
Features & Unification
Ling 571

Deep Processing Techniques for NLP
January 31, 2011

Roadmap
�  Features: Motivation

�  Constraint & compactness

�  Features
�  Definitions & representations

�  Unification

�  Application of features in the grammar
�  Agreement, subcategorization

�  Parsing with features & unification
�  Augmenting the Earley parser, unification parsing

�  Extensions: Types, inheritance, etc

�  Conclusion

Constraints & Compactness
�  Constraints in grammar

�  S -> NP VP
�  They run.

�  He runs.

Constraints & Compactness
�  Constraints in grammar

�  S -> NP VP
�  They run.

�  He runs.

�  But…
�  *They runs

�  *He run

�  *He disappeared the flight

Constraints & Compactness
�  Constraints in grammar

�  S -> NP VP
�  They run.

�  He runs.

�  But…
�  *They runs

�  *He run

�  *He disappeared the flight

�  NP -> Det Nom
�  This flight

Constraints & Compactness
�  Constraints in grammar

�  S -> NP VP
�  They run.

�  He runs.

�  But…
�  *They runs

�  *He run

�  *He disappeared the flight

�  NP -> Det Nom
�  This flight

�  These flights

Constraints & Compactness
�  Constraints in grammar

�  S -> NP VP
�  They run.
�  He runs.

�  But…
�  *They runs
�  *He run
�  *He disappeared the flight

�  NP -> Det Nom
�  This flight
�  These flights
�  *This flights

Constraints & Compactness
�  Constraints in grammar

�  S -> NP VP
�  They run.
�  He runs.

�  But…
�  *They runs
�  *He run
�  *He disappeared the flight

�  NP -> Det Nom
�  This flight
�  These flights
�  *This flights

�  Violate agreement (number), subcategorization

Enforcing Constraints
�  Enforcing constraints

Enforcing Constraints
�  Enforcing constraints

�  Add categories, rules

Enforcing Constraints
�  Enforcing constraints

�  Add categories, rules
�  Agreement:

�  S-> NPsg3p VPsg3p,

�  S-> NPpl3p VPpl3p,

Enforcing Constraints
�  Enforcing constraints

�  Add categories, rules
�  Agreement:

�  S-> NPsg3p VPsg3p,

�  S-> NPpl3p VPpl3p,

�  Subcategorization:
�  VP-> Vtrans NP,

�  VP -> Vintrans,

�  VP->Vditrans NP NP

Enforcing Constraints
�  Enforcing constraints

�  Add categories, rules
�  Agreement:

�  S-> NPsg3p VPsg3p,

�  S-> NPpl3p VPpl3p,

�  Subcategorization:
�  VP-> Vtrans NP,

�  VP -> Vintrans,

�  VP->Vditrans NP NP

�  Explosive!, loses key generalizations

Features
�  person: 1st, 2nd, 3rd

�  I, we; you; he, she, they

�  am, are, is

Features
�  person: 1st, 2nd, 3rd

�  I, we; you; he, she, they

�  am, are, is

�  number: sg, pl
�  I am; we are

Features
�  person: 1st, 2nd, 3rd

�  I, we; you; he, she, they

�  am, are, is

�  number: sg, pl
�  I am; we are

�  case: nom, acc
�  I, he; me, him

Features
�  person: 1st, 2nd, 3rd

�  I, we; you; he, she, they

�  am, are, is

�  number: sg, pl
�  I am; we are

�  case: nom, acc
�  I, he; me, him

�  gender: masc, fem, neut

Features
�  person: 1st, 2nd, 3rd

�  I, we; you; he, she, they

�  am, are, is

�  number: sg, pl
�  I am; we are

�  case: nom, acc
�  I, he; me, him

�  gender: masc, fem, neut
�  animacy: +/-
�  etc

Why features?
� Need compact, general constraints

�  S -> NP VP

Why features?
� Need compact, general constraints

�  S -> NP VP
�  Only if NP and VP agree

Why features?
� Need compact, general constraints

�  S -> NP VP
�  Only if NP and VP agree

� How can we describe agreement, subcat?

