PCFG Parsing,
Evaluation, &
|mprovements

Ling 571
Deep Processing Techniques for NLP
January 24, 2011

- -

Roadmap

Parsing PCGFs:
® Probabilistic CKY parsing

Evaluation
® Parseval

Issues:
® Positional and lexical independence assumptions

Improvements:
® | exicalization: PLCFGs

Parsing Problem for PCFGs

® Select T such that:

YA" (§)= argmax P(T)

Ts.t,S=yield(T)

e String of words S is yield of parse tree over S
® Select tree that maximizes probability of parse

® Extend existing algorithms: CKY & Earley

® Most modern PCFG parsers based on CKY
®* Augmented with probabilities

Probabilistic CKY

® Like regular CKY
® Assume grammar in Chomsky Normal Form (CNF)

® Productions:
o A.>BCorA>w

® Represent input with indices b/t words
* E.g., o Book ; that , flight ; through , Houston

¢ For input string length n and non-terminals V
e Cell[l,j,A] in (n+1)x(n+1)xV matrix contains
® Probability that constituent A spans [i,j]

Probabilistic CKY Algorithm

function PROBABILISTIC-CKY (words,grammar) returns most probable parse
and 1ts probability
for j—from 1 to LENGTH(words) do
forall {A| A — words|j| € grammar}
table[j—1, j,A]—P(A— words|}j])
for i —from j — 2 downto O do
fork—i+1to j—1do
forall { A|A — BC € grammar,
and tableli,k,B| > 0and tablelk,j,C] > 0}
if (table[ij,A] < P(A — BC) x table[ik,B] x table[k,j,C]) then

table[i j,A] —P(A — BC) x table[i,k,B] x table[kj,C]
back[i jA]l— {k,B,C}

return BUILD_TREE(Dack[1, LENGTH(words), S]), table[1, LENGTH(words), S]

PCKY Grammar Segment

S — NPVP 80 Det — the .40
NP — DetN .30 Det — a 40
VP — VNP .20 N — meal .0l

V. — includes .05 N — flight .02

. _—

PCKY Matrix:
The flight includes a meal

Det: 0.4

[0,1]

_

PCKY Matrix:
The flight includes a meal

Det: 0.4

[0,1]

N: 0.2

[1,2]

_

PCKY Matrix:
The flight includes a meal

Det: 0.4 NP:
0.3*0.4%0.2
[0,1] =.0024
[0,2]
N: 0.2
[1,2]

|

PCKY Matrix:
The flight includes a meal

Det: 0.4 NP:
0.3*0.4%0.2
[0,1] =.0024
[0,2]
N: 0.2
[1,2]

V: 0.05

[2,3]

: g

PCKY Matrix:
The flight includes a meal

Det: 0.4 NP:
0.3*0.4%0.2
[0,1] =.0024
[0,2]
N: 0.2
[1,2] [1,3]
V: 0.05
[2,3]

: g

PCKY Matrix:
The flight includes a meal

Det: 0.4 NP:
0.3*0.4%0.2
[0,1] =.0024
[0,2] [0,3]
N: 0.2
[1,2] [1,3]
V: 0.05
[2,3]

l

PCKY Matrix:
The flight includes a meal

Det: 0.4 NP:
0.3*0.4%0.2
[0,1] =.0024
[0,2] [0,3]
N: 0.2
[1,2] [1,3]
V: 0.05
[2,3]

Det: 0.4

[3,4]

L B

PCKY Matrix:
The flight includes a meal

Det: 0.4 NP:
0.3*0.4%0.2
[0,1] =.0024
[0,2] [0,3]
N: 0.2
[1,2] [1,3]
V: 0.05
[2,3] [2,4]

Det: 0.4

[3,4]

L B

PCKY Matrix:
The flight includes a meal

Det: 0.4 NP:
0.3*0.4*0.2
[0,1] =.0024
[0,2] [0,3]
N: 0.2
[1,2] [1,3] [1,4]
V: 0.05
[2,3] [2,4]

Det: 0.4

[3,4]

L B

PCKY Matrix:
The flight includes a meal

Det: 0.4 NP:

0.3*0.4*0.2
[0,1] =.0024
[0,2] [0,3] [0,4]
N: 0.2
[1,2] [1,3] [1,4]
V: 0.05
[2,3] [2,4]

Det: 0.4

[3,4]

