### Discourse: Reference

Ling571 Deep Processing Techniques for NLP March 2, 2011

### What is a Discourse?

- Discourse is:
  - Extended span of text
  - Spoken or Written
  - One or more participants
  - Language in Use
  - Goals of participants
    - Processes to produce and interpret

## Why Discourse?

- Understanding depends on context
  - Referring expressions: it, that, the screen
  - Word sense: plant
  - Intention: Do you have the time?
- Applications: Discourse in NLP
  - Question-Answering
  - Information Retrieval
  - Summarization
  - Spoken Dialogue
- Automatic Essay Grading

U: Where is A Bug's Life playing in Summit?
S: A Bug's Life is playing at the Summit theater.
U: When is it playing there?
S: It's playing at 2pm, 5pm, and 8pm.
U: I'd like 1 adult and 2 children for the first show. How much would that cost?

• Knowledge sources:

U: Where is A Bug's Life playing in Summit?
S: A Bug's Life is playing at the Summit theater.
U: When is it playing there?
S: It's playing at 2pm, 5pm, and 8pm.
U: I'd like 1 adult and 2 children for the first show. How much would that cost?

- Knowledge sources:
  - Domain knowledge

U: Where is A Bug's Life playing in Summit?
S: A Bug's Life is playing at the Summit theater.
U: When is it playing there?
S: It's playing at 2pm, 5pm, and 8pm.
U: I'd like 1 adult and 2 children for the first show. How much would that cost?

- Knowledge sources:
  - Domain knowledge
  - Discourse knowledge

U: Where is A Bug's Life playing in Summit?
S: A Bug's Life is playing at the Summit theater.
U: When is it playing there?
S: It's playing at 2pm, 5pm, and 8pm.
U: I'd like 1 adult and 2 children for the first show. How much would that cost?

- Knowledge sources:
  - Domain knowledge
  - Discourse knowledge
  - World knowledge

### Coherence

- First Union Corp. is continuing to wrestle with severe problems. According to industry insiders at PW, their president, John R. Georgius, is planning to announce his retirement tomorrow.
- Summary:
- First Union President John R. Georgius is planning to announce his retirement tomorrow.
- Inter-sentence coherence relations:
  - Second sentence: main concept (nucleus)
  - First sentence: subsidiary, background

## Different Parameters of Discourse

- Number of participants
  - Multiple participants -> Dialogue
- Modality
  - Spoken vs Written
- Goals
  - Transactional (message passing) vs Interactional (relations, attitudes)
  - Cooperative task-oriented rational interaction

## Spoken vs Written Discourse

#### Speech

- Paralinguistic effects
  - Intonation, gaze, gesture
- Transitory
- Real-time, on-line
- Less "structured"
  - Fragments
  - Simple, Active, Declarative
  - Topic-Comment
  - Non-verbal referents
  - Disfluencies
    - Self-repairs
    - False Starts
    - Pauses

- Written text
  - No paralinguistic effects
  - "Permanent"
  - Off-line. Edited, Crafted
  - More "structured"
    - Full sentences
    - Complex sentences
    - Subject-Predicate
    - Complex modification
    - More structural markers
    - No disfluencies

## Spoken vs Written: Representation

- Spoken "text" "same" if:
  - Recorded (Audio/Video Tape)
  - Transcribed faithfully
    - Always some interpretation
  - Text (normalized) transcription
    - Map paralinguistic features
    - e.g. pause = -,+,++
    - Notate accenting, pitch

- Written text "same" if:
  - Same words
  - Same order
  - Same punctuation (headings)
  - Same lineation

### Agenda

- Coherence: Holding discourse together
  - Coherence types and relations
- Reference resolution
  - Referring expressions
  - Information status and structure
  - Features and Preferences for resolution
  - Knowledge-rich, deep analysis approaches
    - Lappin&Leass,
    - Hobbs

### **Coherence Relations**

- John hid Bill's car keys. He was drunk.
- ?? John hid Bill's car keys. He likes spinach.
- Why odd?
  - No obvious relation between sentences
    - Readers often try to construct relations
- How are first two related?
  - Explanation/cause
- Utterances should have meaningful connection
  - Establish through coherence relations

### **Entity-based Coherence**

- John went to his favorite music store to buy a piano.
- He had frequented the store for many years.
- He was excited that he could finally buy a piano.
- VS
  - John went to his favorite music store to buy a piano.
  - It was a store John had frequented for many years.
  - He was excited that he could finally buy a piano.
  - It was closing just as John arrived.
- Which is better? Why?
  - 'about' one entity vs two, focuses on it for coherence

