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�  Violate agreement (number), subcategorization 
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Enforcing Constraints 
�  Enforcing constraints 

�  Add categories, rules 
�  Agreement: 

�  S-> NPsg3p VPsg3p,  

�  S-> NPpl3p VPpl3p,  

�  Subcategorization: 
�  VP-> Vtrans NP, 

�  VP -> Vintrans,  

�  VP->Vditrans NP NP 

�  Explosive!, loses key generalizations 
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�  I, we; you; he, she, they 

�  am, are, is 

�  number: sg, pl 
�  I am; we are 

�  case: nom, acc 
�  I, he; me, him 

�  gender: masc, fem, neut 
�  animacy: +/- 
�  etc   
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Why features? 
�  Need compact, general constraints 

�  S -> NP VP 
�  Only if  NP and VP agree 

�  How can we describe agreement, subcat? 
�  Decompose into elementary features that must  be 

consistent 
�  E.g. Agreement 

�  Number, person, gender, etc  

�  Augment CF rules with feature constraints 
�  Develop mechanism to enforce consistency 
�  Elegant, compact, rich representation 
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Feature Representations 
�  Fundamentally, Attribute-Value pairs 

�  Features: atomic symbols from a finite set 

�  Values may be 
�   Atomic symbols from a finite set 

�  Values may also be feature structures themselves 
  

Attribute-value matrix (AVM) 

CAT                           NP 
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Feature Representations 
�  Feature path: 

�  Sequence of  features through a feature structure 
leading to a particular value 

CAT                           NP 
 
AGREEMENT NUMBER            PL 

 
PERSON              3 

<AGREEMENT NUMBER> -> PL 
<AGREEMENT PERSON> ->  3 



Feature Representations 
�  Reentrant feature structures 

�  Features share some feature structure as value 
�  Not merely equal values 
�  Shared substructure   
�  Feature paths lead to same node 
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Feature representations 
�  Feature structures can also be represented as DAGs 

�  Directed, acyclic graphs 
�  Edges are features 

�  Nodes values 



Reentrant DAG 
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Unification Examples 
�  Identical 

�  [Number SG] U [Number SG]=[Number SG] 

�  Underspecified 
�  [Number SG] U [Number []] = [Number SG] 

�  Different specification 
�  [Number SG] U [Person 3] = [Number SG] 
�                                                [Person      3] 

�  Mismatched 
�  [Number SG] U [Number PL] -> Fails!   



More Unification Examples 
AGREEMENT     [1] 
 
SUBJECT      AGREEMENT [1] 

SUBJECT        AGREEMENT 
PERSON      3 
NUMBER    SG 

U 

= 

SUBJECT        AGREEMENT [1] 
PERSON      3 
NUMBER    SG 

AGREEMENT  [1] 



Features in CFGs: 
Agreement 

�  Goal:  
�  Support agreement of  NP/VP, Det Nominal 

�  Approach: 
�  Augment CFG rules with features 
�  Employ head features 

�  Each phrase: VP, NP has head 
�  Head: child that provides features to phrase 

�  Associates grammatical role with word  

�  VP – V; NP – Nom, etc 



Agreement with Heads and 
Features 

VP -> Verb NP 
<VP HEAD> = <Verb HEAD> 
 
NP -> Det Nominal 
<NP HEAD> = <Nominal HEAD> 
<Det HEAD AGREEMENT> = <Nominal HEAD AGREEMENT> 
 
Nominal -> Noun 
<Nominal HEAD> = <Noun HEAD> 
 
Noun -> flights 
<Noun HEAD AGREEMENT NUMBER> = PL 
 
Verb -> serves 
<Verb HEAD AGREEMENT NUMBER> = SG 
<Verb HEAD AGREEMENT PERSON> = 3 
 



Feature Applications 
�  Subcategorization: 

�  Verb-Argument constraints 
�  Number, type, characteristics of  args (e.g. animate) 

�  Also adjectives, nouns 

�  Long distance dependencies 
�  E.g. filler-gap relations in wh-questions, rel 



Implementing Unification 
�  Data Structure: 

�  Extension of  the DAG representation 

�  Each f.s. has a content field and a pointer field 
�  If  pointer field is null, content field has the f.s. 

