CKY Parsing

Ling 571
Deep Processing Techniques for NLP
January 12, 2011

Roadmap

- Motivation:
 - Parsing (In) efficiency
- Dynamic Programming
- Cocke-Kasami-Younger Parsing Algorithm
 - Chomsky Normal Form
 - Conversion
 - CKY Algorithm
 - Parsing by tabulation

Repeated Work

- Top-down and bottom-up parsing both lead to repeated substructures
 - Globally bad parses can construct good subtrees
 - But overall parse will fail
 - Require reconstruction on other branch
 - No static backtracking strategy can avoid
- Efficient parsing techniques require storage of shared substructure
 - Typically with dynamic programming
- Example: a flight from Indianapolis to Houston on TWA

Bottom-Up Search

Dynamic Programming

- Challenge: Repeated substructure -> Repeated work
- Insight:
 - Global parse composed of parse substructures
 - Can record parses of substructures
- Dynamic programming avoids repeated work by tabulating solutions to subproblems
 - Here, stores subtrees

Parsing w/Dynamic Programming

- Avoids repeated work
- Allows implementation of (relatively) efficient parsing algorithms
 - Polynomial time in input length
 - Typically cubic (n^3) or less
- Several different implementations
 - Cocke-Kasami-Younger (CKY) algorithm
 - Earley algorithm
 - Chart parsing

Chomsky Normal Form (CNF)

- CKY parsing requires grammars in CNF
- Chomsky Normal Form
 - All productions of the form:
 - A -> B C, or
 - A -> a
- However, most of our grammars are not of this form
 - E.g., S -> Wh-NP Aux NP VP
- Need a general conversion procedure
 - Any arbitrary grammar can be converted to CNF

Grammatical Equivalence

- Weak equivalence:
 - Recognizes same language
 - Yields different structure
- Strong equivalence
 - Recognizes same languages
 - Yields same structure
- CNF is weakly equivalent

CNF Conversion

- Three main conditions:
 - Hybrid rules:
 - INF-VP -> to VP
 - Unit productions:
 - A -> B
 - Long productions:
 - A -> B C D

CNF Conversion

- Hybrid rule conversion:
 - Replace all terminals with dummy non-terminals
 - E.g., INF-VP -> to VP
 - INF-VP -> TO VP; TO -> to
- Unit productions:
 - Rewrite RHS with RHS of all derivable non-unit productions
 - If $A \Longrightarrow B$ and B -> w, then add A -> w

CNF Conversion

- Long productions:
 - Introduce new non-terminals and spread over rules
 - S -> Aux NP VP
 - S -> X1 VP; X1 -> Aux NP
- For all non-conforming rules,
 - Convert terminals to dummy non-terminals
 - Convert unit productions
 - Binarize all resulting rules

\mathscr{L}_1 Grammar	\mathscr{L}_1 in CNF
$S \rightarrow NP VP$	~
$S \rightarrow Aux NP VP$	
$S \rightarrow VP$	
$NP \rightarrow Pronoun$	
$NP \rightarrow Proper-Noun$	
$NP \rightarrow Det\ Nominal$	
$Nominal \rightarrow Noun$	
$Nominal \rightarrow Nominal Noun$	
$Nominal \rightarrow Nominal PP$	
$VP \rightarrow Verb$	
$VP \rightarrow Verb NP$	
$VP \rightarrow Verb NP PP$	
$VP \rightarrow Verb PP$	
$VP \rightarrow VP PP$	
$PP \rightarrow Preposition NP$	

\mathscr{L}_1 Grammar	\mathscr{L}_1 in CNF
$S \rightarrow NP VP$	$S \rightarrow NP VP$
$S \rightarrow Aux NP VP$	~ *** ***
$S \rightarrow VP$	
$NP \rightarrow Pronoun$	
$NP \rightarrow Proper-Noun$	
$NP \rightarrow Det Nominal$	
$Nominal \rightarrow Noun$	
Nominal → Nominal Noun	
$Nominal \rightarrow Nominal PP$	
$VP \rightarrow Verb$	
$VP \rightarrow Verb NP$	
$VP \rightarrow Verb NP PP$	
$VP \rightarrow Verb PP$	
$VP \rightarrow VP PP$	
$PP \rightarrow Preposition NP$	

\mathscr{L}_1 Grammar	\mathscr{L}_1 in CNF
$S \rightarrow NP VP$	$S \rightarrow NP VP$
$S \rightarrow Aux NP VP$	$S \rightarrow X1 VP$
	$XI \rightarrow Aux NP$
$S \rightarrow VP$	
$NP \rightarrow Pronoun$	
$NP \rightarrow Proper-Noun$	
$NP \rightarrow Det\ Nominal$	
$Nominal \rightarrow Noun$	
Nominal → Nominal Noun	
$Nominal \rightarrow Nominal PP$	
$VP \rightarrow Verb$	
$VP \rightarrow Verb NP$	
$VP \rightarrow Verb NP PP$	
$VP \rightarrow Verb PP$	
$VP \rightarrow VP PP$	
PP → Preposition NP	