- Match referring expressions to referents
- Syntactic & semantic constraints
- Syntactic & semantic preferences

• Reference resolution algorithms

- U: Where is A Bug's Life playing in Summit?
  S: A Bug's Life is playing at the Summit theater.
  U: When is it playing there?
  S: It's playing at 2pm, 5pm, and 8pm.
  U: I'd like 1 adult and 2 children for the first show. How much would that cost?
- Knowledge sources:
  - Domain knowledge
  - Discourse knowledge
  - World knowledge

## Reference Resolution: Global Focus/ Task

- (From Grosz "Typescripts of Task-oriented Dialogues")
- E: Assemble the air compressor.
- •
- ... 30 minutes later...
- E: Plug it in / See if it works

- (From Grosz)
- E: Bolt the pump to the base plate
- A: What do I use?
- ....
- A: What is a ratchet wrench?
- E: Show me the table. The ratchet wrench is [...]. Show it to me.
- A: It is bolted. What do I do now?

## Relation Recognition: Intention

- A: You seem very quiet today; is there a problem?
- A: Would you be interested in going to dinner tonight?

• B: I have a headache.

• B: I have a headache.

Answer

• Reject

### Reference

 Queen Elizabeth set about transforming her husband, King George VI, into <u>a viable monarch</u>. Logue, a renowned speech therapist, was summoned to help the King overcome his <u>speech</u> <u>impediment</u>...

Referring expression: (refexp) Linguistic form that picks out entity in some model That entity is the "referent" When introduces entity, "evokes" it Set up later reference, "antecedent" 2 refexps with same referent "co-refer"

## Reference (terminology)

- Queen Elizabeth set about transforming her husband, King George VI, into <u>a viable monarch</u>. Logue, a renowned speech therapist, was summoned to help the King overcome his <u>speech</u> <u>impediment</u>...
- Anaphor:
  - Abbreviated linguistic form interpreted in context
    - Her, his, the King
  - Refers to previously introduced item ("accesses")
    - Referring expression is then anaphoric

### **Referring Expressions**

- Many alternatives:
  - Queen Elizabeth, she, her, the Queen, etc
  - Possible correct forms depend on discourse context
    - E.g. she, her presume prior mention, or presence in world
- Interpretation (and generation) requires:
  - Discourse Model with representations of:
    - Entities referred to in the discourse
    - Relationships of these entities
  - Need way to construct, update model
  - Need way to map refexp to hearer's beliefs

### **Reference and Model**





 Queen Elizabeth set about transforming her husband, King George VI, into <u>a viable monarch</u>. Logue, a renowned speech therapist, was summoned to help the King overcome his <u>speech</u> <u>impediment</u>...

Coreference resolution:

Find all expressions referring to same entity, 'corefer' Colors indicate coreferent sets Pronominal anaphora resolution: Find antecedent for given pronoun

## **Referring Expressions**

- Indefinite noun phrases (NPs): e.g. "a cat"
  - Introduces new item to discourse context
- Definite NPs: e.g. "the cat"
  - Refers to item identifiable by hearer in context
    - By verbal, pointing, or environment availability; implicit
- Pronouns: e.g. "he", "she", "it"
  - Refers to item, must be "salient"
- Demonstratives: e.g. "this", "that"
  - Refers to item, sense of distance (literal/figurative)
- Names: e.g. "Miss Woodhouse","IBM"
  New or old entities

### Information Status

- Some expressions (e.g. indef NPs) introduce new info
- Others refer to old referents (e.g. pronouns)
- Theories link form of refexp to given/new status

| I ne givenr  | iess nierarch                                                              | y:         |                |                        |                    |
|--------------|----------------------------------------------------------------------------|------------|----------------|------------------------|--------------------|
|              |                                                                            |            | uniquely       |                        | type               |
| in focus $>$ | activated >                                                                | familiar > | identifiable > | referential >          | identifiable       |
| {it}         | $\left\{\begin{array}{c} that\\ this\\ this\\ this \ N\end{array}\right\}$ | {that N}   | {the N}        | {indef. <i>this</i> N} | $\{a \mathbf{N}\}$ |

- Accessibility:
  - More salient elements easier to call up, can be shorter Correlates with length: more accessible, shorter refexp

### **Complicating Factors**

#### • Inferrables:

- Refexp refers to inferentially related entity
  - I bought a car today, but the door had a dent, and the engine was noisy.
  - E.g. car -> door, engine
- Generics:
  - I want to buy a Mac. They are very stylish.
  - General group evoked by instance.
- Non-referential cases:
  - It's raining.

