CKY Parsing

Ling 571
Deep Processing Techniques for NLP
January 12, 2011

Roadmap

®* Motivation:
® Parsing (In) efficiency

® Dynamic Programming

® Cocke-Kasami-Younger Parsing Algorithm
® Chomsky Normal Form
® Conversion

® CKY Algorithm
® Parsing by tabulation

Repeated Work

Top-down and bottom-up parsing both lead to repeated
substructures

® Globally bad parses can construct good subtrees
® But overall parse will fail
® Require reconstruction on other branch

® No static backtracking strategy can avoid

Efficient parsing techniques require storage of shared
substructure

® Typically with dynamic programming

Example: a flight from Indianapolis to Houston on TWA

Bottom-Up Search

y t fiight

Noun Det Noun

Book that flight

Verb Det Noun

Book that flight

Nominal Nonllinal Nonllinal
Noun Dlet Nciun Velrb D|et Nciun
Book that flight Book that flight
NP NP
Nonlu'nal Nonllinal le Non'i\.inal /h]lﬁnal
Noun Dlet N(iun Verb Det Nciun Ve|rb Dlet Nolun
Book that flight Book that flight Book that flight
VP
VP NP NP

Verb Det

Book that

Noun Verb Det Noun

flight Book

Dynamic Programming

® Challenge: Repeated substructure -> Repeated work

® [nsight:
® Global parse composed of parse substructures
® Can record parses of substructures

® Dynamic programming avoids repeated work by
tabulating solutions to subproblems

® Here, stores subtrees

Parsing w/Dynamic
Programming

® Avoids repeated work

* Allows implementation of (relatively) efficient
parsing algorithms

® Polynomial time in input length
e Typically cubic (n3) or less

e Several different implementations
® Cocke-Kasami-Younger (CKY) algorithm
® Farley algorithm
® Chart parsing

Chomsky Normal Form
(CNF)

CKY parsing requires grammars in CNF

Chomsky Normal Form

® All productions of the form:
e A->BC(, or
* A->a

However, most of our grammars are not of this form
® Fo.,S->Wh-NP Aux NP VP

Need a general conversion procedure
® Any arbitrary grammar can be converted to CNF

Grammatical Equivalence

* Weak equivalence:
® Recognizes same language
® Yields different structure

® Strong equivalence
® Recognizes same languages
® Yields same structure

~ * CNF is weakly equivalent

CNF Conversion

® Three main conditions:
® Hybrid rules:
® [NF-VP -> to VP

® Unit productions:
e A>B

® | ong productions:
e A>BCD

CNF Conversion

® Hybrid rule conversion:
® Replace all terminals with dummy non-terminals
® F.g.,INF-VP ->1to VP
® INF-VP -> TO VP; TO -> to

® Unit productions:

® Rewrite RHS with RHS of all derivable non-unit
productions

o If A—B and B ->w, then add A -> w

CNF Conversion

® Long productions:
® |ntroduce new non-terminals and spread over rules

® S -> Aux NP VP
e S .-> X1 VP; X1 -> Aux NP

® For all non-conforming rules,
® Convert terminals to dummy non-terminals
® Convert unit productions
® Binarize all resulting rules

% Grammar

%, in CNF

S — NPVP
S — Aux NP VP

S — VP

NP — Pronoun

NP — Proper-Noiun

NP — Det Nominal
Nominal — Noun
Nominal — Nominal Noun
Nominal — Nominal PP
VP — Verb

VP — Verb NP

VP — Verb NP PP

VP Verb PP

_)
VP — VP PP
PP —

Preposition NP

% Grammar

%, in CNF

S — NPVP
S — Aux NP VP

S — VP

NP — Pronoun

NP — Proper-Noiun

NP — Det Nominal
Nominal — Noun
Nominal — Nominal Noun
Nominal — Nominal PP
VP — Verb

