Features & Unification

Ling 571
Deep Processing Techniques for NLP
January 31, 2011

Roadmap

® Features: Motivation
® (Constraint & compactness

® Features
e Definitions & representations

® Unification

® Application of features in the grammar
® Agreement, subcategorization

® Parsing with features & unification
® Augmenting the Earley parser, unification parsing

® Extensions: Types, inheritance, etc

® Conclusion

Constraints & Compactness

® Constraints in grammar
e S->NPVP
® They run.
® He runs.

Constraints & Compactness

® Constraints in grammar
e S->NPVP
® They run.

® He runs.
e But...
® *They runs
® *He run
® *He disappeared the flight

Constraints & Compactness

® Constraints in grammar
e S->NPVP
® They run.
® He runs.
e But...
® *They runs
® *He run
® *He disappeared the flight
® NP -> Det Nom
® This flight

Constraints & Compactness

® Constraints in grammar
e S->NPVP
® They run.
® He runs.
e But...
® *They runs
® *He run
® *He disappeared the flight
® NP -> Det Nom
® This flight
® These flights

Constraints & Compactness

® Constraints in grammar
e S->NPVP
® They run.
® He runs.
e But...
® *They runs
® *He run
® *He disappeared the flight
® NP -> Det Nom
® This flight
® These flights
® *This flights

Constraints & Compactness

® Constraints in grammar

e S.>NPVP

® They run.

® He runs.
e But...

® *They runs

® *He run

® *He disappeared the flight
® NP -> Det Nom

® This flight

® These flights

® *This flights

Violate agreement (number), subcategorization

Enforcing Constraints

® Enforcing constraints

Enforcing Constraints

® Enforcing constraints
® Add categories, rules

Enforcing Constraints

® Enforcing constraints
® Add categories, rules

®* Agreement:
e S-> NPsg3p VPsg3p,
e S-> NPpl3p VPpl3p,

Enforcing Constraints

® Enforcing constraints
e Add categories, rules

®* Agreement:
e S-> NPsg3p VPsg3p,
e S-> NPpl3p VPpl3p,

® Subcategorization:
e \VP-> Vtrans NP,
e \VP -> Vintrans,
e VP->Vditrans NP NP

Enforcing Constraints

® Enforcing constraints
e Add categories, rules

®* Agreement:
e S-> NPsg3p VPsg3p,
e S-> NPpl3p VPpl3p,
® Subcategorization:
e \VP-> Vtrans NP,
e VP -> Vintrans,
e \VP->Vditrans NP NP

® Explosive!, loses key generalizations

Features

® person: 1st 2nd 3rd
® |, we; you; he, she, they
® am, are, is

Features

® person: 1st, 2nd 3rd
® |, we; you; he, she, they
® am, are, Is

® number: sg, pl
® | am; we are

Features

® person: 1st, 2nd 3rd
® |, we; you; he, she, they
® am, are, is
® number: sg, pl
® | am; we are
® case: nom, acc
® |, he; me, him

Features

person; 1st, 2nd 3rd

® |, we; you; he, she, they
® am, are, Is

number: sg, pl

® | am; we are

case: nom, acc

® |, he; me, him

gender: masc, fem, neut

Features

® person: 1st, 2nd 3rd
® |, we; you; he, she, they
® am, are, Is
® number: sg, pl
® | am; we are
® case: nom, acc
® |, he; me, him
® gender: masc, fem, neut
® animacy: +/-
e

Why features?

® Need compact, general constraints
e S.>NPVP

Why features?

® Need compact, general constraints

e S.>NPVP
® Only if NP and VP agree

Why features?

® Need compact, general constraints

e S.>NPVP
® Only if NP and VP agree

® How can we describe agreement, subcat?

Why features?

® Need compact, general constraints

e S.>NPVP
® Only if NP and VP agree

® How can we describe agreement, subcat?

® Decompose into elementary features that must
be consistent

® F.g. Agreement

Why features?

® Need compact, general constraints

e S.>NPVP
® Only if NP and VP agree

® How can we describe agreement, subcat?

® Decompose into elementary features that must
be consistent

® F.g. Agreement

® Number, person, gender, etc

Why features?

® Need compact, general constraints
e S.>NPVP
® Only if NP and VP agree

® How can we describe agreement, subcat?

