Meaning
Representation and
Semantic Analysis

Ling 571
Deep Processing Techniques for NLP
February 9, 2011

- -

Roadmap

® Meaning representation:
® Event representations
® Temporal representation

® Semantic Analysis

e Compositionality and rule-to-rule
® Semantic attachments
® Basic
® Refinements
® (Quantifier scope
® Farley Parsing and Semantics

FOL Syntax Summary

Formula — AtomicFormula
Formula Connective Formuila
Quantifier Variable, . .. Formula

— Formula
(Formula)
AtomicFormula — Predicate(Term, . ..)
Term — Function(Term,...)
| Constant
| Variable
Connective — N| V| =
Quantifier — V| 3
Constant — A | VegetarianFood | Maharani- - -
Variable — x| y| ---
Predicate — Serves | Near | ---
Function —

LocationOf | CuisineOf| - -

® Formulas based on logical operators:

Semantics of FOL

® Model-theoretic approach:
® FOL terms (objects): denote elements in a domain
® Atomic formulas are:

® |f properties, sets of domain elements
* |f relations, sets of tuples of elements

P 0 = PAQ PV QO P = 0
False False True False False True
False True True False True True
True False False False True False
True True False True True True

Inference

e Standard Al-type logical inference procedures
® Modus Ponens
® Forward-chaining, Backward Chaining
e Abduction
® Resolution
e Fic,..

o We'll assume we have a prover

Representing Events

® [nitially, single predicate with some arguments
e Serves(Maharani,IndianFood)

Representing Events

® [nitially, single predicate with some arguments
e Serves(Maharani,IndianFood)
® Assume # ags = # elements in subcategorization frame

Representing Events

® [nitially, single predicate with some arguments
® Serves(Maharani,IndianFood)
® Assume # ags = # elements in subcategorization frame

® Example:
° | ate.
| ate a turkey sandwich.
| ate a turkey sandwich at my desk.
| ate at my desk.

| ate lunch.
| ate a turkey sandwich for lunch.
| ate a turkey sandwich for lunch at my desk.

Events

® |ssues?

—

Events

® |ssues?
® Arity — how can we deal with different #s of arguments?

Events

® |ssues?
® Arity — how can we deal with different #s of arguments?

® One predicate per frame
® Fating,(Speaker)
e Fating,(Speaker,TS)
® Fatings(Speaker,TS,Desk)
e Fating,(Speaker,Desk)
® Fatings(Speaker,TS,Lunch)
® Fating,(Speaker,TS,Lunch,Desk)

Events (Cont’d)

® (Good idea?

—

Events (Cont’d)

® Good idea?
® Despite the names, actually unrelated predicates

Events (Cont’d)

® (Good idea?

® Despite the names, actually unrelated predicates

® Can’t derive obvious info
e F.g. | ate a turkey sandwich for lunch at my desk
® Entails all other sentences

Events (Cont’d)

® Good idea?

® Despite the names, actually unrelated predicates

® Can’t derive obvious info
e F.g. | ate a turkey sandwich for lunch at my desk
® Entails all other sentences

e Can’t directly associate with other predicates

Events (Cont’d)

® Good idea?

® Despite the names, actually unrelated predicates

® Can’t derive obvious info
e F.g. | ate a turkey sandwich for lunch at my desk
® Entails all other sentences

e Can’t directly associate with other predicates

® Could write rules to implement implications

Events (Cont’d)

® Good idea?

® Despite the names, actually unrelated predicates

® Can’t derive obvious info
e F.g. | ate a turkey sandwich for lunch at my desk
® Entails all other sentences

e Can’t directly associate with other predicates

® Could write rules to implement implications
e But?
® |ntractable in the large
® | ike the subcat problem generally.

