
Algorithmic Parsing
Ling 571

Deep Processing Techniques for NLP
January 10, 2011

Roadmap
�  Motivation:

�  Recognition and Analysis

�  Parsing as Search
�  Search algorithms
�  Top-down parsing
�  Bottom-up parsing

�  Issues: Ambiguity, recursion, garden paths

Parsing
�  CFG parsing is the task of assigning proper trees to

input strings
�  For any input A and a grammar G, assign (zero or

more) parse-trees T that represent its syntactic
structure, and
�  Cover all and only the elements of A

�  Have, as root, the start symbol S of G

Parsing
�  CFG parsing is the task of assigning proper trees to

input strings
�  For any input A and a grammar G, assign (zero or

more) parse-trees T that represent its syntactic
structure, and
�  Cover all and only the elements of A

�  Have, as root, the start symbol S of G
�  Do not necessarily pick one (or correct) analysis

Parsing
�  CFG parsing is the task of assigning proper trees to

input strings
�  For any input A and a grammar G, assign (zero or more)

parse-trees T that represent its syntactic structure, and
�  Cover all and only the elements of A

�  Have, as root, the start symbol S of G
�  Do not necessarily pick one (or correct) analysis

�  Recognition:
�  Subtask of parsing

�  Given input A and grammar G, is A in the language defined
by G or not

Motivation
�  Parsing goals:

�  Is this sentence in the language – is it grammatical?
 I prefer United has the earliest flight.

�  FSAs accept the regular languages defined by automaton

�  Parsers accept language defined by CFG

Motivation
�  Parsing goals:

�  Is this sentence in the language – is it grammatical?
 I prefer United has the earliest flight.

�  FSAs accept the regular languages defined by automaton

�  Parsers accept language defined by CFG

�  What is the syntactic structure of this sentence?
�  What airline has the cheapest flight?

�  What airport does Southwest fly from near Boston?

�  Syntactic parse provides framework for semantic analysis
�  What is the subject?

Parsing as Search
�  Syntactic parsing searches through possible parse

trees to find one or more trees that derive input

�  Formally, search problems are defined by:

Parsing as Search
�  Syntactic parsing searches through possible parse

trees to find one or more trees that derive input

�  Formally, search problems are defined by:
�  A start state S,

Parsing as Search
�  Syntactic parsing searches through possible parse

trees to find one or more trees that derive input

�  Formally, search problems are defined by:
�  A start state S,
�  A goal state G,

Parsing as Search
�  Syntactic parsing searches through possible parse

trees to find one or more trees that derive input

�  Formally, search problems are defined by:
�  A start state S,
�  A goal state G,

�  A set of actions, that transition from one state to
another
�  Successor function

Parsing as Search
�  Syntactic parsing searches through possible parse

trees to find one or more trees that derive input

�  Formally, search problems are defined by:
�  A start state S,
�  A goal state G,

�  A set of actions, that transition from one state to
another
�  Successor function

�  A path cost function

Parsing as Search
�  The parsing search problem (one model):

�  Start State S:

Parsing as Search
�  The parsing search problem (one model):

�  Start State S: Start Symbol

�  Goal test:

Parsing as Search
�  The parsing search problem (one model):

�  Start State S: Start Symbol

�  Goal test:
�  Does parse tree cover all and only input?

�  Successor function:

Parsing as Search
�  The parsing search problem (one model):

�  Start State S: Start Symbol

�  Goal test:
�  Does parse tree cover all and only input?

�  Successor function:
�  Expand a non-terminal using production in grammar

where non-terminal is LHS of grammar

Parsing as Search
�  The parsing search problem (one model):

�  Start State S: Start Symbol

�  Goal test:
�  Does parse tree cover all and only input?

�  Successor function:
�  Expand a non-terminal using production in grammar

where non-terminal is LHS of grammar

�  Path cost:
�  We’ll ignore here

Parsing as Search
�  Node:

Parsing as Search
�  Node:

�  Partial solution to search problem:
�  Partial parse

�  Search start node:
�  Initial state:

Parsing as Search
�  Node:

�  Partial solution to search problem:
�  Partial parse

�  Search start node:
�  Initial state:

�  Input string
�  Start symbol of CFG

�  Goal node:

Parsing as Search
�  Node:

�  Partial solution to search problem:
�  Partial parse

�  Search start node:
�  Initial state:

�  Input string
�  Start symbol of CFG

�  Goal node:
�  Full parse tree: covering all and only input, rooted at S

Search Algorithms
�  Many search algorithms

�  Depth first

Search Algorithms
�  Many search algorithms

�  Depth first
�  Keep expanding non-terminal until reach words

�  If no more expansions, back up

�  Breadth first

Search Algorithms
�  Many search algorithms

�  Depth first
�  Keep expanding non-terminal until reach words

�  If no more expansions, back up

�  Breadth first
�  Consider all parses with a single non-terminal expanded

�  Then all with two expanded and so

�  Other alternatives if have associated path costs

Parse Search Strategies
�  Two constraints on parsing:

