Syntax: Context-free Grammars

Ling 571 Deep Processing Techniques for NLP January 5, 2011

Roadmap

- Motivation: Applications
- Context-free grammars (CFGs)
 - Formalism
 - Grammars for English
 - Treebanks and CFGs
 - Speech and Text

Applications

- Shallow techniques useful, but limited
- Deeper analysis supports:
 - Grammar-checking and teaching
 - Question-answering
 - Information extraction
 - Dialogue understanding

Grammar and NLP

- Grammar in NLP is NOT prescriptive high school grammar
 - Explicit rules
 - Split infinitives, etc
- Grammar in NLP tries to capture structural knowledge of language of a native speaker
 - Largely implicit
 - Learned early, naturally

Representing Syntax

- Context-free grammars
- CFGs: 4-tuple
 - A set of terminal symbols: Σ
 - A set of non-terminal symbols: N
 - A set of productions P: of the form A -> α
 - Where A is a non-terminal and α in ($\Sigma \cup N$)*
 - A designated start symbol S

CFG Components

- Terminals:
 - Only appear as leaves of parse tree
 - Right-hand side of productions (rules) (RHS)
 - Words of the language
 - Cat, dog, is, the, bark, chase
- Non-terminals
 - Do not appear as leaves of parse tree
 - Appear on left or right side of productions (rules)
 - Constituents of language
 - NP, VP, Sentence, etc

CFG Components

- Productions
 - Rules with one non-terminal on LHS and any number of terminals and non-terminals on RHS
 - S -> NP VP
 - VP -> V NP PP | V NP
 - Nominal -> Noun | Nominal Noun
 - Noun -> dog | cat | rat
 - Det -> the

Grammar	Rules	Examples
$S \rightarrow$	NP VP	I + want a morning flight
$\begin{array}{ccc} NP & \rightarrow & \\ & \\ Nominal & \rightarrow & \end{array}$	Pronoun Proper-Noun Det Nominal Nominal Noun Noun	I Los Angeles a + flight morning + flight flights
$VP \rightarrow $	Verb Verb NP Verb NP PP Verb PP	do want + a flight leave + Boston + in the morning leaving + on Thursday
$PP \rightarrow$	Preposition NP	from + Los Angeles

Speech and Language Processing -

1/4/11

Jurafsky and Martin

Parse Tree

- Accepting:
 - Legal string in language?
 - Formally: rigid

- Accepting:
 - Legal string in language?
 - Formally: rigid
 - Practically: degrees of acceptability

- Accepting:
 - Legal string in language?
 - Formally: rigid
 - Practically: degrees of acceptability
- Analysis
 - What structure produced the string?
 - What sequence of rule applications derives this string

- Accepting:
 - Legal string in language?
 - Formally: rigid
 - Practically: degrees of acceptability
- Analysis
 - What structure produced the string?
 - What sequence of rule applications derives this string
 - Produce one (or all) parse trees for the string

- Accepting:
 - Legal string in language?
 - Formally: rigid
 - Practically: degrees of acceptability
- Analysis
 - What structure produced the string?
 - What sequence of rule applications derives this string
 - Produce one (or all) parse trees for the string
- Generation
 - Given a grammar, produce all legal strings of language

- Sentences:
 - Declarative: S -> NP VP
 - I want a flight from Ontario to Chicago

- Declarative: S -> NP VP
 - I want a flight from Ontario to Chicago
- Imperative: S -> VP
 - Show me the cheapest fare.

- Declarative: S -> NP VP
 - I want a flight from Ontario to Chicago
- Imperative: S -> VP
 - Show me the cheapest fare.
- S -> Aux NP VP
 - Can you give me the same information for United?

- Declarative: S -> NP VP
 - I want a flight from Ontario to Chicago
- Imperative: S -> VP
 - Show me the cheapest fare.
- S -> Aux NP VP
 - Can you give me the same information for United?
- S -> Wh-NP VP
 - What airlines fly from Burbank to Denver?