Why features?
� Need compact, general constraints

�  S -> NP VP
�  Only if NP and VP agree

� How can we describe agreement, subcat?
�  Decompose into elementary features that must

be consistent
�  E.g. Agreement

Why features?
� Need compact, general constraints

�  S -> NP VP
�  Only if NP and VP agree

� How can we describe agreement, subcat?
�  Decompose into elementary features that must

be consistent
�  E.g. Agreement

�  Number, person, gender, etc

Why features?
�  Need compact, general constraints

�  S -> NP VP
�  Only if NP and VP agree

�  How can we describe agreement, subcat?
�  Decompose into elementary features that must be

consistent
�  E.g. Agreement

�  Number, person, gender, etc

�  Augment CF rules with feature constraints
�  Develop mechanism to enforce consistency
�  Elegant, compact, rich representation

Feature Representations
�  Fundamentally, Attribute-

Value pairs
�  Features: atomic symbols

from a finite set

Feature Representations
�  Fundamentally, Attribute-

Value pairs
�  Features: atomic symbols

from a finite set

�  Values may be
�  Atomic symbols from a

finite set

Attribute-value matrix (AVM)

Feature Representations
�  Fundamentally, Attribute-

Value pairs
�  Features: atomic symbols

from a finite set

�  Values may be
�  Atomic symbols from a

finite set

Attribute-value matrix (AVM)

NUMBER PL

Feature Representations
�  Fundamentally, Attribute-

Value pairs
�  Features: atomic symbols

from a finite set

�  Values may be
�  Atomic symbols from a

finite set

Attribute-value matrix (AVM)

NUMBER PL

PERSON 3

Feature Representations
�  Fundamentally, Attribute-

Value pairs
�  Features: atomic symbols

from a finite set

�  Values may be
�  Atomic symbols from a

finite set

Attribute-value matrix (AVM)

NUMBER PL

PERSON 3

NUMBER PL

PERSON 3

Feature Representations
�  Fundamentally, Attribute-

Value pairs
�  Features: atomic symbols

from a finite set

�  Values may be
�  Atomic symbols from a

finite set

Attribute-value matrix (AVM)

NUMBER PL

PERSON 3

NUMBER PL

PERSON 3

CAT NP

NUMBER PL

PERSON 3

Feature Representations
�  Fundamentally, Attribute-Value pairs

�  Features: atomic symbols from a finite set

�  Values may be
�  Atomic symbols from a finite set

�  Values may also be feature structures themselves

Attribute-value matrix (AVM)

CAT NP

AGREEMENT

NUMBER PL

PERSON 3

Feature Representations
�  Feature path:

�  Sequence of features through a feature structure
leading to a particular value

CAT NP

AGREEMENT NUMBER PL

PERSON 3

Feature Representations
�  Feature path:

�  Sequence of features through a feature structure
leading to a particular value

CAT NP

AGREEMENT NUMBER PL

PERSON 3

<AGREEMENT NUMBER> -> PL

Feature Representations
�  Feature path:

�  Sequence of features through a feature structure
leading to a particular value

CAT NP

AGREEMENT NUMBER PL

PERSON 3

<AGREEMENT NUMBER> -> PL
<AGREEMENT PERSON> -> 3

Feature Representations
�  Reentrant feature structures

�  Features share some feature structure as value
�  Not merely equal values
�  Shared substructure
�  Feature paths lead to same node

CAT S

HEAD AGREEM’T

NUMBER PL

PERSON 3

1

SUBJECT AGREEMENT 1

Head-Subject Agreement

CAT S

HEAD AGREEM’T

NUMBER PL

PERSON 3

1

SUBJECT AGREEMENT 1

Feature representations
�  Feature structures can also be represented as DAGs

�  Directed, acyclic graphs
�  Edges are features

�  Nodes values

Reentrant DAG

Unification
�  Two key roles:

Unification
�  Two key roles:

�  Merge compatible feature structures

Unification
�  Two key roles:

�  Merge compatible feature structures

�  Reject incompatible feature structures

Unification
�  Two key roles:

�  Merge compatible feature structures

�  Reject incompatible feature structures

�  Two structures can unify if

Unification
�  Two key roles:

�  Merge compatible feature structures

�  Reject incompatible feature structures

�  Two structures can unify if
�  Feature structures are identical

�  Result in same structure

Unification
�  Two key roles:

�  Merge compatible feature structures

�  Reject incompatible feature structures

�  Two structures can unify if
�  Feature structures are identical

�  Result in same structure

�  Feature structures match where both have values,
differ in missing or underspecified
�  Resulting structure incorporates constraints of both

Subsumption
�  Relation between feature structures

�  Less specific f.s. subsumes more specific f.s.
�  F.s. F subsumes f.s. G iff

�  For every feature x in F, F(x) subsumes G(x)
�  For all paths p and q in F s.t. F(p)=F(q), G(p)=G(q)