VP — Verb NP

VP — Verb NP PP

VP Verb PP

_)
VP — VP PP
PP —

Preposition NP

S — NPVP

% Grammar

%, in CNF

S — NPVP
S — Aux NP VP

S — VP

NP — Pronoun

NP — Proper-Noiun

NP — Det Nominal
Nominal — Noun
Nominal — Nominal Noun
Nominal — Nominal PP
VP — Verb

VP — Verb NP

VP — Verb NP PP

VP Verb PP

_)
VP — VP PP
PP —

Preposition NP

S — NPVP
S — XI1IVP
X! — Aux NP

% Grammar

%, in CNF

S — NPVP
S — Aux NP VP

S — VP

NP — Pronoun

NP — Proper-Noiun

NP — Det Nominal
Nominal — Noun
Nominal — Nominal Noun
Nominal — Nominal PP
VP — Verb

VP — Verb NP

VP — Verb NP PP

VP — Verb PP
VP — VP PP
PP — Preposition NP

S — NPVP

S — XIVP

X1 — Aux NP

S — book | include |

rejer

% Grammar

%, in CNF

S — NPVP
S — Aux NP VP

S — VP

NP — Pronoun

NP — Proper-Noiun

NP — Det Nominal
Nominal — Noun
Nominal — Nominal Noun
Nominal — Nominal PP
VP — Verb

VP — Verb NP

VP — Verb NP PP

VP — Verb PP
VP — VP PP
PP — Preposition NP

S — NPVP

S — XIVP

X1 — Aux NP

S — book | include | prefer
S — Verb NP

X7 O I

% Grammar

%, in CNF

S — NPVP
S — Aux NP VP

S — VP

NP — Pronoun

NP — Proper-Noiun

NP — Det Nominal
Nominal — Noun
Nominal — Nominal Noun
Nominal — Nominal PP
VP — Verb

VP — Verb NP

VP — Verb NP PP

VP — Verb PP
VP — VP PP
PP — Preposition NP

S — NPVP
S — XI1IVP
X1 — Aux NP

hhhhhn

A

book | include | prefer
Verb NP

X2 PP

Verb PP

VP PP

CKY Parsing

® Cocke-Kasami-Younger parsing algorithm:

® (Relatively) efficient bottom-up parsing algorithm
based on tabulating substring parses to avoid
repeated work

® Approach:
® Use a CNF grammar

® Build an (n+1) x (n+1) matrix to store subtrees
® Upper triangular portion

® |ncrementally build parse spanning whole input string

Dynamic Programming in
CKY

® Key idea:
® [For a parse spanning substring [i,j] , there exists
some k such there are parses spanning [i,k] and [Kk,j]

® We can construct parses for whole sentence by building
up from these stored partial parses

* So,
® To have a rule A -> B C in [i,j],

® We must have B in [i,k] and C in [k,]], for some i<k<j
e CNF grammar forces this for all j>i+1

CKY

® Given an input string S of length n,
e Build table (n+1) x (n+1)
® |[ndexes correspond to inter-word positions
* W.g., 0 Book 1 That 2 Flight 3

® Cells [1,j] contain sets of non-terminals of ALL
constituents spanning 1,

® [j-1,j] contains pre-terminals
e |f [O,n] contains Start, the input is recognized

CKY Algorithm

function CK'Y-PARSE(words, grammar) returns fable

for j— from 1 to LENGTH(words) do
table[j— 1, j1—{A |A — words[j| € grammar}
for i —from j — 2 downto O do
fork—i+1to j—1do
tableli,j)— tableli j] |
{A|A — BC € grammar,

B < tableli,k|,
C € tablelk,j|}

® |s this a parser?

