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Roadmap 
�  Motivation I: CKY limitations 

�  The Earley algorithm 

�  Motivation II: Ambiguity 

�  Probabilistic Context-free Grammars (PCFGs) 
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CKY Algorithm 
�  Dynamic programming approach 

�  Yields parsing in cubic time in length of  input string 

�  Fairly efficient 

�  Issues: 
�  Requires CNF conversion 

�  Limits expressiveness 

�  Maintains ambiguity 



Earley Parsing 
�  Avoid repeated work/recursion problem 

�  Dynamic programming 
�  Store partial parses in “chart” 

�  Compactly encodes ambiguity 

�    

�  Chart entries: 
�  Subtree for a single grammar rule 
�  Progress in completing subtree 

�  Position of  subtree wrt input 

O(N 3)



Earley Algorithm 

�  Uses dynamic programming to do parallel 
top-down search in  (worst case) O(N3) time  

�  First, left-to-right pass fills out a chart with N
+1 states 
�  Think of  chart entries as sitting between words in 

the input string keeping track of  states of  the 
parse at these positions 

�  For each word position, chart contains set of  
states representing all partial parse trees 
generated to date. E.g. chart[0] contains all 
partial parse trees generated at the beginning of  
the sentence 



Chart Entries  

� predicted constituents 
 

�  in-progress constituents 
 

�  completed constituents 

Represent three types of constituents: 



Parse Progress 
�  Represented by Dotted Rules 

�  Position of   • indicates type of  constituent 

�  0 Book 1 that 2 flight 3 
�  S → • VP, [0,0] (predicted) 

�  NP → Det • Nom, [1,2] (in progress) 
�  VP →V NP •, [0,3] (completed) 

�  [x,y] tells us what portion of  the input is spanned 
so far by this rule 

�  Each State si: 
<dotted rule>, [<back pointer>,<current position>]  



S → • VP, [0,0]  
�  First 0 means S constituent begins at the 

start of  input 
�  Second 0 means the dot here too 
�  So, this is a top-down prediction 

NP → Det • Nom, [1,2] 
�  the NP begins at position 1 
�  the dot is at position 2 
�  so, Det has been successfully parsed 
�  Nom predicted next 

0 Book 1 that 2 flight 3 



0 Book 1 that 2 flight 3 
(continued) 

VP → V NP •, [0,3] 
�  Successful VP parse of  entire input 



Successful Parse 
�  Final answer found by looking at last entry in chart 

�  If  entry resembles S → α • [0,N] then input parsed 
successfully 

�  Chart will also contain record of  all possible parses 
of  input string, given the grammar 



Parsing Procedure for the  
Earley Algorithm 

�  Move through each set of  states in order, 
applying one of  three operators to each 
state: 
�  predictor: add predictions to the chart 
�  scanner: read input and add corresponding state 

to chart 
�  completer: move dot to right when new 

constituent found 

�  Results (new states) added to current or next 
set of  states in chart 

�  No backtracking and no states removed: 
keep complete history of  parse 



States and State Sets 

�  Dotted Rule si represented as  
<dotted rule>, [<back pointer>, <current position>] 
 

�  State Set Sj to be a collection of  states si with the same 
<current position>. 
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Earley Algorithm (simpler!) 
  1. Add Start → · S, [0,0] to state set 0 

Let i=1 

2. Predict all states you can, adding new predictions to 
state set 0 

3. Scan input word i—add all matched states to state set Si. 
Add all new states produced by Complete to state set Si  
Add all new states produced by Predict to state set Si  
Let i = i + 1 
Unless i=n, repeat step 3. 

4. At the end, see if state set n contains Start → S ·, [0,n] 



3 Main Sub-Routines of   
Earley Algorithm 

• Predictor: Adds predictions into the chart. 
• Completer: Moves the dot to the right 

when new constituents are found. 
• Scanner: Reads the input words and enters 

states representing those words into the 
chart.  



Predictor 
�  Intuition:  create new state for top-down 

prediction of  new phrase. 

�  Applied when non part-of-speech non-
terminals are to the right of  a dot: S → • 
VP [0,0] 

�  Adds new states to current chart 
�  One new state for each expansion of  the non-

terminal in the grammar 
VP → • V [0,0] 
VP → • V NP [0,0] 

�  Formally: 
 Sj: A → α · B β, [i,j] 
 Sj: B →  · γ, [j,j]  



Scanner 
�  Intuition: Create new states for rules matching 

part of  speech of  next word. 