Subsumption
�  Relation between feature structures

�  Less specific f.s. subsumes more specific f.s.
�  F.s. F subsumes f.s. G iff

�  For every feature x in F, F(x) subsumes G(x)
�  For all paths p and q in F s.t. F(p)=F(q), G(p)=G(q)

�  Examples:
�  A: [Number SG], B: [Person 3]
�  C:[Number SG]

�  [Person 3]

Subsumption
�  Relation between feature structures

�  Less specific f.s. subsumes more specific f.s.
�  F.s. F subsumes f.s. G iff

�  For every feature x in F, F(x) subsumes G(x)
�  For all paths p and q in F s.t. F(p)=F(q), G(p)=G(q)

�  Examples:
�  A: [Number SG], B: [Person 3]
�  C:[Number SG]

�  [Person 3]

�  A subsumes C

Subsumption
�  Relation between feature structures

�  Less specific f.s. subsumes more specific f.s.
�  F.s. F subsumes f.s. G iff

�  For every feature x in F, F(x) subsumes G(x)
�  For all paths p and q in F s.t. F(p)=F(q), G(p)=G(q)

�  Examples:
�  A: [Number SG], B: [Person 3]
�  C:[Number SG]

�  [Person 3]

�  A subsumes C; B subsumes C

Subsumption
�  Relation between feature structures

�  Less specific f.s. subsumes more specific f.s.
�  F.s. F subsumes f.s. G iff

�  For every feature x in F, F(x) subsumes G(x)
�  For all paths p and q in F s.t. F(p)=F(q), G(p)=G(q)

�  Examples:
�  A: [Number SG], B: [Person 3]
�  C:[Number SG]

�  [Person 3]

�  A subsumes C; B subsumes C; B,A don’t subsume
�  Partial order on f.s.

Subsumption
�  Relation between feature structures

�  Less specific f.s. subsumes more specific f.s.
�  F.s. F subsumes f.s. G iff

�  For every feature x in F, F(x) subsumes G(x)
�  For all paths p and q in F s.t. F(p)=F(q), G(p)=G(q)

�  Examples:
�  A: [Number SG], B: [Person 3]
�  C:[Number SG]

�  [Person 3]

�  A subsumes C; B subsumes C; B,A don’t subsume
�  Partial order on f.s.

Unification
�  Two structures can unify if

�  Feature structures are identical
�  Result in same structure

�  Feature structures match where both have values,
differ in missing or underspecified
�  Resulting structure incorporates constraints of both

Unification Examples
�  Identical

�  [Number SG] U [Number SG]

Unification Examples
�  Identical

�  [Number SG] U [Number SG]=[Number SG]

�  Underspecified
�  [Number SG] U [Number []]

Unification Examples
�  Identical

�  [Number SG] U [Number SG]=[Number SG]

�  Underspecified
�  [Number SG] U [Number []] = [Number SG]

�  Different specification
�  [Number SG] U [Person 3]

Unification Examples
�  Identical

�  [Number SG] U [Number SG]=[Number SG]

�  Underspecified
�  [Number SG] U [Number []] = [Number SG]

�  Different specification
�  [Number SG] U [Person 3] = [Number SG]
�  [Person 3]
�  [Number SG] U [Number PL]

Unification Examples
�  Identical

�  [Number SG] U [Number SG]=[Number SG]

�  Underspecified
�  [Number SG] U [Number []] = [Number SG]

�  Different specification
�  [Number SG] U [Person 3] = [Number SG]
�  [Person 3]

�  Mismatched
�  [Number SG] U [Number PL] -> Fails!

More Unification Examples
AGREEMENT [1]

SUBJECT AGREEMENT [1]

SUBJECT AGREEMENT
PERSON 3
NUMBER SG

U

=

SUBJECT AGREEMENT [1]
PERSON 3
NUMBER SG

AGREEMENT [1]

Features in CFGs:
Agreement

�  Goal:
�  Support agreement of NP/VP, Det Nominal

�  Approach:
�  Augment CFG rules with features
�  Employ head features

�  Each phrase: VP, NP has head
�  Head: child that provides features to phrase

�  Associates grammatical role with word

�  VP – V; NP – Nom, etc

Agreement with Heads and
Features

VP -> Verb NP
<VP HEAD> = <Verb HEAD>

NP -> Det Nominal
<NP HEAD> = <Nominal HEAD>
<Det HEAD AGREEMENT> = <Nominal HEAD AGREEMENT>

Nominal -> Noun
<Nominal HEAD> = <Noun HEAD>

Noun -> flights
<Noun HEAD AGREEMENT NUMBER> = PL

Verb -> serves
<Verb HEAD AGREEMENT NUMBER> = SG
<Verb HEAD AGREEMENT PERSON> = 3

Feature Applications
�  Subcategorization:

�  Verb-Argument constraints
�  Number, type, characteristics of args (e.g. animate)

�  Also adjectives, nouns

�  Long distance dependencies
�  E.g. filler-gap relations in wh-questions, rel

Implementing Unification
�  Data Structure:

�  Extension of the DAG representation

�  Each f.s. has a content field and a pointer field
�  If pointer field is null, content field has the f.s.