® Decompose into elementary features that must be
consistent

® F.g Agreement

® Number, person, gender, etc

® Augment CF rules with feature constraints
® Develop mechanism to enforce consistency
® Flegant, compact, rich representation

Feature Representations

® Fundamentally, Attribute-
Value pairs

® Features: atomic symbols
from a finite set

- -

Feature Representations

® Fundamentally, Attribute-
Value pairs

® Features: atomic symbols
from a finite set

® Values may be

® Atomic symbols from a
finite set

Attribute-value matrix (AVM)

Feature Representations

® Fundamentally, Attribute-

Value pairs [NUMBER oL J
® Features: atomic symbols

from a finite set

® \alues may be

® Atomic symbols from a
finite set

Attribute-value matrix (AVM)

Feature Representations

® Fundamentally, Attribute-

4 N

Value pairs NUMBER oL
® Features: atomic symbols N J
from a finite set [)
PERSON 3
- J

® Values may be

® Atomic symbols from a
finite set

Attribute-value matrix (AVM)

Feature Representations

® Fundamentally, Attribute-

Value pairs

® Features: atomic symbols

from a finite set

® Values may be

® Atomic symbols from a

finite set

Attribute-value matrix (AVM)

-
NUMBER

N
-
PERSON
N

NUMBER

PERSON

o

PL

3

PL

AN

A

Feature Representations

® Fundamentally, Attribute-

. 4 N
Value pairs NUMBER oL
® Features: atomic symbols N J
. s R
from a finite set — -
N %
4)
® Values may be NUMBER oL
® Atomic symbols from a
finite set PERSON 3
Attribute-value matrix (AVM) >CAT NP<
NUMBER

Feature Representations

® Fundamentally, Attribute-Value pairs
® Features: atomic symbols from a finite set

® Values may be
e Atomic symbols from a finite set

® Values may also be feature structures themselves

Attribute-value matrix (AVM)

/CAT 7 NP >
AGREEMENT L= .
PERSON

Feature Representations

® Feature path:

® Sequence of features through a feature structure
leading to a particular value

(AT NP N
e N
AGREEMENT NUMBER PL
PERSON 3

N - 2/

Feature Representations

® Feature path:

® Sequence of features through a feature structure
leading to a particular value

(AT NP N
e N
AGREEMENT NUMBER PL
PERSON 3
_ ~)

<AGREEMENT NUMBER> -> PL

i L

Feature Representations

® Feature path:

® Sequence of features through a feature structure
leading to a particular value

(AT NP N
e N
AGREEMENT NUMBER PL
PERSON 3
_ ~)

<AGREEMENT NUMBER> -> PL
<AGREEMENT PERSON> -> 3

aae A atlgs Rl

Feature Representations

® Reentrant feature structures
® Features share some feature structure as value
®* Not merely equal values
® Shared substructure
® Feature paths lead to same node

/CAT R
@ §NUMBER PL h
HEAD | AGREEM’ T[1
PERSON 3
N >
\SUBJECT (AGREEMENT | 1 |]

Head-Subject Agreement

(or ~ s N
NUMBER PL

HEAD| AGREEM’ TLL

PERSON 3
o

SUBJECT [AGREEMENT]

)
NN)

Feature representations

® Feature structures can also be represented as DAGs
® Directed, acyclic graphs
® Edges are features
® Nodes values

CAT ar

NUMBE o

AGREEMENT

Reentrant DAG

CAT p S

AGREEMENT

SUBJECT

AGREEMENT
3rd

Unification

® Two key roles:

N —

Unification

® Two key roles:
® Merge compatible feature structures

Unification

® Two key roles:
® Merge compatible feature structures
® Reject iIncompatible feature structures

Unification

® Two key roles:
® Merge compatible feature structures
® Reject iIncompatible feature structures

® Two structures can unify if

Unification

® Two key roles:
® Merge compatible feature structures
® Reject iIncompatible feature structures

® Two structures can unify if
® Feature structures are identical
® Result in same structure

Unification

® Two key roles:
® Merge compatible feature structures
® Reject incompatible feature structures

® Two structures can unify if

® Feature structures are identical
® Result in same structure

® [Feature structures match where both have values,
differ in missing or underspecified

® Resulting structure incorporates constraints of both

Subsumption

® Relation between feature structures
® | ess specific f.s. subsumes more specific f.s.