L B

PCKY Matrix:
The flight includes a meal

Det: 0.4 NP:

0.3*%0.4*0.02
[0,1] =.0024
[0,2] [0,3] [0,4]
N: 0.2
[1,2] [1,3] [1,4]
V: 0.05
[2,3] [2,4]

Det: 0.4

[3,4]

| N: 0.01
[4,5]

PCKY Matrix:
The flight includes a meal

Det: 0.4 NP:
0.3*0.4*0.02
[0,1] =.0024
[0,2] [0,3] [0,4]
N: 0.2
[1,2] [1,3] [1,4]
V: 0.05
[2,3] [2,4]
Det: 0.4 NP:
0.3%0.4*0.01
[3,4] =0.0012
[3,5]
N: 0.01

[4,5]

PCKY Matrix:

The flight includes a meal

Det: 0.4 NP:
0.3*0.4*0.02
[0,1] =.0024
[0,2] [0,3] [0,4]
N: 0.2
[1,2] [1,3] [1,4]
V: 0.05 VP:
0.2%0.05*
[2,3] [2,4] 0.0012=0.0
00012 [2,5]
Det: 0.4 NP:
0.3*%0.4%0.01
[3,4] =0.0012
[3,5]
N: 0.01

[4,5]

PCKY Matrix:

The flight includes a meal

Det: 0.4

[0,1]

NP:
0.3*0.4*0.02
=.0024

[0,2]

[0,3]

[0,4]

S:
0.000012*
0.0024
[0.5]

N: 0.2
[1,2]

[1,3]

[1,4]

[1,5]

V: 0.05

[2,3]

[2,4]

VP:
0.2*0.05*
0.0012=0.0
00012 [2,5]

Det: 0.4

[3,4]

NP:
0.3%0.4*0.01
=0.0012
[3,5]

N: 0.01
[4,5]

Probabilistic Parser
Development Paradigm

® Training:
® (Large) Set of sentences with associated parses (Treebank)

e E.g., Wall Street Journal section of Penn Treebank, sec 2-21
e 39 830 sentences
® Used to estimate rule probabilities

Probabilistic Parser
Development Paradigm

® Training:
® (Large) Set of sentences with associated parses (Treebank)

e E.g., Wall Street Journal section of Penn Treebank, sec 2-21
e 39 830 sentences

® Used to estimate rule probabilities

® Development (dev):

® (Small) Set of sentences with associated parses (WSJ, 22)
® Used to tune/verify parser; check for overfitting, etc.

Probabilistic Parser
Development Paradigm

® Training:
® (Large) Set of sentences with associated parses (Treebank)

e E.g., Wall Street Journal section of Penn Treebank, sec 2-21
e 39 830 sentences

® Used to estimate rule probabilities

® Development (dev):
® (Small) Set of sentences with associated parses (WSJ, 22)
® Used to tune/verify parser; check for overfitting, etc.

® Test:
® (Small-med) Set of sentences w/parses (WSJ, 23)
e 2416 sentences
e Held out, used for final evaluation

Parser Evaluation

® Assume a ‘gold standard’ set of parses for test set

® How can we tell how good the parser is?

® How can we tell how good a parse is?

Parser Evaluation

® Assume a ‘gold standard’ set of parses for test set

® How can we tell how good the parser is?

® How can we tell how good a parse is?
e Maximally strict: identical to ‘gold standard’

Parser Evaluation

Assume a ‘gold standard’ set of parses for test set

How can we tell how good the parser is?

How can we tell how good a parse is?
e Maximally strict: identical to ‘gold standard’

® Partial credit:

Parser Evaluation

® Assume a ‘gold standard’ set of parses for test set

® How can we tell how good the parser is?

® How can we tell how good a parse is?
e Maximally strict: identical to ‘gold standard’

® Partial credit:

® Constituents in output match those in reference
e Same start point, end point, non-terminal symbol

Parseval

® How can we compute parse score from constituents?

® Multiple measures:

® | abeled recall (LR):
® # of correct constituents in hyp. parse

® # of constituents in reference parse

Parseval

® How can we compute parse score from constituents?