�  If pointer field is non-null, it points to actual f.s.

Implementing Unification: II
�  Algorithm:

�  Operates on pairs of feature structures
�  Order independent, destructive

�  If fs1 is null, point to fs2
�  If fs2 is null, point to fs1

�  If both are identical, point fs1 to fs2, return fs2
�  Subsequent updates will update both

�  If non-identical atomic values, fail!

Implementing Unification:
III

�  If non-identical, complex structures
�  Recursively traverse all features of fs2

�  If feature in fs2 is missing in fs1
�  Add to fs1 with value null

�  If all unify, point fs2 to fs1 and return fs1

Unification

Example
AGREEMENT [1] NUMBER SG

SUBJECT AGREEMENT [1]

SUBJECT AGREEMENT PERSON 3

U

[AGREEMENT [1]] U [AGREEMENT [PERSON 3]]

[NUMBER SG] U [PERSON 3]

[NUMBER SG] U [PERSON 3]
[PERSON NULL]

Unification Example

(From S.F., 2010)

Grammar entry for sentence

Unification Example

(From S.F., 2010)

Grammar entry for NP

Unification Example

(From S.F., 2010)

Lexical entries

Unification Example

(From S.F., 2010)

Unification Example

(From S.F., 2010)

Unifying NP with Determiner

Unification Example

(From S.F., 2010)

Unification and the Earley
Parser

�  Employ constraints to restrict addition to chart

�  Actually pretty straightforward
�  Augment rules with feature structure

�  Augment state (chart entries) with DAG
�  Prediction adds DAG from rule

�  Completion applies unification (on copies)
�  Adds entry only if current DAG is NOT subsumed

Parsing with Features
�  One strategy:

�  Parse as usual

�  Test completed parses for unification constraints

Parsing with Features
�  One strategy:

�  Parse as usual

�  Test completed parses for unification constraints

�  Pros:
�  Simple, requires little modification

Parsing with Features
�  One strategy:

�  Parse as usual

�  Test completed parses for unification constraints

�  Pros:
�  Simple, requires little modification

�  Cons:
�  Wasted effort
�  Builds many partial parses that can’t unify

Parsing with Features
�  One strategy:

�  Parse as usual
�  Test completed parses for unification constraints

�  Pros:
�  Simple, requires little modification

�  Cons:
�  Wasted effort
�  Builds many partial parses that can’t unify

�  Integrate unification in parse construction

Parsing, Unification, &
Earley

�  Augment existing Earley parser for unification
�  Fairly straightforward

�  Modify representations:
�  Augment CFG rules with constraints

�  Use constraints to create feature structure as DAG

�  Add DAG to state representation
�  E.g., S -> � NP VP, [0,0],[],Dag

Integrating Unification
�  Main change: Completer

�  Advances � in rules where next constituent matches a
just-completed constituent

�  Now, unifies Dag from completed constituent with
the part of the feature structure in rules advanced
�  If fails, no new entry in chart

�  Second change:
�  Only add state if NOT subsumed by states in chart

Unification Parsing
�  Abstracts over categories

�  S-> NP VP =>
�  X0 -> X1 X2; <X0 cat> = S; <X1 cat>=NP;
�  <X2 cat>=VP

�  Conjunction:
�  X0->X1 and X2; <X1 cat> =<X2 cat>;
�  <X0 cat>=<X1 cat>

�  Issue: Completer depends on categories

�  Solution: Completer looks for DAGs which unify
with the just-completed state’s DAG

Extensions
�  Types and inheritance

�  Issue: generalization across feature structures
�  E.g. many variants of agreement

�  More or less specific: 3rd vs sg vs 3rdsg

�  Approach: Type hierarchy
�  Simple atomic types match literally

�  Multiple inheritance hierarchy
�  Unification of subtypes is most general type that is more

specific than two input types

�  Complex types encode legal features, etc

Conclusion
�  Features allow encoding of constraints

�  Enables compact representation of rules
�  Supports natural generalizations

�  Unification ensures compatibility of features
�  Integrates easily with existing parsing mech.

�  Many unification-based grammatical theories