�  If  pointer field is non-null, it points to actual f.s. 





Implementing Unification: II 
�  Algorithm: 

�  Operates on pairs of  feature structures 
�  Order independent, destructive 

�  If  fs1 is null, point to fs2 
�  If  fs2 is null, point to fs1 

�  If  both are identical, point fs1 to fs2, return fs2 
�  Subsequent updates will update both 

�  If  non-identical atomic values, fail! 



Implementing Unification: 
III 

�  If  non-identical, complex structures 
�  Recursively traverse all features of  fs2 

�  If  feature in fs2 is missing in fs1 
�  Add to fs1 with value null 

�  If  all unify, point fs2 to fs1 and return fs1 



Unification 



Example 
AGREEMENT [1]        NUMBER     SG 
 
SUBJECT                    AGREEMENT [1] 

SUBJECT  AGREEMENT         PERSON         3 

U 

[ AGREEMENT [1]] U [AGREEMENT [PERSON  3]] 
 
[NUMBER SG] U [PERSON 3] 
 
[NUMBER     SG]    U [PERSON 3] 
[PERSON NULL] 
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(From S.F., 2010) 



Unification and the Earley 
Parser 

�  Employ constraints to restrict addition to chart 

�  Actually pretty straightforward 
�  Augment rules with feature structure 

�  Augment state (chart entries) with DAG 
�  Prediction adds DAG from rule 

�  Completion applies unification (on copies) 
�  Adds entry only if  current DAG is NOT subsumed  



Parsing with Features 
�  One strategy: 

�  Parse as usual 

�  Test completed parses for unification constraints 



Parsing with Features 
�  One strategy: 

�  Parse as usual 

�  Test completed parses for unification constraints 

�  Pros: 
�  Simple, requires little modification 



Parsing with Features 
�  One strategy: 

�  Parse as usual 

�  Test completed parses for unification constraints 

�  Pros: 
�  Simple, requires little modification 

�  Cons: 
�  Wasted effort 
�  Builds many partial parses that can’t unify 



Parsing with Features 
�  One strategy: 

�  Parse as usual 
�  Test completed parses for unification constraints 

�  Pros: 
�  Simple, requires little modification 

�  Cons: 
�  Wasted effort 
�  Builds many partial parses that can’t unify 

�  Integrate unification in parse construction 



Parsing, Unification, & 
Earley 

�  Augment existing Earley parser for unification 
�  Fairly straightforward 

�  Modify representations: 
�  Augment CFG rules with constraints  

�  Use constraints to create feature structure as DAG 

�  Add DAG to state representation 
�  E.g., S -> � NP VP, [0,0],[],Dag 



Integrating Unification 
�  Main change: Completer 

�  Advances � in rules where next constituent matches a 
just-completed constituent 

 

�  Now, unifies Dag from completed constituent  with 
the part of  the feature structure in rules advanced 
�  If  fails, no new entry in chart 

�  Second change: 
�  Only add state if  NOT subsumed by states in chart 







Unification Parsing 
�  Abstracts over categories 

�  S-> NP VP => 
�  X0 -> X1 X2; <X0 cat> = S; <X1 cat>=NP;  
�  <X2 cat>=VP 

�  Conjunction: 
�  X0->X1 and X2; <X1 cat> =<X2 cat>;  
�  <X0 cat>=<X1 cat> 

�  Issue: Completer depends on categories 

�  Solution: Completer looks for DAGs which unify 
with the just-completed state’s DAG 



Extensions 
�  Types and inheritance 

�  Issue: generalization across feature structures 
�  E.g. many variants of  agreement  

�  More or less specific: 3rd vs sg vs 3rdsg 

�  Approach: Type hierarchy 
�  Simple atomic types match literally 

�  Multiple inheritance hierarchy 
�  Unification of  subtypes is most general type that is more 

specific than two input types 

�  Complex types encode legal features, etc 



Conclusion 
�  Features allow encoding of  constraints 

�  Enables compact representation of  rules 
�  Supports natural generalizations 

�  Unification ensures compatibility of  features 
�  Integrates easily with existing parsing mech. 

�  Many unification-based grammatical theories 