® Multiple measures:

® | abeled recall (LR):

® # of correct constituents in hyp. parse
® # of constituents in reference parse

® | abeled precision (LP):
® # of correct constituents in hyp. parse

® # of total constituents in hyp. parse

Parseval (cont’d)

® F-measure:
e Combines precision and recall

(B” +1)PR
Fb’= >
PB°(P+R)
® Fl-measure: f=1 F = 2L
(P+R)

® Crossing-brackets:

® # of constituents where reference parse has
bracketing ((A B) C) and hyp. has (A (B C))

% R

Precision and Recall

® Gold standard
® (S(NP (Aa)) (VP (B b) (NP (Cc)) (PP (D d))))

® Hypothesis
* (S(NP (Aa)) (VP (B b) (NP (Cc) (PP (D d))))

Precision and Recall

® Gold standard
® (S(NP (Aa)) (VP (B b) (NP (Cc)) (PP (D d))))

® Hypothesis
* (S(NP (Aa)) (VP (B b) (NP (Cc) (PP (D d)))))

* G: 5(0,4) NP(O,1) VP (1,4) NP (2,3) PP(3,4)

Precision and Recall

Gold standard
® (S(NP (Aa)) (VP (B b) (NP (Cc)) (PP (D d))))

Hypothesis
* (S(NP (Aa)) (VP (B b) (NP (Cc) (PP (D d))))

G: S(0,4) NP(O,1) VP (1,4) NP (2,3) PP(3,4)

H: S(0,4) NP(O,1) VP (1,4) NP (2,4) PP(3,4)

Precision and Recall

Gold standard
® (S(NP (Aa)) (VP (B b) (NP (Cc)) (PP (D d))))

Hypothesis
* (S(NP (Aa)) (VP (B b) (NP (Cc) (PP (D d))))

G: S(0,4) NP(O,1) VP (1,4) NP (2,3) PP(3,4)
H: S(0,4) NP(O,1) VP (1,4) NP (2,4) PP(3,4)

LP: 4/5

Precision and Recall

Gold standard
® (S(NP (Aa)) (VP (B b) (NP (Cc)) (PP (D d))))

Hypothesis
* (S(NP (Aa)) (VP (B b) (NP (Cc) (PP (D d))))

G: S(0,4) NP(O,1) VP (1,4) NP (2,3) PP(3,4)
H: S(0,4) NP(O,1) VP (1,4) NP (2,4) PP(3,4)
LP: 4/5
LR: 4/5

g S -

Precision and Recall

® (Gold standard
® (S(NP (Aa)) (VP (B b) (NP (Cc)) (PP (D d))))

® Hypothesis
* (S(NP (Aa)) (VP (Bb)(NP(Cc)(PP(Dd))))

e G:S(0,4) NP(O,1) VP (1,4) NP (2,3) PP(3,4)
e H:5(0,4) NP(O,1) VP (1,4) NP (2,4) PP(3,4)
e |P:4/5
® |[R:4/5

e Fl: 4/5

State-of-the-Art Parsing

® Parsers trained/tested on Wall Street Journal PTB
e | R: 90%;
e | P:90%;
® Crossing brackets: 19%

e Standard implementation of Parseval: evalb

Evaluation Issues

® Constituents?

—

Evaluation Issues

® Constituents?

® Other grammar formalisms
® | FG, Dependency structure, ..
® Require conversion to PTB format

Evaluation Issues

® Constituents?

® Other grammar formalisms
® | FG, Dependency structure, ..
® Require conversion to PTB format

® [xtrinsic evaluation
® How well does this match semantics, etc?

Parser Issues

® PCFGs make many (unwarranted) independence
assumptions

e Structural Dependency
® NP -> Pronoun: much more likely in subject position

® | exical Dependency
® Verb subcategorization
® Coordination ambiguity

Improving PCFGs:
Structural Dependencies

® How can we capture Subject/Object asymmetry?
® £.g., NP> Pron vs NPq,->Pron

® Parent annotation:
® Annotate each node with parent in parse tree
 E.g, NP*Svs NP*VP
® Also annotate pre-terminals:

e RB"ADVP vs RB"VP
e [IN"SBAR vs IN"PP

® Can also split rules on other conditions

Parent Annotation

a) S b) S
NP VP NP'S VP'S
PRP VBD NP PRP VBD NP'VP
I PN ™
[need DT NN | need DT NN
]]
a flight a flight