CKY Parsing

® Table fills:
® Column-by-column

® | eft-to-right
® Bottom-to-top

* Why?
® Necessary info available (below and left)

® Allows online sentence analysis
® Works across input string as it arrives

CKY Table

Book the flight through Houston

Book the flight through Houston
S, VP, Verb S,VP.X2 S, VP
Nominal,
Noun A
[0,1] [0,2] [0,3] [0.4] [0,5]
' Det NP NP
[1,2] [1.3] [1.4] [1,5] |
~— - .
Nominal, Nominal
Noun
[2i3] [2.4] [2.5]
Prep EiZ
“
[3.4] [3,9]
NP,
Proper-
Noun

F|II|ng CKY CeII

From Recognition to Parsing

® Limitations of current recognition algorithm:

From Recognition to Parsing

®* Limitations of current recognition algorithm:
® Only stores non-terminals in cell
® Not rules or cells corresponding to RHS

From Recognition to Parsing

®* Limitations of current recognition algorithm:
® Only stores non-terminals in cell
® Not rules or cells corresponding to RHS
® Stores SETS of non-terminals
e Can’t store multiple rules with same LHS

From Recognition to Parsing

®* Limitations of current recognition algorithm:
® Only stores non-terminals in cell
® Not rules or cells corresponding to RHS

® Stores SETS of non-terminals
e Can’t store multiple rules with same LHS

® Parsing solution:
® All repeated versions of non-terminals

From Recognition to Parsing

®* Limitations of current recognition algorithm:

® Only stores non-terminals in cell
® Not rules or cells corresponding to RHS

® Stores SETS of non-terminals
e Can’t store multiple rules with same LHS

® Parsing solution:
® All repeated versions of non-terminals
® Pair each non-terminal with pointers to cells
® Backpointers

% R

From Recognition to Parsing

®* Limitations of current recognition algorithm:
® Only stores non-terminals in cell
® Not rules or cells corresponding to RHS
e Stores SETS of non-terminals
e Can’t store multiple rules with same LHS

® Parsing solution:
® All repeated versions of non-terminals
® Pair each non-terminal with pointers to cells
® Backpointers
® | ast step: construct trees from back-pointers in [O,n]

Filling column 5

Book the flight through Houston

Book the flight through Houston

Book the flight through Houston

Book the flight through Houston
S, VP, Verb| S, VP, X2
Nominal,
Noun
[0,1] [0,2] [0,3] [0,4] [0,5]
Det == NP NP
[1,2] [1.3] [1.4] [1}5]
Nominal, Nominal
Noun
|2,3| [2,4] [2,5]
Prep PP
[3,4] [3.5]
NP,
Proper-
Noun
|4,5| i

Book the flight through Houston
S, VP, Verbj= S1 VP, X2
Nominal, S,
Noun VP,=< S?’ VP
X2 = 83
[O,1] [0,2] [0,3] [0,4] \
Det NP NP
[1,2] [1,3] [1,4] [1,5]
Nominal, Nominal
Noun
2.3 [2.4] [2.5]
Prep PP
[3.,4] [3,5]
NP,

Proper-

CKY Discussion

® Running time:
oO(n?)

—

CKY Discussion

® Running time:
® O(n>) where n is the length of the input string

CKY Discussion

® Running time:
® O(n>) where n is the length of the input string
® |nner loop grows as square of # of non-terminals

® Expressiveness:

CKY Discussions

® Running time:
® O(n>) where n is the length of the input string
® |nner loop grows as square of # of non-terminals

® Expressiveness:

e As implemented, requires CNF
® Weakly equivalent to original grammar

® Doesn’t capture full original structure
® Back-conversion?

CKY Discussions

® Running time:
* O(n?) Where nis the length of the input string
® |nner loop grows as square of # of non-terminals

® Expressiveness:

® As implemented, requires CNF
® Weakly equivalent to original grammar
® Doesn’t capture full original structure
® Back-conversion?

® Can do binarization, terminal conversion
® Unit non-terminals require change in CKY

Parsing Efficiently

e With arbitrary grammars
e Earley algorithm
® Top-down search
® Dynamic programming
® Tabulated partial solutions
® Some bottom-up constraints