\mathscr{L}_1 Grammar	\mathscr{L}_1 in CNF
$S \rightarrow NP VP$	$S \rightarrow NP VP$
$S \rightarrow Aux NP VP$	$S \rightarrow X1 VP$
	$X1 \rightarrow Aux NP$
$S \rightarrow VP$	$S \rightarrow book \mid include \mid prefer$
$NP \rightarrow Pronoun$	
$NP \rightarrow Proper-Noun$	
$NP \rightarrow Det\ Nominal$	
$Nominal \rightarrow Noun$	
$Nominal \rightarrow Nominal Noun$	
$Nominal \rightarrow Nominal PP$	
$VP \rightarrow Verb$	
$VP \rightarrow Verb NP$	
$VP \rightarrow Verb NP PP$	
$VP \rightarrow Verb PP$	
$VP \rightarrow VP PP$	
PP → Preposition NP	

\mathscr{L}_1 Grammar	\mathscr{L}_1 in CNF
$S \rightarrow NP VP$	$S \rightarrow NP VP$
$S \rightarrow Aux NP VP$	$S \rightarrow XI VP$
	$X1 \rightarrow Aux NP$
$S \longrightarrow V\!P$	$S \rightarrow book \mid include \mid prefer$
	$S \rightarrow Verb NP$
	C V2 DD
$NP \rightarrow Pronoun$	
$NP \rightarrow Proper-Noun$	
$NP \rightarrow Det Nominal$	
$Nominal \rightarrow Noun$	
$Nominal \rightarrow Nominal Noun$	
$Nominal \rightarrow Nominal PP$	
$VP \rightarrow Verb$	
$VP \rightarrow Verb NP$	
$VP \rightarrow Verb NP PP$	
$VP \rightarrow Verb PP$	
VP o VP PP	
PP → Preposition NP	

\mathscr{L}_1 Grammar	\mathscr{L}_1 in CNF
$S \rightarrow NP VP$	$S \rightarrow NP VP$
$S \rightarrow Aux NP VP$	$S \rightarrow X1 VP$
	$XI \rightarrow Aux NP$
$S \rightarrow VP$	$S \rightarrow book \mid include \mid prefer$
	$S \rightarrow Verb NP$
	$S \rightarrow X2 PP$
	$S \rightarrow Verb PP$
	$S \rightarrow VPPP$
$NP \rightarrow Pronoun$	
$NP \rightarrow Proper-Noun$	
$NP \rightarrow Det\ Nominal$	
$Nominal \rightarrow Noun$	
$Nominal \rightarrow Nominal Noun$	
$Nominal \rightarrow Nominal PP$	
$VP \rightarrow Verb$	
$VP \rightarrow Verb NP$	
$VP \rightarrow Verb NP PP$	
$VP \rightarrow Verb PP$	
$VP \rightarrow VP PP$	
PP → Preposition NP	

CKY Parsing

- Cocke-Kasami-Younger parsing algorithm:
 - (Relatively) efficient bottom-up parsing algorithm based on tabulating substring parses to avoid repeated work
 - Approach:
 - Use a CNF grammar
 - Build an (n+1) x (n+1) matrix to store subtrees
 - Upper triangular portion
 - Incrementally build parse spanning whole input string

Dynamic Programming in CKY

- Key idea:
 - For a parse spanning substring [i,j], there exists some k such there are parses spanning [i,k] and [k,j]
 - We can construct parses for whole sentence by building up from these stored partial parses
- So,
 - To have a rule A -> B C in [i,j],
 - We must have B in [i,k] and C in [k,j], for some i<k<j
 - CNF grammar forces this for all j>i+1

CKY

- Given an input string S of length n,
 - Build table (n+1) x (n+1)
 - Indexes correspond to inter-word positions
 - W.g., O Book 1 That 2 Flight 3
- Cells [i,j] contain sets of non-terminals of ALL constituents spanning i,j
 - [j-1,j] contains pre-terminals
 - If [0,n] contains Start, the input is recognized

CKY Algorithm

function CKY-PARSE(words, grammar) **returns** table

```
for j \leftarrow from 1 to LENGTH(words) do table[j-1,j] \leftarrow \{A \mid A \rightarrow words[j] \in grammar\} for i \leftarrow from j-2 downto 0 do for \ k \leftarrow i+1 \ to \ j-1 \ do table[i,j] \leftarrow table[i,j] \cup \{A \mid A \rightarrow BC \in grammar, B \in table[i,k], C \in table[k,j]\}
```

Is this a parser?