�  Must start with the start symbol

�  Must cover exactly the input string

�  Correspond to main parsing search strategies
�  Top-down search (Goal-directed search)

�  Bottom-up search (Data-driven search)

A Grammar

Top-down Search
�  All valid parse trees must start with start symbol

�  Begin search with productions with S on LHS
�  E.g., S -> NP VP

Top-down Search
�  All valid parse trees must start with start symbol

�  Begin search with productions with S on LHS
�  E.g., S -> NP VP

�  Successively expand non-terminals
�  E.g., NP – Det Nominal; VP -> V NP

Top-down Search
�  All valid parse trees must start with start symbol

�  Begin search with productions with S on LHS
�  E.g., S -> NP VP

�  Successively expand non-terminals
�  E.g., NP – Det Nominal; VP -> V NP

�  Terminate when all leaves are terminals
�  Book that flight

 Speech and Language Processing -
Jurafsky and Martin

Top-down Search

 Speech and Language Processing -
Jurafsky and Martin

Depth-first Search

 Speech and Language Processing -
Jurafsky and Martin

Depth-first Search

 Speech and Language Processing -
Jurafsky and Martin

Depth-first Search

 Speech and Language Processing -
Jurafsky and Martin

Breadth-first Search

 Speech and Language Processing -
Jurafsky and Martin

Breadth-first Search

 Speech and Language Processing -
Jurafsky and Martin

Breadth-first Search

 Speech and Language Processing -
Jurafsky and Martin

Breadth-first Search

Pros and Cons of
Top-down Parsing

�  Pros:

Pros and Cons of
Top-down Parsing

�  Pros:
�  Doesn’t explore trees not rooted at S

Pros and Cons of
Top-down Parsing

�  Pros:
�  Doesn’t explore trees not rooted at S

�  Doesn’t explore subtrees that don’t fit valid trees

Pros and Cons of
Top-down Parsing

�  Pros:
�  Doesn’t explore trees not rooted at S

�  Doesn’t explore subtrees that don’t fit valid trees

�  Cons:
�  Produces trees that may not match input

Pros and Cons of
Top-down Parsing

�  Pros:
�  Doesn’t explore trees not rooted at S

�  Doesn’t explore subtrees that don’t fit valid trees

�  Cons:
�  Produces trees that may not match input

�  May not terminate in presence of recursive rules

Pros and Cons of
Top-down Parsing

�  Pros:
�  Doesn’t explore trees not rooted at S

�  Doesn’t explore subtrees that don’t fit valid trees

�  Cons:
�  Produces trees that may not match input

�  May not terminate in presence of recursive rules
�  May rederive subtrees as part of search

Bottom-Up Parsing
�  Try to find all trees that span the input

�  Start with input string
�  Book that flight.

Bottom-Up Parsing
�  Try to find all trees that span the input

�  Start with input string
�  Book that flight.

�  Use all productions with current subtree(s) on RHS
�  E.g., N -> Book; V -> Book

Bottom-Up Parsing
�  Try to find all trees that span the input

�  Start with input string
�  Book that flight.

�  Use all productions with current subtree(s) on RHS
�  E.g., N -> Book; V -> Book

�  Stop when spanned by S (or no more rules apply)

1/9/11
 Speech and Language Processing -
Jurafsky and Martin

Bottom-Up Search

1/9/11
 Speech and Language Processing -
Jurafsky and Martin

Bottom-Up Search

1/9/11
 Speech and Language Processing -
Jurafsky and Martin

Bottom-Up Search

1/9/11
 Speech and Language Processing -
Jurafsky and Martin

Bottom-Up Search

1/9/11
 Speech and Language Processing -
Jurafsky and Martin

Bottom-Up Search

Bottom-Up Search

Bottom-Up Search

Bottom-Up Search

Pros and Cons of
Bottom-Up Search

�  Pros:

Pros and Cons of
Bottom-Up Search

�  Pros:
�  Will not explore trees that don’t match input

Pros and Cons of
Bottom-Up Search

�  Pros:
�  Will not explore trees that don’t match input

�  Recursive rules less problematic

Pros and Cons of
Bottom-Up Search

�  Pros:
�  Will not explore trees that don’t match input

�  Recursive rules less problematic
�  Useful for incremental/ fragment parsing

Pros and Cons of
Bottom-Up Search

�  Pros:
�  Will not explore trees that don’t match input

�  Recursive rules less problematic
�  Useful for incremental/ fragment parsing

�  Cons:
�  Explore subtrees that will not fit full sentences

Parsing Challenges
�  Ambiguity

�  Repeated substructure

�  Recursion

Parsing Ambiguity
�  Many sources of parse ambiguity

�  Lexical ambiguity
�  Book/N; Book/V

Parsing Ambiguity
�  Many sources of parse ambiguity

�  Lexical ambiguity
�  Book/N; Book/V

�  Structural ambiguity: Main types:
�  Attachment ambiguity

�  Constituent can attach in multiple places

�  I shot an elephant in my pyjamas.