- Sentences: Full sentence or clause; a complete thought
 - Declarative: S -> NP VP
 - I want a flight from Ontario to Chicago
 - Imperative: S -> VP
 - Show me the cheapest fare.
 - S -> Aux NP VP
 - Can you give me the same information for United?
 - S -> Wh-NP VP
 - What airlines fly from Burbank to Denver?
 - S -> Wh-NP Aux NP VP
 - What flights do you have from Chicago to Baltimore?

- NP -> Pronoun | Proper Noun (NNP) | Det Nominal
 - Head noun + pre-/post-modifiers
 - It , Flight 852,...

- NP -> Pronoun | Proper Noun (NNP) | Det Nominal
 - Head noun + pre-/post-modifiers
- Determiners:

- NP -> Pronoun | Proper Noun (NNP) | Det Nominal
 - Head noun + pre-/post-modifiers
- Determiners:
 - Det -> DT
 - the, this, a, those

- NP -> Pronoun | Proper Noun (NNP) | Det Nominal
 - Head noun + pre-/post-modifiers
- Determiners:
 - Det -> DT
 - the, this, a, those
 - Det -> NP 's
 - United's flight, Chicago's airport

In and around the Noun

- Nominal -> Noun
 - PTB POS: NN, NNS, NNP, NNPS
 - flight, dinner, airport

In and around the Noun

- Nominal -> Noun
 - PTB POS: NN, NNS, NNP, NNPS
 - flight, dinner, airport
- NP -> (Det) (Card) (Ord) (Quant) (AP) Nominal
 - The least expensive fare, one flight, the first route

In and around the Noun

- Nominal -> Noun
 - PTB POS: NN, NNS, NNP, NNPS
 - flight, dinner, airport
- NP -> (Det) (Card) (Ord) (Quant) (AP) Nominal
 - The least expensive fare, one flight, the first route
- Nominal -> Nominal PP
 - The flight from Chicago

- Verb phrase includes Verb, other constituents
 - Subcategorization frame: what constituent arguments the verb requires

- Verb phrase includes Verb, other constituents
 - Subcategorization frame: what constituent arguments the verb requires

• VP -> Verb disappear

- Verb phrase includes Verb, other constituents
 - Subcategorization frame: what constituent arguments the verb requires
 - VP -> Verb

• VP -> Verb NP

disappear book a flight

- Verb phrase includes Verb, other constituents
 - Subcategorization frame: what constituent arguments the verb requires
 - VP -> Verb
 - VP -> Verb NP
 - VP -> Verb PP PP

disappear book a flight fly from Chicago to Seattle

- Verb phrase includes Verb, other constituents
 - Subcategorization frame: what constituent arguments the verb requires
 - VP -> Verb
 - VP -> Verb NP
 - VP -> Verb PP PP
 - VP -> Verb S

disappear book a flight fly from Chicago to Seattle I think I want that flight

- Verb phrase includes Verb, other constituents
 - Subcategorization frame: what constituent arguments the verb requires
 - VP -> Verb
 - VP -> Verb NP
 - VP -> Verb PP PP
 - VP -> Verb S
 - VP -> Verb VP

disappear book a flight fly from Chicago to Seattle I think I want that flight I want to arrange three flights

- Issues?
 - I prefer United has a flight.

- Issues?
 - I prefer United has a flight.
- How can we solve this problem?

- I prefer United has a flight.
- How can we solve this problem?
 - Create explict subclasses of verb
 - Verb-with-NP
 - Verb-with-S-complement, etc...

- I prefer United has a flight.
- How can we solve this problem?
 - Create explict subclasses of verb
 - Verb-with-NP
 - Verb-with-S-complement, etc...
- Is this a good solution?

