
Parsing: Earley &
PCFGs

Ling 571
Deep Processing Techniques for NLP

January 19, 2011

Roadmap
�  Motivation I: CKY limitations

�  The Earley algorithm

�  Motivation II: Ambiguity

�  Probabilistic Context-free Grammars (PCFGs)

CKY Algorithm
�  Dynamic programming approach

�  Yields parsing in cubic time in length of input string

�  Fairly efficient

�  Issues:

�  \

CKY Algorithm
�  Dynamic programming approach

�  Yields parsing in cubic time in length of input string

�  Fairly efficient

�  Issues:
�  Requires CNF conversion

�  Limits expressiveness

CKY Algorithm
�  Dynamic programming approach

�  Yields parsing in cubic time in length of input string

�  Fairly efficient

�  Issues:
�  Requires CNF conversion

�  Limits expressiveness

�  Maintains ambiguity

Earley Parsing
�  Avoid repeated work/recursion problem

�  Dynamic programming
�  Store partial parses in “chart”

�  Compactly encodes ambiguity

� 

�  Chart entries:
�  Subtree for a single grammar rule
�  Progress in completing subtree

�  Position of subtree wrt input

O(N 3)

Earley Algorithm

�  Uses dynamic programming to do parallel
top-down search in (worst case) O(N3) time

�  First, left-to-right pass fills out a chart with N
+1 states
�  Think of chart entries as sitting between words in

the input string keeping track of states of the
parse at these positions

�  For each word position, chart contains set of
states representing all partial parse trees
generated to date. E.g. chart[0] contains all
partial parse trees generated at the beginning of
the sentence

Chart Entries

� predicted constituents

�  in-progress constituents

�  completed constituents

Represent three types of constituents:

Parse Progress
�  Represented by Dotted Rules

�  Position of • indicates type of constituent

�  0 Book 1 that 2 flight 3
�  S → • VP, [0,0] (predicted)

�  NP → Det • Nom, [1,2] (in progress)
�  VP →V NP •, [0,3] (completed)

�  [x,y] tells us what portion of the input is spanned
so far by this rule

�  Each State si:
<dotted rule>, [<back pointer>,<current position>]

S → • VP, [0,0]
�  First 0 means S constituent begins at the

start of input
�  Second 0 means the dot here too
�  So, this is a top-down prediction

NP → Det • Nom, [1,2]
�  the NP begins at position 1
�  the dot is at position 2
�  so, Det has been successfully parsed
�  Nom predicted next

0 Book 1 that 2 flight 3

0 Book 1 that 2 flight 3
(continued)

VP → V NP •, [0,3]
�  Successful VP parse of entire input

Successful Parse
�  Final answer found by looking at last entry in chart

�  If entry resembles S → α • [0,N] then input parsed
successfully

�  Chart will also contain record of all possible parses
of input string, given the grammar

Parsing Procedure for the
Earley Algorithm

�  Move through each set of states in order,
applying one of three operators to each
state:
�  predictor: add predictions to the chart
�  scanner: read input and add corresponding state

to chart
�  completer: move dot to right when new

constituent found

�  Results (new states) added to current or next
set of states in chart

�  No backtracking and no states removed:
keep complete history of parse

States and State Sets

�  Dotted Rule si represented as
<dotted rule>, [<back pointer>, <current position>]

�  State Set Sj to be a collection of states si with the same
<current position>.

Earley Algorithm from Book

Earley Algorithm from Book

Earley Algorithm (simpler!)
 1. Add Start → · S, [0,0] to state set 0

Let i=1

2. Predict all states you can, adding new predictions to
state set 0

3. Scan input word i—add all matched states to state set Si.
Add all new states produced by Complete to state set Si
Add all new states produced by Predict to state set Si
Let i = i + 1
Unless i=n, repeat step 3.

4. At the end, see if state set n contains Start → S ·, [0,n]

3 Main Sub-Routines of
Earley Algorithm

• Predictor: Adds predictions into the chart.
• Completer: Moves the dot to the right

when new constituents are found.
• Scanner: Reads the input words and enters

states representing those words into the
chart.

Predictor
�  Intuition: create new state for top-down

prediction of new phrase.

�  Applied when non part-of-speech non-
terminals are to the right of a dot: S → •
VP [0,0]

�  Adds new states to current chart
�  One new state for each expansion of the non-

terminal in the grammar
VP → • V [0,0]
VP → • V NP [0,0]

�  Formally:
 Sj: A → α · B β, [i,j]
 Sj: B → · γ, [j,j]

Scanner
�  Intuition: Create new states for rules matching

part of speech of next word.

�  Applicable when part of speech is to the right
of a dot: VP → • V NP [0,0] ‘Book…’

�  Looks at current word in input

�  If match, adds state(s) to next chart
VP → V • NP [0,1]

�  Formally:
 Sj: A → α · B β, [i,j]
 Sj+1: A → α B ·β, [i,j+1]

Completer
�  Intuition: parser has finished a new phrase, so

must find and advance states all that were
waiting for this

�  Applied when dot has reached right end of rule
NP → Det Nom • [1,3]

�  Find all states w/dot at 1 and expecting an NP:
VP → V • NP [0,1]

�  Adds new (completed) state(s) to current chart :
VP → V NP • [0,3]

�  Formally: Sk: B → δ ·, [j,k]
 Sk: A → α B · β, [i,k],
 where: Sj: A → α · B β, [i,j].

1/17/11
 Speech and Language Processing -
Jurafsky and Martin

Chart[0]

Note that given a grammar, these entries are
the same for all inputs; they can be pre-loaded.

1/17/11
 Speech and Language Processing -
Jurafsky and Martin 23

Chart[1]

1/17/11
 Speech and Language Processing -
Jurafsky and Martin

Charts[2] and [3]

How do we retrieve the
parses at the end?

