Timeline: 

�  From past to future 

�  Events associated with points or intervals on line 
�  Ordered by positioning on line  

�  Current time 
�  Relative order gives past/present/future 



Temporal Information 
�  I arrived in New York. 
�  I am arriving in New York. 
�  I will arrive in New York. 

�  Same event, differ only in tense 

�  Create temporal representation based on verb tense 
�  Add predication about event variable 
�  Temporal variables represent: 

�  Interval of  event 
�  End point of  event 
�  Predicates link end point to current time 

!eArriving(e)"Arriver(e,Speaker)"Destination(e,NY )



Temporal Representation 

!e, i,n, tArriving(e)"Arriver(e,Speaker)"Destination(e,NY )
"IntervalOf (e, i)"EndPo int(i,e)"Pr ecedes(e,Now)
!e, i,n, tArriving(e)"Arriver(e,Speaker)"Destination(e,NY )
"IntervalOf (e, i)"MemberOf (i,Now)
!e, i,n, tArriving(e)"Arriver(e,Speaker)"Destination(e,NY )
"IntervalOf (e, i)"EndPo int(i,n)"Pr ecedes(Now,e)



More Temp Rep 
�  Flight 902 arrived late. 
�  Flight 902 had arrived late. 

�  Does the current model cover this? 
�  Not really 

�  Need additional notion: 
�  Reference point 

�  As well as current time, event time 

�  Current model: current = utterance time = reference point 



Reichenbach’s Tense Model 



Meaning Representation for 
Computational Semantics 

�  Requirements: 
�  Verifiability, Unambiguous representation, Canonical 

Form, Inference, Variables, Expressiveness 

�  Solution: 
�  First-Order Logic 

�  Structure 
�  Semantics 
�  Event Representation 

�  Next: Semantic Analysis 
�  Deriving a meaning representation for an input 



Syntax-driven Semantic Analysis 
�  Key: Principle of  Compositionality 

�  Meaning of  sentence from meanings of  parts 
�  E.g. groupings and relations from syntax 

�  Question: Integration? 

�  Solution 1: Pipeline   
�  Feed parse tree and sentence to semantic unit 

�  Sub-Q: Ambiguity: 
�  Approach: Keep all analyses, later stages will select 

 



Simple Example 
�  AyCaramba serves meat. 

),(),(),( MeateServedAyCarambaeServerServingeIsae ∧∧∃

S 

NP                   VP 

Prop-N              V             NP 

N 

AyCaramba   serves      meat. 



Rule-to-Rule 
�  Issue:  

�  How do we know which pieces of  the semantics link to 
what part of  the analysis? 

�  Need detailed information about sentence, parse tree 
�  Infinitely many sentences & parse trees 
�  Semantic mapping function per parse tree => intractable 

�  Solution:  
�  Tie semantics to finite components of  grammar 

�  E.g. rules & lexicon 
�  Augment grammar rules with semantic info 

�  Aka “attachments” 
�  Specify how RHS elements compose to LHS 



Semantic Attachments 
�  Basic structure: 

�  A-> a1….an   {f(aj.sem,…ak.sem)} 
�  A.sem 

�  Language for semantic attachments 
�  Arbitrary programming language fragments? 

�  Arbitrary power but hard to map to logical form 
�  No obvious relation between syntactic, semantic elements 

�  Lambda calculus 
�  Extends First Order Predicate Calculus (FOPC) with function 

application 
�  Feature-based model + unification 

�  Focus on lambda calculus approach 



Basic example 
�  Input: Maharani closed. 

�  Target output: Closed(Maharani) 

 
S 

NP                   VP 

Prop-N              V              

Maharani   closed. 



Semantic Analysis Example 
�  Semantic attachments: 

�  Each CFG production gets semantic attachment 

�  Maharani 
�  ProperNoun -> Maharani    {Maharani} 

�  FOL constant to refer to object 

�  NP -> ProperNoun          {ProperNoun.sem} 
�  No additional semantic info added 



Semantic Attachment 
Example 

�  Phrase semantics is function of  SA of  children 

�  More complex functions are parameterized 
�  E.g. Verb -> closed   { λx.Closed(x) } 

�  Unary predicate:  
�  1 arg = subject, not yet specified 

 
�         VP -> Verb     {Verb.sem} 

�  No added information 

�         S -> NP VP   {VP.sem(NP.sem)} 
�  Application=   λx.Closed(x)(Maharanii) = Closed(Maharani) 