## Syntactic Constraints for Reference Resolution

- Some fairly rigid rules constrain possible referents
- Agreement:
  - Number: Singular/Plural
  - Person: 1st: I,we; 2nd: you; 3rd: he, she, it, they
  - Gender: he vs she vs it

## Syntactic & Semantic Constraints

- Binding constraints:
  - Reflexive (x-self): corefers with subject of clause
  - Pronoun/Def. NP: can't corefer with subject of clause

#### "Selectional restrictions":

- "animate": The cows eat grass.
- "human": The author wrote the book.
- More general: drive: John drives a car....

### Syntactic & Semantic Preferences

- Recency: Closer entities are more salient
  - The doctor found an old map in the chest. Jim found an even older map on the shelf. It described an island.
- Grammatical role: Saliency hierarchy of roles
  - e.g. Subj > Object > I. Obj. > Oblique > AdvP
    - Billy Bones went to the bar with Jim Hawkins. He called for a glass of rum. [he = Billy]
    - Jim Hawkins went to the bar with Billy Bones. He called for a glass of rum. [he = Jim]

## Syntactic & Semantic Preferences

- Repeated reference: Pronouns more salient
  - Once focused, likely to continue to be focused
    - Billy Bones had been thinking of a glass of rum. He hobbled over to the bar. Jim Hawkins went with him. He called for a glass of rum. [he=Billy]
- Parallelism: Prefer entity in same role
  - Silver went with Jim to the bar. Billy Bones went with him to the inn. [him = Jim]
  - Overrides grammatical role
- Verb roles: "implicit causality", thematic role match,...
  - John telephoned Bill. He lost the laptop.
  - John criticized Bill. He lost the laptop.

## Reference Resolution Approaches

#### Common features

- "Discourse Model"
  - Referents evoked in discourse, available for reference
  - Structure indicating relative salience
- Syntactic & Semantic Constraints
- Syntactic & Semantic Preferences

#### • Differences:

 Which constraints/preferences? How combine? Rank?

## A Resolution Algorithm (Lappin & Leass)

- Discourse model update:
  - Evoked entities:
    - Equivalence classes: Coreferent referring expressions
  - Salience value update:
    - Weighted sum of salience values:
      - Based on syntactic preferences
- Pronoun resolution:
  - Exclude referents that violate syntactic constraints
  - Select referent with highest salience value

### Salience Factors (Lappin & Leass 1994)

### Weights empirically derived from corpus

- Recency: 100
- Subject: 80
- Existential: 70
- Object: 50
- Indirect Object/Oblique: 40
- Non-adverb PP: 50
- Head noun: 80
- Parallelism: 35, Cataphora: -175
- Divide by 50% for each sentence distance

- John saw a beautiful Acura Integra in the dealership.
- He showed it to Bob.
- He bought it.

• John saw a beautiful Acura Integra in the dealership.

| Referent   | Phrases                        | Value |
|------------|--------------------------------|-------|
| John       | {John}                         | 310   |
| Integra    | {a beautiful<br>Acura Integra} | 280   |
| Dealership | {the dealership}               | 230   |

#### • He showed it to Bob.

| Referent   | Phrases                        | Value |
|------------|--------------------------------|-------|
| John       | {John, he1}                    | 465   |
| Integra    | {a beautiful<br>Acura Integra} | 140   |
| Dealership | {the dealership}               | 115   |

| Referent   | Phrases                        | Value |
|------------|--------------------------------|-------|
| John       | {John, he1}                    | 465   |
| Integra    | {a beautiful<br>Acura Integra} | 420   |
| Dealership | {the dealership}               | 115   |

#### • He showed it to Bob.

| Referent   | Phrases                        | Value |
|------------|--------------------------------|-------|
| John       | {John, he1}                    | 465   |
| Integra    | {a beautiful<br>Acura Integra} | 140   |
| Bob        | {Bob}                          | 270   |
| Dealership | {the dealership}               | 115   |

| Referent   | Phrases                        | Value |
|------------|--------------------------------|-------|
| John       | {John, he1}                    | 232.5 |
| Integra    | {a beautiful<br>Acura Integra} | 210   |
| Bob        | {Bob}                          | 135   |
| Dealership | {the dealership}               | 57.5  |