�  Applicable when part of  speech is to the right 
of  a dot: VP → • V NP [0,0] ‘Book…’ 

�  Looks at current word in input 

�  If  match, adds state(s) to next chart 
VP → V • NP [0,1] 

�  Formally: 
 Sj: A → α · B β, [i,j] 
 Sj+1: A → α B ·β, [i,j+1]  



Completer 
�  Intuition:  parser has finished a new phrase, so 

must find and advance states all that were 
waiting for this 

�  Applied when dot has reached right end of  rule 
NP → Det Nom • [1,3] 

�  Find all states w/dot at 1 and expecting an NP: 
VP → V • NP [0,1] 

�  Adds new (completed) state(s) to current chart : 
VP → V NP • [0,3] 

�  Formally: Sk: B → δ ·, [j,k] 
 Sk: A → α B · β, [i,k], 
 where: Sj: A → α  · B β, [i,j].  
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Chart[0] 
 

Note that given a grammar, these entries are 
the same for all inputs; they can be pre-loaded. 
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Charts[2] and [3] 
 



How do we retrieve the  
parses at the end? 

�  Augment the Completer to add pointers to prior 
states it advances as a field in the current state 
�  i.e. what state did we advance here? 

�  Read the pointers back from the final state 



�  What about ambiguity? 
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�  What about ambiguity? 

�  CKY/Earley can represent it 

�  Can’t resolve it 



Probabilistic Parsing   
�  Provides strategy for solving disambiguation problem 

�  Compute the probability of  all analyses 

�  Select the most probable 

�  Employed in language modeling for speech recognition 
�  N-gram grammars predict words, constrain search 

�  Also, constrain generation, translation 



PCFGs 
�  Probabilistic Context-free Grammars 

�  Augmentation of  CFGs  



PCFGs 
�  Augments each production with probability that 

LHS will be expanded as RHS 
�  P(A->B) or P(A->B|A), p(RHS|LHS) 

�  Sum over all possible expansions is 1 

�  A PCFG is consistent if  sum of  probabilities of  all 
sentences in language is 1. 
�  Recursive rules often yield inconsistent grammars 

P(A! !) =1
!

"



Disambiguation 
�  A PCFG assigns probability to each parse tree T for 

input S. 
�  Probability of  T: product of  all rules to derive T 

P(T,S)= P(RHSi
i=1

n

! | LHSi )

P(T,S)= P(T )P(S |T ) = P(T )
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P(T,S)=0.05*0.2*0.2*0.2*0.75* 
0.3*0.6*0.1*0.4=2.2x10^-6 

P(T,S)=0.05*0.1*0.15*0.75*0.75* 



P(T,S)=0.05*0.2*0.2*0.2*0.75* 
0.3*0.6*0.1*0.4=2.2x10^-6 

P(T,S)=0.05*0.1*0.15*0.75*0.75* 
0.3*0.6*0.1*0.4=6.1x10^-7 



Formalizing Disambiguation 
�  Select T such that: 

�  String of  words S is yield of  parse tree over S 
�  Select tree that maximizes probability of  parse 

T
!

(S) = argmax
Ts.t,S=yield (T )

P(T )



Learning Probabilities 
�  Simplest way:  

�  Treebank of  parsed sentences 
�  To compute probability of  a rule, count: 

�  Number of  times non-terminal is expanded 
�  Number of  times non-terminal is expanded by given rule 

�  Alternative: Learn probabilities by re-estimating 
�  (Later) 

P(!! " |!) = Count(!! ")
Count(!! # )

#
"

=
Count(!! ")
Count(!)



Example PCFG 
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Issues with PCFGs 
�  Independence assumptions: 

�  Rule expansion is context-independent 
�  Allows us to multiply probabilities 

�  Is this valid? 

�  In Treebank: roughly equi-probable 

�  How can we handle this? 
�  Condition on Subj/Obj with parent annotation 

Pronoun Non-pronoun 

Subject 91% 9% 

Object 34% 66% 
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Issues with PCFGs 
�  Insufficient lexical conditioning 

�  Present in pre-terminal rules 

�  Are there cases where other rules should be 
conditioned on words? 

Different verbs & prepositions have different attachment preferences 



PCFGs 
�  Augment parsers to handle probabilities 

�  Adapt PCFGs to handle 
�  Structural dependencies 

�  By splitting nodes 

 

�  Lexical dependencies 
�  By lexicalizing PCFGs 