Parent Annotation:
Pre-terminals

VP’S VP’S
N /\
L WL TO"VP VP'VP

o VB PP'VP . A

| ey VBVP SBAR"VP

see 1IN NP"PP | /\
| sk W see

if NN NNS IN"SBAR S"SBAR
| | | TN
advertising works if NP'S VP'S

NN'NP VBZ'VP
| |

advertising works

Parent Annotation

* Advantages:
® Captures structural dependency in grammars

Parent Annotation

* Advantages:
® Captures structural dependency in grammars

® Disadvantages:

® |ncreases number of rules in grammar

Parent Annotation

® Advantages:
® Captures structural dependency in grammars

® Disadvantages:

® |ncreases number of rules in grammar
® Decreases amount of training per rule

e Strategies to search for optimal # of rules

Improving PCFGs:
Lexical Dependencies

® | exicalized rules:

Best known parsers: Collins, Charniak parsers

Each non-terminal annotated with its lexical head
® E.g. verb with verb phrase, noun with noun phrase
Each rule must identify RHS element as head

®* Heads propagate up tree

Conceptually like adding 1 rule per head value

* VP(dumped) -> VBD(dumped)NP(sacks)PP(into)
®* VP(dumped) -> VBD(dumped)NP(cats)PP(into)

Lexicalized PCFGs

®* Also, add head tag to non-terminals
® Head tag: Part-of-speech tag of head word
®* VP(dumped) -> VBD(dumped)NP(sacks)PP(into)

* VP(dumped,VBD) -> VBD(dumped,VBD)NP(sacks,NNS)
PP(into,IN)

® Two types of rules:
® | exical rules: pre-terminal -> word
® Deterministic, probability 1
® |nternal rules: all other expansions
® Must estimate probabilities

% R

TOP

|
S(dumped,VBD)

NP(workers,NNS) VP(dumped,VBD)
|
NNS(workers,NNS)
|
workers
VBD(dumped,VBD) NP(sacks,NNS) PP(into,P)
| |
dumped NNS(sacks,NNS) ;
| P(into,P) NP(bin,NN)
sacks N
im0 pDT(a,DT) NN(bin,NN)
| |
a bin
Internal Rules Lexical Rules
TOP — S(dumped.VBD) NNS(workers, NNS) — workers
S(dumped,VBD) — NP(workers,NNS) VP(dumped.VBD) VBD(dumped.VBD) — dumped
NP(workers,NNS) — NNS(workers,NNS) NNS(sacks,NNS) — sacks
VP(dumped,VBD) — VBD(dumped, VBD) NP(sacks,NNS) PP(into.P) | P(into.P) — into
PP(into.P) — P(into,P) NP(bin,NN) DT(a.DT) — a
NP(bin,NN) — DT(a,DT) NN(bin.NN) NN(bin.NN) — bin

PLCFGs

® |ssue:

PLCFGs

® [ssue: Too many rules
® No way to find corpus with enough examples

PLCFGs

® [ssue: Too many rules
® No way to find corpus with enough examples

® (Partial) Solution: Independence assumed

e Condition rule on
® Category of LHS, head

® Condition head on
e Category of LHS and parent’s head

P(T,5)= Hp(f’(n) |n,h(n))* p(h(n)|n,h(m(n)))

neT

TOP

|
S(dumped,VBD)

NP(workers,NNS)
NNS(worllgers,NNS)
worlkers
VBD(dumped,VBD)
dunlped

VP(dumped,VBD)

NP(sacks,NNS)

|
NNS(sacks,NNS)
|

sacks

PP(into,P)

P(into,P)
|

into

NP(bin,NN)

DT(a.DT) NN(bin,NN)
| |

a bin

Disambiguation Example

S S
NP VP NP ¥
| NII\JS P
NNS | VBD NP
| VED NP PP N
workers | A WORTS Gimped NP PP
dimped NNS P NP | 5
PN NNS P NP
sacks info DT NN N
a bin |
a bin

Disambiguation Example

P(VP — VBDNPPP | VP, dumped) p(VP — VBDNP |VP,dumped)
_ C(rP(dumped) — VBDNPP) _ C(VP(dumped) — VBDNP)
Y ,CP(dumped) = f) Y C(VP(dumped) — p)
=6/9=0.67 ~0/9=0
p(in| PP,dumped) p(in| PP,sacks)
_ C(X(dumped) — ...PP(in)..) _ C(X(sacks) — ...PP(in)...)
N, C(X(dumped) > ...PP...) E ,C(X(sacks) —>...PP...)

=2/9=0.22 =0/0