#### • He bought it.

| Referent   | Phrases                        | Value |
|------------|--------------------------------|-------|
| John       | {John, he1}                    | 542.5 |
| Integra    | {a beautiful<br>Acura Integra} | 490   |
| Bob        | {Bob}                          | 135   |
| Dealership | {the dealership}               | 57.5  |

# Hobbs' Resolution Algorithm

- Requires:
  - Syntactic parser
  - Gender and number checker
- Input:
  - Pronoun
  - Parse of current and previous sentences
- Captures:
  - Preferences: Recency, grammatical role
  - Constraints: binding theory, gender, person, number

## Hobbs Algorithm

#### Intuition:

- Start with target pronoun
- Climb parse tree to S root
- For each NP or S
  - Do breadth-first, left-to-right search of children
    - Restricted to left of target
  - For each NP, check agreement with target
- Repeat on earlier sentences until matching NP found

## Hobbs Algorithm Detail

- Begin at NP immediately dominating pronoun
- Climb tree to NP or S: X=node, p = path
- Traverse branches below X, and left of p
  - Breadth-first, Left-to-Right
  - If find NP, propose as antecedent
    - If separated from X by NP or S
- Loop: If X highest S in sentence, try previous sentences.
- If X not highest S, climb to next NP or S: X = node
- If X is NP, and p not through X's nominal, propose X
- Traverse branches below X, left of p: BF,LR
  - Propose any NP
- If X is S, traverse branches of X, right of p: BF, LR
  - Do not traverse NP or S; Propose any NP
  - Go to Loop

### Hobbs Example



Lyn's mom is a gardener. Craige likes her.

### Another Hobbs Example



## Hobbs Algorithm

- Results: 88% accuracy ; 90+% intrasential
  - On perfect, manually parsed sentences
- Useful baseline for evaluating pronominal anaphora
- Issues:
  - Parsing:
    - Not all languages have parsers
    - Parsers are not always accurate
  - Constraints/Preferences:
    - Captures: Binding theory, grammatical role, recency
    - But not: parallelism, repetition, verb semantics, selection

## Reference Resolution: Agreements

- Knowledge-based
  - Deep analysis: full parsing, semantic analysis
  - Enforce syntactic/semantic constraints
  - Preferences:
    - Recency
    - Grammatical Role Parallelism (ex. Hobbs)
    - Role ranking
    - Frequency of mention
- Local reference resolution
- Little/No world knowledge
- Similar levels of effectiveness

### Questions

- 80% on (clean) text. What about...
  - Conversational speech?
    - Ill-formed, disfluent
  - Dialogue?
    - Multiple speakers introduce referents
  - Multimodal communication?
    - How else can entities be evoked?
    - Are all equally salient?

## More Questions

- 80% on (clean) (English) text: What about..
  - Other languages?
    - Salience hierarchies the same
      - Other factors
    - Syntactic constraints?
      - E.g. reflexives in Chinese, Korean,...
    - Zero anaphora?
      - How do you resolve a pronoun if you can't find it?

## Reference Resolution Algorithms

- Many other alternative strategies:
  - Linguistically informed, saliency hierarchy
    - Centering Theory
  - Machine learning approaches:
    - Supervised: Maxent
    - Unsupervised: Clustering
  - Heuristic, high precision:
    - Cogniac

## Reference Resolution: Extensions

#### Cross-document co-reference

- (Baldwin & Bagga 1998)
- Break "the document boundary"
- Question: "John Smith" in A = "John Smith" in B?
- Approach:
  - Integrate:
    - Within-document co-reference
  - with
    - Vector Space Model similarity

### Cross-document Coreference

- Run within-document co-reference (CAMP)
  Produce chains of all terms used to refer to entity
- Extract all sentences with reference to entity
  Pseudo per-entity summary for each document
- Use Vector Space Model (VSM) distance to compute similarity between summaries

## Cross-document Coreference

• Experiments:

• 197 NYT articles referring to "John Smith"

- 35 different people, 24: 1 article each
- With CAMP: Precision 92%; Recall 78%
- Without CAMP: Precision 90%; Recall 76%
- Pure Named Entity: Precision 23%; Recall 100%

### Conclusions

- Co-reference establishes coherence
- Reference resolution depends on coherence
- Variety of approaches:
  - Syntactic constraints, Recency, Frequency, Role
- Similar effectiveness different requirements
- Co-reference can enable summarization within and across documents (and languages!)