- I prefer United has a flight.
- How can we solve this problem?
 - Create explict subclasses of verb
 - Verb-with-NP
 - Verb-with-S-complement, etc...
- Is this a good solution?
 - No, explosive increase in number of rules
 - Similar problem with agreement

Treebanks

- Treebank:
 - Large corpus of sentences all of which are annotated syntactically with a parse
 - Built semi-automatically
 - Automatic parse with manual correction
 - Examples:
 - Penn Treebank (largest)
 - English: Brown (balanced); Switchboard (conversational speech); ATIS (human-computer dialogue); Wall Street Journal; Chinese; Arabic
 - Korean

Treebanks

- Include wealth of language information
 - Traces, grammatical function (subject, topic, etc), semantic function (temporal, location)
- Implicitly constitutes grammar of language
 - Can read off rewrite rules from bracketing
 - Not only presence of rules, but frequency
 - Will crucial in building statistical parsers

Treebank WSJ Example

```
( (S ('''')
 (S-TPC-2
   (NP-SBJ-1 (PRP We) )
   (VP (MD would)
     (VP (VB have)
       ( S
         (NP-SBJ (-NONE- *-1))
         (VP (TO to)
           (VP (VB wait)
             (SBAR-TMP (IN until)
                ( S
                  (NP-SBJ (PRP we) )
                  (VP (VBP have)
                    (VP (VBN collected)
                      (PP-CLR (IN on)
                        (NP (DT those)(NNS assets))))))))))))))))))
 (, ,) ('' '')
 (NP-SBJ (PRP he) )
 (VP (VBD said)
   (S (-NONE - *T* - 2)))
 (. .) ))
```

Treebanks & Corpora

- Many corpora on patas
- patas\$ Is /corpora
 - birkbeck enron_email_dataset grammars
 LEAP
 TREC
 - Coconut europarl ICAME med-data treebanks
 - Conll europarl-old JRC-Acquis.3.0 nltk
 - DUC framenet LDC proj-gutenberg
- Many large corpora from LDC
- Many corpus samples in nltk

• Large, expensive to produce

• Large, expensive to produce

- Complex
 - Agreement among labelers can be an issue

• Large, expensive to produce

- Complex
 - Agreement among labelers can be an issue
- Labeling implicitly captures theoretical bias
 - Penn Treebank is 'bushy', long productions

- Large, expensive to produce
- Complex
 - Agreement among labelers can be an issue
- Labeling implicitly captures theoretical bias
 - Penn Treebank is 'bushy', long productions
- Enormous numbers of rules
 - 4,500 rules in PTB for VP
 - VP-> V PP PP PP
 - 1M rule tokens; 17,500 distinct types and counting!

• Can we just use models for written language directly?

• Can we just use models for written language directly?

• No!

- Can we just use models for written language directly?
- No!
- Challenges of spoken language
 - Disfluency
 - Can I um uh can I g- get a flight to Boston on the 15th?
 - 37% of Switchboard utts > 2 wds

- Can we just use models for written language directly?
- No!
- Challenges of spoken language
 - Disfluency
 - Can I um uh can I g- get a flight to Boston on the 15th?
 - 37% of Switchboard utts > 2 wds
 - Short, fragmentary
 - Uh one way

- Can we just use models for written language directly?
- No!
- Challenges of spoken language
 - Disfluency
 - Can I um uh can I g- get a flight to Boston on the 15th?
 - 37% of Switchboard utts > 2 wds
 - Short, fragmentary
 - Uh one way
 - More pronouns, ellipsis
 - That one

Grammar Equivalence and Form

• Grammar equivalence

- Weak: Accept the same language, May produce different analyses
- Strong: Accept same language, Produce same structure
- Canonical form:
 - Chomsky Normal Form (CNF)
 - All CFGs have a weakly equivalent CNF
 - All productions of the form:
 - A-> B C where B,C in N, or
 - A->a where a in Σ

Tree Adjoining Grammars

- Mildly context-sensitive (Joshi, 1979)
 - Motivation:
 - Enables representation of crossing dependencies
- Operations for rewriting
 - "Substitution" and "Adjunction"

TAG Example

Computational Parsing

- Given a grammar, how can we derive the analysis of an input sentence?
 - Parsing as search
 - CKY parsing
 - Earley parsing

- Given a body of (annotated) text, how can we derive the grammar rules of a language, and employ them in automatic parsing?
 - Treebanks & PCFGS