�  Augment the Completer to add pointers to prior
states it advances as a field in the current state
�  i.e. what state did we advance here?

�  Read the pointers back from the final state

�  What about ambiguity?

�  What about ambiguity?

�  CKY/Earley can represent it

�  What about ambiguity?

�  CKY/Earley can represent it

�  Can’t resolve it

Probabilistic Parsing
�  Provides strategy for solving disambiguation problem

�  Compute the probability of all analyses

�  Select the most probable

�  Employed in language modeling for speech recognition
�  N-gram grammars predict words, constrain search

�  Also, constrain generation, translation

PCFGs
�  Probabilistic Context-free Grammars

�  Augmentation of CFGs

PCFGs
�  Augments each production with probability that

LHS will be expanded as RHS
�  P(A->B) or P(A->B|A), p(RHS|LHS)

�  Sum over all possible expansions is 1

�  A PCFG is consistent if sum of probabilities of all
sentences in language is 1.
�  Recursive rules often yield inconsistent grammars

P(A! !) =1
!

"

Disambiguation
�  A PCFG assigns probability to each parse tree T for

input S.
�  Probability of T: product of all rules to derive T

P(T,S)= P(RHSi
i=1

n

! | LHSi)

P(T,S)= P(T)P(S |T) = P(T)

P(T,S)=0.05

P(T,S)=0.05*0.2

P(T,S)=0.05*0.2*0.2

P(T,S)=0.05*0.2*0.2*0.2

P(T,S)=0.05*0.2*0.2*0.2*0.75

P(T,S)=0.05*0.2*0.2*0.2*0.75*
0.3

P(T,S)=0.05*0.2*0.2*0.2*0.75*
0.3*0.6

P(T,S)=0.05*0.2*0.2*0.2*0.75*
0.3*0.6*0.1

P(T,S)=0.05*0.2*0.2*0.2*0.75*
0.3*0.6*0.1*0.4=2.2x10^-6

P(T,S)=0.05*0.2*0.2*0.2*0.75*
0.3*0.6*0.1*0.4=2.2x10^-6

P(T,S)=0.05

P(T,S)=0.05*0.2*0.2*0.2*0.75*
0.3*0.6*0.1*0.4=2.2x10^-6

P(T,S)=0.05*0.1

P(T,S)=0.05*0.2*0.2*0.2*0.75*
0.3*0.6*0.1*0.4=2.2x10^-6

P(T,S)=0.05*0.1*0.15

P(T,S)=0.05*0.2*0.2*0.2*0.75*
0.3*0.6*0.1*0.4=2.2x10^-6

P(T,S)=0.05*0.1*0.15*0.75

P(T,S)=0.05*0.2*0.2*0.2*0.75*
0.3*0.6*0.1*0.4=2.2x10^-6

P(T,S)=0.05*0.1*0.15*0.75*0.75*

P(T,S)=0.05*0.2*0.2*0.2*0.75*
0.3*0.6*0.1*0.4=2.2x10^-6

P(T,S)=0.05*0.1*0.15*0.75*0.75*
0.3*0.6*0.1*0.4=6.1x10^-7

Formalizing Disambiguation
�  Select T such that:

�  String of words S is yield of parse tree over S
�  Select tree that maximizes probability of parse

T
!

(S) = argmax
Ts.t,S=yield (T)

P(T)

Learning Probabilities
�  Simplest way:

�  Treebank of parsed sentences
�  To compute probability of a rule, count:

�  Number of times non-terminal is expanded
�  Number of times non-terminal is expanded by given rule

�  Alternative: Learn probabilities by re-estimating
�  (Later)

P(!! " |!) = Count(!! ")
Count(!! #)

#
"

=
Count(!! ")
Count(!)

Example PCFG

Issues with PCFGs
�  Independence assumptions:

�  Rule expansion is context-independent
�  Allows us to multiply probabilities

�  Is this valid?

Issues with PCFGs
�  Independence assumptions:

�  Rule expansion is context-independent
�  Allows us to multiply probabilities

�  Is this valid?

Pronoun Non-pronoun

Subject 91% 9%

Object

Issues with PCFGs
�  Independence assumptions:

�  Rule expansion is context-independent
�  Allows us to multiply probabilities

�  Is this valid?

Pronoun Non-pronoun

Subject 91% 9%

Object 34% 66%

Issues with PCFGs
�  Independence assumptions:

�  Rule expansion is context-independent
�  Allows us to multiply probabilities

�  Is this valid?

�  In Treebank: roughly equi-probable

�  How can we handle this?

Pronoun Non-pronoun

Subject 91% 9%

Object 34% 66%

Issues with PCFGs
�  Independence assumptions:

�  Rule expansion is context-independent
�  Allows us to multiply probabilities

�  Is this valid?

�  In Treebank: roughly equi-probable

�  How can we handle this?
�  Condition on Subj/Obj with parent annotation

Pronoun Non-pronoun

Subject 91% 9%

Object 34% 66%

Issues with PCFGs
�  Insufficient lexical conditioning

�  Present in pre-terminal rules

�  Are there cases where other rules should be
conditioned on words?

Issues with PCFGs
�  Insufficient lexical conditioning

�  Present in pre-terminal rules

�  Are there cases where other rules should be
conditioned on words?

Issues with PCFGs
�  Insufficient lexical conditioning

�  Present in pre-terminal rules

�  Are there cases where other rules should be
conditioned on words?

Different verbs & prepositions have different attachment preferences

PCFGs
�  Augment parsers to handle probabilities

�  Adapt PCFGs to handle
�  Structural dependencies

�  By splitting nodes

�  Lexical dependencies
�  By lexicalizing PCFGs