® Fs. F subsumes f.s. G iff

® For every feature x in F, F(x) subsumes G(x)
® For all paths pand gin F s.t. F(p)=F(q), G(p)=G(q)

Subsumption

® Relation between feature structures
® | ess specific f.s. subsumes more specific f.s.

® Fs. F subsumes f.s. G iff

® For every feature x in F, F(x) subsumes G(x)
e For all paths p and g in F s.t. F(p)=F(q), G(p)=G(q)

® Examples:
® A:[Number SG], B: [Person 3]
® C:[Number SG]

® [Person 3]

Subsumption

® Relation between feature structures
® | ess specific f.s. subsumes more specific f.s.

® Fs. F subsumes f.s. G iff

® For every feature x in F, F(x) subsumes G(x)
e For all paths p and g in F s.t. F(p)=F(q), G(p)=G(q)

® Examples:
® A:[Number SG], B: [Person 3]
® C:[Number SG]

® [Person 3]
® A subsumes C

Subsumption

® Relation between feature structures
® | ess specific f.s. subsumes more specific f.s.

® Fs. F subsumes f.s. G iff

® For every feature x in F, F(x) subsumes G(x)
e For all paths p and g in F s.t. F(p)=F(q), G(p)=G(q)

® Examples:
® A:[Number SG], B: [Person 3]
® C:[Number SG]

® [Person 3]
® A subsumes C; B subsumes C

Subsumption

® Relation between feature structures
® | ess specific f.s. subsumes more specific f.s.

® Fs. F subsumes f.s. G iff

® For every feature x in F, F(x) subsumes G(x)
® For all paths pand g in F s.t. F(p)=F(q), G(p)=G(q)

® Examples:
o A:[Number SG], B: [Person 3]
® C:[Number SG]

® [Person 3]

® A subsumes C; B subsumes C; B,A don’t subsume
® Partial order on f.s.

% R

Subsumption

® Relation between feature structures
® | ess specific f.s. subsumes more specific f.s.

® Fs. F subsumes f.s. G iff

® For every feature x in F, F(x) subsumes G(x)
® For all paths pand g in F s.t. F(p)=F(q), G(p)=G(q)

® Examples:
o A:[Number SG], B: [Person 3]
® C:[Number SG]

® [Person 3]

® A subsumes C; B subsumes C; B,A don’t subsume
® Partial order on f.s.

% R

Unification

® Two structures can unify if
® Feature structures are identical
® Result in same structure

® [Feature structures match where both have values,
differ in missing or underspecified

® Resulting structure incorporates constraints of both

Unification Examples

® |dentical
® [Number SG] U [Number SG]

Unification Examples

® |dentical
® [Number SG] U [Number SG]=[Number SG]

® Underspecified
e [Number SG] U [Number []]

Unification Examples

® |dentical
® [Number SG] U [Number SG]=[Number SG]

® Underspecified
® [Number SG] U [Number []] = [Number SG]

® Different specification
® [Number SG] U [Person 3]

Unification Examples

® |dentical
® [Number SG] U [Number SG]=[Number SG]

® Underspecified
® [Number SG] U [Number []] = [Number SG]

® Different specification
® [Number SG] U [Person 3] = [Number SG]
° [Person 3]
® [Number SG] U [Number PL]

Unification Examples

® |dentical
® [Number SG] U [Number SG]=[Number SG]

® Underspecified
® [Number SG] U [Number []] = [Number SG]

® Different specification
® [Number SG] U [Person 3] = [Number SG]
° [Person 3]

* Mismatched
® [Number SG] U [Number PL] -> Fails!

More Unification Examples

AGREEMENT [1]
U
SUBJECT [AGREEMENT[iJ

4)
PERSON 3
SUBJECT [AGREEMENT []VUMBER SG}:} .
\ _/
/AGREEMENT [1] R
W ~ AR
PERSON 3
SUBJECT | AGREEMENT [1]| NUMBER SG

-

Features in CFGs:
Agreement

* Goal:
® Support agreement of NP/VPE Det Nominal

® Approach:
e Augment CFG rules with features

® Employ head features

® Each phrase: VP, NP has head
® Head: child that provides features to phrase

® Associates grammatical role with word
® VP -V; NP - Nom, etc

Agreement with Heads and
Features

VP -> Verb NP
<VP HEAD> = <Verb HEAD>

NP -> Det Nominal
<NP HEAD> = <Nominal HEAD>
<Det HEAD AGREEMENT> = <Nominal HEAD AGREEMENT>