Semantic Attachment 
�  General pattern: 

�  Grammar rules mostly lambda reductions 
�  Functor and arguments 

 

�  Most representation resides in lexicon 



Refining Representation 
�  Add  

�  Neo-Davidsonian event-style model 

�  Complex quantification 

�  Example II 
�  Input: Every restaurant closed. 
�  Target: 

!xRe staurant(x)"#eClosed(e)$ClosedThing(e, x)



Refining Representation 
�  Idea: 

�  Good enough? 
�  No: roughly ‘everything is a restaurant’ 

�  Saying something about all restaurants – nuclear scope 

�  Solution: Dummy predicate 

�  Good enough? 
�  No: no way to get Q(x) from elsewhere in sentence   

�  Solution: Lambda 

!xRe staurant(x)

!xRe staurant(x)"Q(x)

!Q.!xRe staurant(x)"Q(x)



Updating Attachments 
�  Noun -> restaurant   {λx.Restaurant(x)} 

�  Nominal -> Noun   { Noun.sem } 

�  Det -> Every    {        } 

�  NP -> Det Nominal   { Det.sem(Nom.sem) } 

!P.!Q.!xP(x)"Q(x)



!P.!Q.!xP(x)"Q(x)(!x.Re staurant(x))
!P.!Q.!xP(x)"Q(x)(!y.Re staurant(y))
!Q.!x!y.Re staurant(y)(x)"Q(x)
!Q.!xRe staurant(x)"Q(x)



Full Representation 
�  Verb -> close   {              } 

�  VP -> Verb   { Verb.sem } 

�  S -> NP VP   { NP.sem(VP.sem) } 

!x.!eClosed(e)"ClosedThing(e, x)

!Q.!xRe staurant(x)"Q(x)(!y.#eClosed(e)$ClosedThing(e, y))
!xRe staurant(x)" !y.#eClosed(e)$ClosedThing(e, y)(x)
!xRe staurant(x)"#eClosed(e)$ClosedThing(e, x)



Generalizing Attachments 
�  ProperNoun -> Maharani   {Maharani} 

�  Does this work in the new style? 
�  No, we turned the NP/VP application around 

�  New style: λx.x(Maharani) 
 



More   
�  Determiner 

�  Det -> a   {      } 

�  a restaurant   

�  Transitive verb: 
�  VP -> Verb  NP { Verb.sem(NP.sem) } 
�  Verb -> opened  

!P.!Q.!xP(x)"Q(x)

!Q.!xRe staurant(x)"Q(x)

!w.!z.w(!x.!eOpened(e)"Opener(e, z)"OpenedThing(e,w)



Strategy for Semantic 
Attachments 

�  General approach: 
�  Create complex, lambda expressions with lexical items 

�  Introduce quantifiers, predicates, terms 

�  Percolate up semantics from child if  non-branching 

�  Apply semantics of  one child to other through lambda 
�  Combine elements, but don’t introduce new 



Sample Attachments 



Quantifier Scope 
�  Ambiguity:  

�  Every restaurant has a menu 

�  Readings:  
�  all have a menu; 
�  all have same menu 

�  Only derived one 

�  Potentially O(n!) scopings (n=# quantifiers) 

�  There are approaches to describe ambiguity 
efficiently and recover all alternatives. 

!xRe staurant(x)"#y(Menu(y)$(#eHaving(e)$Haver(e, x)$Had(e, y)))

!yMenu(y)"#x(Re staurant(x)$!eHaving(e)"Haver(e, x)"Had(e, y)))



Earley Parsing with 
Semantics 

�  Implement semantic analysis 
�  In parallel with syntactic parsing 

�  Enabled by compositional approach 

�  Required modifications 
�  Augment grammar rules with semantic field 
�  Augment chart states with meaning expression 
�  Completer computes semantics – e.g. unifies 

�  Can also fail to unify  
�  Blocks semantically invalid parses 

�  Can impose extra work 



Sidelight: Idioms 
�  Not purely compositional 

�  E.g. kick the bucket = die 

�          tip of  the iceberg = beginning 

�  Handling: 
�  Mix lexical items with constituents (word nps) 
�  Create idiom-specific const. for productivity 

�  Allow non-compositional semantic attachments 

�  Extremely complex: e.g. metaphor 