Variabilizing
® Create predicate with maximum possible arguments

® |nclude appropriate args

¢ Maintains connections
dw, x, yEating(Speaker,w, x,y)

dw, xEating(Speaker, TS, w, x)
dwEating(Speaker,TS,w, Desk)
Eating(Speaker, TS, Lunch, Desk)

Variabilizing
® Create predicate with maximum possible arguments

® |nclude appropriate args

¢ Maintains connections
dw, x, yEating(Speaker,w, x,y)

dw, xEating(Speaker, TS, w, x)
dwEating(Speaker,TS,w, Desk)
Eating(Speaker, TS, Lunch, Desk)

® Better?

Variabilizing
® Create predicate with maximum possible arguments
® |nclude appropriate args
® Maintains connections
dw, x, yEating(Speaker,w, x,y)
dw, xEating(Speaker, TS, w, x)
dwEating(Speaker,TS,w, Desk)
Eating(Speaker, TS, Lunch, Desk)

o Better?

® Yes, but
® Too many commitments — assume all details show up

Variabilizing

® (Create predicate with maximum possible arguments
® [nclude appropriate args
® Maintains connections

dw, x, yEating(Speaker,w, x,y)
dw, xEating(Speaker, TS, w, x)
dwEating(Speaker,TS,w, Desk)

Eating(Speaker, TS, Lunch, Desk)

® Better?

® Yes, but
® Too many commitments — assume all details show up
e Can’t individuate — don’t know if same event

Events - Finalized

® Neo-Davidsonian representation:
® Distill event to single argument for event itself
® EFverything else is additional predication
deEating(e) A Eater(e,Speaker) A Eaten(e, TS) A Meal(e, Lunch) A Location(e, Desk)

Events - Finalized

® Neo-Davidsonian representation:
® Distill event to single argument for event itself
® EFverything else is additional predication
deEating(e) A Eater(e,Speaker) A Eaten(e, TS) A Meal(e, Lunch) A Location(e, Desk)

® Pros:

Events - Finalized

® Neo-Davidsonian representation:
® Distill event to single argument for event itself
® EFverything else is additional predication
deEating(e) A Eater(e,Speaker) A Eaten(e, TS) A Meal(e, Lunch) A Location(e, Desk)

® Pros:

® No fixed argument structure
® Dynamically add predicates as necessary

Events - Finalized

® Neo-Davidsonian representation:
® Distill event to single argument for event itself
® EFverything else is additional predication
deEating(e) A Eater(e,Speaker) A Eaten(e, TS) A Meal(e, Lunch) A Location(e, Desk)

® Pros:

® No fixed argument structure
® Dynamically add predicates as necessary

® No extra roles

Events - Finalized

® Neo-Davidsonian representation:
® Distill event to single argument for event itself
® EFverything else is additional predication
deEating(e) A Eater(e,Speaker) A Eaten(e, TS) A Meal(e, Lunch) A Location(e, Desk)

® Pros:
® No fixed argument structure
® Dynamically add predicates as necessary
® No extra roles
® | ogical connections can be derived

Representing Time

® Temporal logic:
® |ncludes tense logic to capture verb tense infor

® Basic notion:
® Timeline:
® From past to future

® Events associated with points or intervals on line
® Qrdered by positioning on line

® Current time
® Relative order gives past/present/future

Temporal Information

® | arrived in New York.
® | am arriving in New York.
® | will arrive in New York.
e Same event, differ only in tense

deArriving(e) A Arriver(e,Speaker) A Destination(e, NY)

® Create temporal representation based on verb tense
® Add predication about event variable

® Jemporal variables represent:
® |nterval of event

® End point of event
® Predicates link end point to current time

Temporal Representation

de,i,n,tArriving(e) A Arriver(e,Speaker) A Destination(e, NY)
AntervalOf (e,i) A EndPoint(i,e) A Precedes(e, Now)
de,i,n,tArriving(e) A Arriver(e,Speaker) A Destination(e, NY)
AntervalOf (e,i) N MemberOf (i, Now)

de,i,n,tArriving(e) n Arriver(e,Speaker) A Destination(e, NY)
AntervalOf (e,i) A EndPoint(i,n) A Precedes(Now,e)

More Temp Rep

® Flight 902 arrived late.
® Flight 902 had arrived late.