CKY Parsing

- Table fills:
 - Column-by-column
 - Left-to-right
 - Bottom-to-top
- Why?
 - Necessary info available (below and left)
 - Allows online sentence analysis
 - Works across input string as it arrives

CKY Table

Book the flight through Houston

Filling CKY cell

Limitations of current recognition algorithm:

- Limitations of current recognition algorithm:
 - Only stores non-terminals in cell
 - Not rules or cells corresponding to RHS

- Limitations of current recognition algorithm:
 - Only stores non-terminals in cell
 - Not rules or cells corresponding to RHS
 - Stores SETS of non-terminals
 - Can't store multiple rules with same LHS

- Limitations of current recognition algorithm:
 - Only stores non-terminals in cell
 - Not rules or cells corresponding to RHS
 - Stores SETS of non-terminals
 - Can't store multiple rules with same LHS
- Parsing solution:
 - All repeated versions of non-terminals

- Limitations of current recognition algorithm:
 - Only stores non-terminals in cell
 - Not rules or cells corresponding to RHS
 - Stores SETS of non-terminals
 - Can't store multiple rules with same LHS
- Parsing solution:
 - All repeated versions of non-terminals
 - Pair each non-terminal with pointers to cells
 - Backpointers

- Limitations of current recognition algorithm:
 - Only stores non-terminals in cell
 - Not rules or cells corresponding to RHS
 - Stores SETS of non-terminals
 - Can't store multiple rules with same LHS
- Parsing solution:
 - All repeated versions of non-terminals
 - Pair each non-terminal with pointers to cells
 - Backpointers
 - Last step: construct trees from back-pointers in [0,n]

Filling column 5

Book	the	flight	through	Houston
S, VP, Verb, Nominal, Noun		S,VP,X2		
[0,1]	[0,2]	[0,3]	[0,4]	[0,5]
	Det	NP		
	[1,2]	[1,3]	[1,4]	[1,5]
		Nominal, Noun		Nominal
		[2,3]	[2,4]	[2,5]
			Prep	
			[3,4]	[3,5]
			\neg	NP, Proper- Noun
				[4,5]

Book	the	flight	through	Houston
S, VP, Verb, Nominal, Noun		S,VP,X2		
[0,1]	[0,2]	[0,3]	[0,4]	[0,5]
\neg	Det	NP		NP
	[1,2]	[1,3]	[1,4]	[1,5]
		Nominal, Noun		
		[2,3]	[2,4]	[2,5]
			Prep ←	PP
			[3,4]	[3,5] ₩
				NP, Proper- Noun
				[4,5]

Book	the	flight	through	Houston	1
S, VP, Verb, Nominal, Noun		S,VP,X2			
[0,1]	[0,2]	[0,3]	[0,4]	[0,5]	Ш
	Det	NP		NP	
	[1,2]	[1,3]	[1,4]	[1,5]	Ш
	\neg	Nominal, ∢ Noun		–Nominal	
		[2,3]	[2,4]	[2,5]	П
			Prep	PP	
			[3,4]	[3,5]	П
				NP, Proper- Noun	
				[4,5]	

Book	the	flight	through	Houston
S, VP, Verb, Nominal, Noun		S,VP,X2		
[0,1]	[0,2]	[0,3]	[0,4]	[0,5]
	Det ←	NP		NP
	[1,2]	[1,3]	[1,4]	[15]
		Nominal, Noun		Nominal
		[2,3]	[2,4]	[2,5]
			Prep	PP
			[3,4]	[3,5]
				NP, Proper- Noun
				[4,5]

CKY Discussion

Running time:

$$O(n^3)$$

CKY Discussion

- Running time:
 - $O(n^3)$ where n is the length of the input string

CKY Discussion

- Running time:
 - $O(n^3)$ where n is the length of the input string
 - Inner loop grows as square of # of non-terminals
- Expressiveness:

CKY Discussions

- Running time:
 - $O(n^3)$ where n is the length of the input string
 - Inner loop grows as square of # of non-terminals
- Expressiveness:
 - As implemented, requires CNF
 - Weakly equivalent to original grammar
 - Doesn't capture full original structure
 - Back-conversion?

CKY Discussions

- Running time:
 - $O(n^3)$ where n is the length of the input string
 - Inner loop grows as square of # of non-terminals
- Expressiveness:
 - As implemented, requires CNF
 - Weakly equivalent to original grammar
 - Doesn't capture full original structure
 - Back-conversion?
 - Can do binarization, terminal conversion
 - Unit non-terminals require change in CKY

Parsing Efficiently

- With arbitrary grammars
 - Earley algorithm
 - Top-down search
 - Dynamic programming
 - Tabulated partial solutions
 - Some bottom-up constraints