Nominal -> Noun
<Nominal HEAD> = <Noun HEAD>

Noun -> flights
<Noun HEAD AGREEMENT NUMBER> = PL

Verb -> serves
- <Verb HEAD AGREEMENT NUMBER> = SG
EAD AGREEMENT PERSON> = 3

Feature Applications

® Subcategorization:
® \erb-Argument constraints

* Number, type, characteristics of args (e.g. animate)
® Also adjectives, nouns

®* Long distance dependencies
e . g filler-gap relations in wh-questions, rel

Implementing Unification

e Data Structure:
e Extension of the DAG representation

® Fach f.s. has a content field and a pointer field
® |f pointer field is null, content field has the f.s.
® |f pointer field is non-null, it points to actual f.s.

CONTENT

POINTER

NULL

NUMBER

PERSON

CONTENT

POINTER

CONTENT

POINTER

SG

NULL

NULL

Implementing Unification: ||

e Algorithm:

® QOperates on pairs of feature structures
® Order independent, destructive

e |f fs1 is null, point to fs2

e |f fs2 is null, point to fsl

e |f both are identical, point fs1 to fs2, return fs2
® Subsequent updates will update both

® |f non-identical atomic values, fail!

Implementing Unification:
1

® |f non-identical, complex structures
® Recursively traverse all features of fs2
® |f feature in fs2 is missing in fsl
¢ Add to fsl with value null
e |f all unify, point fs2 to fs1 and return fsl

Unification

function UNIFY(f]-orig, f2-orig) returns f-structure or failure

J1 — Dereferenced contents of f1-orig
J2 — Dereferenced contents of f2-orig

if /1 and /2 are 1dentical then
f1.pointer — j2
return /2
else if /7 1s null then
f1.pointer — f2
return /2
else if /2 1s null then
J2.pointer —f1
return f/
else if both /7 and /2 are complex feature structures then
J2.pointer — f1
for each f2-feature in f2 do
Jf1-feature — Find or create a corresponding feature in f/
if UNIFY(fI-feature.value, f2-feature.value) returns failure then
return failure
return f/
else return failure

/'
AGREEMENT [1]

SUBJECT
o

~
NUMBER SG

>

-

Example

™

<l u
AGREEMENT [1]
)

v

ESUBJECT [AGREEMENT [PERSON 3}}}

[AGREEMENT [1]] U [AGREEMENT [PERSON 3]

[NUMBER SG] U [PERSON 3]

[NUMBER SG]
[PERSON NULL]

U [PERSON 3]

CONTENT

SG
NUMBER
CONTENT
POINTER NULL
CONTENT
NULL ’

POINTER

PERSON

CONTENT

POINTER

CONTENT

NUMBER

CONTE

FOINTER

POINTER

SG

NULL

NULL

NULI

CONTENT

SG
NUMBER
CONTENT
POINTER
NULL
NULL
POINTER
NULL
POINTER
POINTER
CONTENT
3
PERSON
CONTENT

POINTER

Unification Example

cat S
voice active
cat NP’
agent [number [4]
cat VB
process [2] number [4]
patient E{cat NP]
subject [0
pattern |verb 2
object [3]]

Grammar entry for sentence

Unification Example

cat NP
cat DT Grammar entry for NP
spec]| number [3]
_deﬁnite a
cat NN
eac L] number [3]
number [3]
definite [2
attern first -
P second [2]

Unification Example

cat DT
definite yes
number SG
form “the”

cat DT
definite yes
number PL
form “these”

| exical entries

Unification Example

Unifying a noun phrase with a determiner

cat NP

cat DT
spec G| number [3]

:deﬁnite EI] 'cat DT N

cat NN definite yes
eac IZ]number EI] - number PL
number E[- _form “these” i
definite [4]

first 1]
pattern [secon p El]

cat

number
_deﬁnite

Unification Example

DT

Unifying NP with Determiner

cat

DT

definite vyes

number

form

PL

“these" -

cat

DT

definite yes

number

form

PL

“these" -

Unification Example

Result of unification

cat NP
‘cat DT |
spec . number PL
definite yes
form “these”
cat NN
head 2 number PL]
number PL
definite yes
pattern first]II]
second [2]