® Does the current model cover this?
® Not really

® Need additional notion:

® Reference point
® As well as current time, event time

® Current model: current = utterance time = reference point

Reichenbach’s Tense Model

Past Perfect Simple Past Present Perfect
| had eaten | ate | have eaten
—p — —
E R U RE U E RY
Present Simple Future Future Perfect
| eat I will eat I will have eaten
o TT
URE UR E U E R

Meaning Representation for
Computational Semantics

® Requirements:

e \erifiability, Unambiguous representation, Canonical
Form, Inference, Variables, Expressiveness

® Solution:
® First-Order Logic
® Structure
® Semantics
® Event Representation

® Next: Semantic Analysis
® Deriving a meaning representation for an input

Syntax-driven Semantic Analysis

e Key: Principle of Compositionality
® Meaning of sentence from meanings of parts
® E.g. groupings and relations from syntax

® Question: Integration?

® Solution 1: Pipeline
® Feed parse tree and sentence to semantic unit
® Sub-Q: Ambiguity:
® Approach: Keep all analyses, later stages will select

Simple Example

e AyCaramba serves meat.

de Isa(e, Serving) a Server(e, AyCaramba) A Served(e, Meat)

Rule-to-Rule

® |[ssue:

® How do we know which pieces of the semantics link to
what part of the analysis?

® Need detailed information about sentence, parse tree
® |nfinitely many sentences & parse trees
® Semantic mapping function per parse tree => intractable

e Solution:

® Tie semantics to finite components of grammar
® E.g. rules & lexicon
® Augment grammar rules with semantic info

* Aka “attachments”
® Specify how RHS elements compose to LHS

Semantic Attachments

e Basic structure:
e A->al....an {f(aj.sem,...ak.sem)}
® A.sem

® [anguage for semantic attachments

® Arbitrary programming language fragments?

e Arbitrary power but hard to map to logical form

® No obvious relation between syntactic, semantic elements
® | ambda calculus

® Extends First Order Predicate Calculus (FOPC) with function
application

® f[eature-based model + unification

® Focus on lambda calculus approach

Basic example

® |nput: Maharani closed.

e Target output: Closed(Maharani)

NP VP

Semantic Analysis Example

® Semantic attachments:
e Fach CFG production gets semantic attachment

® Maharani

® ProperNoun -> Maharani {Maharani}
® FOL constant to refer to object

® NP -> ProperNoun {ProperNoun.semj}
®* No additional semantic info added

Semantic Attachment
Example

® Phrase semantics is function of SA of children

® More complex functions are parameterized
e F g Verb -> closed { A x.Closed(x) }

e Unary predicate:
® 1 arg = subject, not yet specified

° VP -> Verb {Verb.sem}

® No added information

o S -> NP VP {VPsem(NP.sem)}
® Application= A x.Closed(x)(Maharanii) = Closed(Maharani)

Semantic Attachment

® General pattern:
® Grammar rules mostly lambda reductions
® Functor and arguments

® Most representation resides in lexicon

Refining Representation

* Add

® Neo-Davidsonian event-style model
® Complex quantification

e Example Il

® |nput: Every restaurant closed.
® Target:

VarRe staurant(x) => JeClosed (e)n ClosedThingle,)

Refining Representation

o |dea: VxRestaurant(x)

® Good enough?
® No: roughly ‘everything is a restaurant’
e Saying something about all restaurants — nuclear scope

e Solution: Dummy predicate
VxRe staurant(x) = Q(x)

® Good enough?
® No: no way to get Q(x) from elsewhere in sentence

® Solution: Lambda

AQ. Y xRe staurant(x)= Q(x)