Parsing Ambiguity
�  Many sources of parse ambiguity

�  Lexical ambiguity
�  Book/N; Book/V

�  Structural ambiguity: Main types:
�  Attachment ambiguity

�  Constituent can attach in multiple places
�  I shot an elephant in my pyjamas.

�  Coordination ambiguity
�  Different constituents can be conjoined

�  Old men and women

 Speech and Language Processing -
Jurafsky and Martin

Ambiguity

Disambiguation
�  Global ambiguity:

�  Multiple complete alternative parses

�  Need strategy to select correct one
�  Approaches exploit other information

Disambiguation
�  Global ambiguity:

�  Multiple complete alternative parses

�  Need strategy to select correct one
�  Approaches exploit other information

�  Statistical

�  Some prepositional structs more likely to attach high/low

�  Some phrases more likely, e.g., (old (men and women))

Disambiguation
�  Global ambiguity:

�  Multiple complete alternative parses
�  Need strategy to select correct one

�  Approaches exploit other information
�  Statistical

�  Some prepositional structs more likely to attach high/low
�  Some phrases more likely, e.g., (old (men and women))

�  Semantic
�  Pragmatic

�  E.g., elephants and pyjamas
�  Alternatively, keep all

�  Local ambiguity:
�  Ambiguity in subtree, resolved globally

Repeated Work
�  Top-down and bottom-up parsing both lead to

repeated substructures
�  Globally bad parses can construct good subtrees

�  But overall parse will fail

�  Require reconstruction on other branch

�  No static backtracking strategy can avoid

�  Efficient parsing techniques require storage of
shared substructure
�  Typically with dynamic programming

1/9/11
 Speech and Language Processing -
Jurafsky and Martin

Shared Sub-Problems

1/9/11
 Speech and Language Processing -
Jurafsky and Martin

Shared Sub-Problems

1/9/11
 Speech and Language Processing -
Jurafsky and Martin

Shared Sub-Problems

1/9/11
 Speech and Language Processing -
Jurafsky and Martin

Shared Sub-Problems

Recursion
�  Many grammars have recursive rules

�  E.g., S -> S Conj S

�  In search approaches, recursion is problematic
�  Can yield infinite searches

�  Esp., top-down

Garden Paths
�  Misleading partial analysis

�  Leads to backtracking, failure of initial analysis

�  The horse raced past the barn fell =>

Garden Paths
�  Misleading partial analysis

�  Leads to backtracking, failure of initial analysis

�  The horse raced past the barn fell =>

�  The horse, raced past the barn, fell =>

Garden Paths
�  Misleading partial analysis

�  Leads to backtracking, failure of initial analysis

�  The horse raced past the barn fell =>

�  The horse, raced past the barn, fell =>
�  The horse which was raced past the barn fell.

Dynamic Programming
�  Challenge: Repeated substructure -> Repeated work

�  Insight:
�  Global parse composed of parse substructures

�  Can record parses of substructures

�  Dynamic programming avoids repeated work by
tabulating solutions to subproblems
�  Here, stores subtrees

Parsing w/Dynamic
Programming

�  Avoids repeated work

�  Allows implementation of (relatively) efficient
parsing algorithms
�  Polynomial time in input length

�  Typically cubic () or less

�  Several different implementations
�  Cocke-Kasami-Younger (CKY) algorithm

�  Earley algorithm
�  Chart parsing

n3

Chomsky Normal Form
(CNF)

�  CKY parsing requires grammars in CNF

�  Chomsky Normal Form
�  All productions of the form:

�  A -> B C, or

�  A -> a

�  However, most of our grammars are not of this form
�  E.g., S -> Wh-NP Aux NP VP

�  Need a general conversion procedue
�  Any arbitrary grammar can be converted to CNF

CNF Conversion
�  Three main conditions:

�  Hybrid rules:
�  INF-VP -> to VP

�  Unit productions:
�  A -> B

�  Long productions:
�  A -> B C D

CNF Conversion
�  Hybrid rule conversion:

�  Replace all terminals with dummy non-terminals

�  E.g., INF-VP -> to VP
�  INF-VP -> TO VP; TO -> to

�  Unit productions:
�  Rewrite RHS with RHS of all derivable non-unit

productions
�  If and B -> w, then add A -> w A!

"

B

CNF Conversion
�  Long productions:

�  Introduce new non-terminals and spread over rules

�  S -> Aux NP VP
�  S -> X1 VP; X1 -> Aux NP

�  For all non-conforming rules,
�  Convert terminals to dummy non-terminals
�  Convert unit productions

�  Binarize all resulting rules