Unification and the Earley
Parser

® Employ constraints to restrict addition to chart

® Actually pretty straightforward
® Augment rules with feature structure
e Augment state (chart entries) with DAG
® Prediction adds DAG from rule

e Completion applies unification (on copies)
® Adds entry only if current DAG is NOT subsumed

Parsing with Features

® One strategy:
® Parse as usual
® Jest completed parses for unification constraints

Parsing with Features

® One strategy:
® Parse as usual
® Jest completed parses for unification constraints

® Pros:
e Simple, requires little modification

Parsing with Features

® One strategy:
® Parse as usual
® Jest completed parses for unification constraints

® Pros:
e Simple, requires little modification

* Cons:
® Wasted effort
® Builds many partial parses that can’t unify

Parsing with Features

One strategy:
® Parse as usual
® Test completed parses for unification constraints

Pros:
e Simple, requires little modification

Cons:
® Wasted effort
® Builds many partial parses that can’t unify

Integrate unification in parse construction

Parsing, Unification, &
Earley

® Augment existing Earley parser for unification
® Fairly straightforward

®* Modify representations:

e Augment CFG rules with constraints
® Use constraints to create feature structure as DAG

e Add DAG to state representation
e E.g.,S->¢NPVP[0,0],[],Dag

Integrating Unification

® Main change: Completer

® Advances ¢ in rules where next constituent matches a
just-completed constituent

® Now, unifies Dag from completed constituent with
the part of the feature structure in rules advanced

® |f fails, no new entry in chart

® Second change:
® Only add state if NOT subsumed by states in chart

function EARLEY-PARSE(words, grammar) retarns chart

ADDTOCHART((y — e S, [0,0], dagy),chart[0])
for i— from O to LENGTH(words) do
for each srate in chart[i] do
if INCOMPLETE?(state) and
NEXT-CAT(state) 1s not a part of speech then
PREDICTOR(state)
elseif INCOMPLETE ?(state) and
NEXT-CAT(state) 1s a part of speech then
SCANNER(state)
else
COMPLETER(state)
end
end
return(chart)

procedure PREDICTOR((A — o e B3, [i,], daga))
for each (B — y) in GRAMMAR-RULES-FOR(B, grammar) do
ADDTOCHART((B — e, [/, jl|, dagp),chart[j])
end

procedure SCANNER((A — a e B f3, [i, |, daga))
if B € PARTS-OF-SPEECH(word/[j]) then
ADDTOCHART((B — word|jle, |j,j+ 1], dagp),chart[j+1])

procedure COMPLETER((B — y . [j.k|, dagg))
for each (A — a e B3, [i.j]|, dagy) in chart[j] do
if new-dag — UNIFY-STATES(dagp,dag s, B) # Fails!
ADDTOCHART((A — a B e f3, [i,k|.new-dag), chart[k])
end

procedure UNIFY-STATES(dagl,dag?2, car)
dagl-cp— COPYDAG(dagl)
dag2-cp — COPYDAG(dag?2)
UNIFY(FOLLOW-PATH(cat, dag1-cp), FOLLOW-PATH(cat, dag2-cp))

procedure ADDTOCHART(state, chart-entry)
if szate 1s not subsumed by a state in chiart-entry then .
PUSH-ON-END(state, chart-entry)

end

Unification Parsing

® Abstracts over categories
® S-> NP VP =>
e XO -> X1 X2; <X0O cat> = S; <X1 cat>=NP;
® <X2 cat>=VP
e Conjunction:
e X0->X1 and X2; <X1 cat> =<X2 cat>;
® <XO cat>=<X1 cat>

® [ssue: Completer depends on categories

e Solution: Completer looks for DAGs which unify
with the just-completed state’ s DAG

Extensions

® Types and inheritance

® |ssue: generalization across feature structures
® E.g. many variants of agreement
® More or less specific: 37 vs sg vs 3rdsg
® Approach: Type hierarchy
® Simple atomic types match literally
® Multiple inheritance hierarchy

e Unification of subtypes is most general type that is more
specific than two input types

® Complex types encode legal features, etc

Conclusion

® Features allow encoding of constraints
® Fnables compact representation of rules
® Supports natural generalizations

e Unification ensures compatibility of features
® |ntegrates easily with existing parsing mech.

® Many unification-based grammatical theories