Updating Attachments

Noun -> restaurant

Nominal -> Noun

Det -> Every

NP -> Det Nominal

{ A x.Restaurant(x)}

{ Noun.sem }

{AP.AQNxP(x)= Q(x) }

{ Det.sem(Nom.sem) }

AP AQ.NxP(x)= O(x)(Ax.Restaurant(x))
AP.AQ.NxP(x) = Q(x)(Ay.Re staurant(y))
MO xAy.Re staurant(y)(x) = Q(x)
AQ. N xRe staurant(x) = Q(x)

Full Representation

® Verb -> close {Ax3eClosed(e) A ClosedThing(e,x)}
o VP ->Verb { Verb.sem }
e S.>NPVP { NPsem(VPsem) }

AQ.NxRe staurant(x) = Q(x)(Ay.deClosed(e) A ClosedThing(e,y))
VxRe staurant(x) = Ay.deClosed(e) A ClosedThing(e, y)(x)
VxRe staurant(x) = deClosed(e) A ClosedThing(e, x)

Generalizing Attachments

® ProperNoun -> Maharani {Maharani}

® Does this work in the new style?
® No, we turned the NP/VP application around

®* New style: A x.x(Maharani)

More

® Determiner

* Det->a { AP.AQJxP(x)AQ(x) }

® a restaurant AQ.dxRe staurant(x) A Q(x)

® Transitive verb:
® VP ->Verb NP { Verb.sem(NPsem) }
® \erb -> opened

Aw.Azw(Ax.eOpened(e) A Opener(e,z) A OpenedThing(e,w

Strategy for Semantic
Attachments

® General approach:

® Create complex, lambda expressions with lexical items
® |ntroduce quantifiers, predicates, terms

® Percolate up semantics from child if non-branching

® Apply semantics of one child to other through lambda
® Combine elements, but don’t introduce new

Sample Attachments

Grammar Rule

Semantic Attachment

S — NPVP

NP — Det Nominal
NP — ProperNoun
Nominal — Noun
VP — Verb

VP — Verb NP

Det — every
Det — a
Noun — restaurant

ProperNoun — Matthew
ProperNoun — Franco
ProperNoun — Frasca
Verb — closed

Verb — opened

{NP.sem(VP.sem)}
{Det.sem(Nominal .sem) }
{ProperNoun.sem}
{Noun.sem}

{Verb.sem}
{Verb.sem(NP.sem) }

{APAO NxP(x) = Ox)]}
{APAQ.3xP(x) AO(x)}
{Ar.Restaurant(r)}
{Am.m(Matthew)}

{ALf.f(Franco)}

{Af.f(Frasca)}
{Ax.JeClosed(e) N ClosedThing(e,x)}

{Aw.Az.w(Ax.FeOpened(e) A Opener(e,z)
NAOpened(e,x)) }

Quantifier Scope
* Ambiguity:

® fvery restaurant has a menu
VxRe staurant(x) = dy(Menu(y) A (deHaving(e) A Haver(e,x) A Had(e,y)))

® Readings:
® all have a menu;
® all have same menu
® Only derived one
dyMenu(y) A Vx(Re staurant(x) = deHaving(e) A Haver(e,x) A Had(e,y)))
e Potentially O(n!) scopings (n=# quantifiers)

® There are approaches to describe ambiguity
efficiently and recover all alternatives.

Earley Parsing with
Semantics

* |[mplement semantic analysis
® |n parallel with syntactic parsing

® Enabled by compositional approach

® Required modifications

Augment grammar rules with semantic field
Augment chart states with meaning expression
Completer computes semantics — e.g. unifies

® Can also fail to unify

® Blocks semantically invalid parses
® Can impose extra work

Sidelight: ldioms

® Not purely compositional
® [.g. kick the bucket = die

° tip of the iceberg = beginning

¢ Handling:
® Mix lexical items with constituents (word nps)
® Create idiom-specific const. for productivity
® Allow non-compositional semantic attachments

® Extremely complex: e.g. metaphor

