### Feature-based Grammar

Ling 571 Deep Techniques for NLP February 2, 2001

#### Roadmap

- Implementing feature-based grammars
  - Features in NLTK
  - Designing feature grammars
    - A Complex Agreement Example
    - Semantic features

#### Summary

- Features defined
- Modeling features:
  - Attribute-Value Matrices (AVM)
  - Directed Acyclic Graph (DAG)
- Mechanisms for features:
  - Subsumption
  - Unification
- Parsing with features:
  - Augmenting the Earley parser

#### Feature Grammar in NLTK

- NLTK supports feature-based grammars
  - Includes ways of associating features with CFG rules
  - Includes readers for feature grammars
    - .fcfg files
  - Includes parsers
    - NItk.parse.FeatureEarleyChartParse

Create with FeatStruct

- Create with FeatStruct
  - >>> fs1 = nltk.FeatStruct(NUMBER='pl',PERSON=3)
  - >>>print fs1
  - [ NUMBER = 'pl']
  - [ PERSON = 3 ]
  - >>> print fs1['NUMBER']
  - pl
  - >> fs1['NUMBER'] = 'sg'

- Create with FeatStruct
  - >>> fs1 = nltk.FeatStruct(NUMBER='pl',PERSON=3)

- Create with FeatStruct
  - >>> fs1 = nltk.FeatStruct(NUMBER='pl',PERSON=3)
  - >>>print fs1
  - [ NUMBER = 'pl']
  - [ PERSON = 3 ]

- Create with FeatStruct
  - >>> fs1 = nltk.FeatStruct(NUMBER='pl',PERSON=3)
  - >>>print fs1
  - [ NUMBER = 'pl']
  - [ PERSON = 3 ]
  - >>> print fs1['NUMBER']
  - pl

- Create with FeatStruct
  - >>> fs1 = nltk.FeatStruct(NUMBER='pl',PERSON=3)
  - >>>print fs1
  - [ NUMBER = 'pl']
  - [ PERSON = 3 ]
  - >>> print fs1['NUMBER']
  - pl
  - >> fs1['NUMBER'] = 'sg'

#### Complex Feature Structures

>>>fs2 = nltk.FeatStruct(POS='N',AGR=fs1)

#### Complex Feature Structures

```
>>>fs2 = nltk.FeatStruct(POS='N',AGR=fs1)
```

```
• >>>print fs2
```

```
• [ POS = 'N' ]
```

```
• [ NUMBER = 'sg' ]
```

#### Complex Feature Structures

```
>>>fs2 = nltk.FeatStruct(POS='N',AGR=fs1)
```

```
• >>>print fs2
```

```
[ POS = 'N' ]
[ NUMBER = 'sg'] ]
[ AGR = [ PERSON = 3 ] ]
```

- Alternatively,
- >>> fs3 = nltk.FeatStruct("[POS='N',
- AGR=[NUM='pl',PER=3]]")

- First instance
  - Parenthesized integer: (1)

- First instance
  - Parenthesized integer: (1)
- Subsequent instances:
  - 'Pointer': -> (1)

- First instance
  - Parenthesized integer: (1)
- Subsequent instances:
  - 'Pointer': -> (1)
  - >>> print nltk.FeatStruct("[A='a', B=(1)[C='c'], D->(1)]"

- First instance
  - Parenthesized integer: (1)
- Subsequent instances:
  - 'Pointer': -> (1)
  - >>> print nltk.FeatStruct("[A='a', B=(1)[C='c'], D->(1)]"
  - [ A = 'a'
  - [B = (1) [C = 'c']]
  - [D->(1)

- Attach feature information to non-terminals, on
  - N[AGR=[NUM='pI']] -> 'students'
  - N[AGR=[NUM='sg']] -> 'student'

- Attach feature information to non-terminals, on
  - N[AGR=[NUM='pl']] -> 'students'
  - N[AGR=[NUM='sg']] -> 'student'
- So far, all values are literal or reentrant

- Attach feature information to non-terminals, on
  - N[AGR=[NUM='pl']] -> 'students'
  - N[AGR=[NUM='sg']] -> 'student'
- So far, all values are literal or reentrant
  - Variables allow generalization: ?a
    - Allows underspecification, e.g. Det[GEN=?a]

- Attach feature information to non-terminals, on
  - N[AGR=[NUM='pl']] -> 'students'
  - N[AGR=[NUM='sg']] -> 'student'
- So far, all values are literal or reentrant
  - Variables allow generalization: ?a
    - Allows underspecification, e.g. Det[GEN=?a]
  - NP[AGR=?a] -> Det[AGR=?a] N[AGR=?a]

#### Mechanics

>>> fs3 = nltk.FeatStruct(NUM='pl',PER=3)

>>> fs4 = nltk.FeatStruct(NUM='pl')

- >>> print fs4.unify(fs3)
- [NUM = 'pl']
- [PER = 3]

#### Morphosyntactic Features

- Grammatical feature that influences morphological or syntactic behavior
  - English:
    - Number:
      - Dog, dogs
    - Person:
      - Am; are; is
    - Case:
      - I me; he him; etc
    - Countability:

# More Complex German Example

- Subject singular, masc
  - der Hund
  - The dog
- Subject –plural, masc
  - die Hunde
  - The dogs

# More Complex German Example

- Objects determined by verb
- Dative singular, masc
  - dem Hund
  - The dog
- Accusative –plural, masc
  - die Hunde
  - The dogs

#### Contrast

- Subject:
  - Die Katze
  - The cat
- Subject: plural
  - Die Katze
  - The cats

#### Contrast

- Object:
  - Die Katze
  - The cat
- Object:
  - Der Katze
  - The cat

### Analysis

- What are the key contrasts?
  - Number
    - Singular, plural
  - Gender
    - Masc, Fem, ....
  - Case:
    - Subject (nom), dative, accusative, ....
  - + Interactions

#### Feature Interaction

Interactions of German case, number, gender

| Case | Masc | Fem | Neut | PL  |
|------|------|-----|------|-----|
| Nom  | Der  | Die | Das  | Die |
| Gen  | Des  | Der | Des  | Den |
| Dat  | Dem  | Der | Dem  | Den |
| Acc  | Den  | Die | Das  | Die |

| Die              | Katze        | Sieht    | Den             | Hund          |
|------------------|--------------|----------|-----------------|---------------|
| The.Nom.Fem.sg   | Cat.3.FEM.SG | See.3.sg | The.Acc.Masc.sg | Dog.3.Masc.sg |
| The cat sees the |              |          |                 |               |
| dog              |              |          |                 |               |

| Die<br>The.Nom.Fem.sg<br>The cat sees the<br>dog  | Katze<br>Cat.3.FEM.SG | Sieht<br>See.3.sg | Den<br>The.Acc.Masc.sg | Hund<br>Dog.3.Masc.sg |
|---------------------------------------------------|-----------------------|-------------------|------------------------|-----------------------|
| *Die<br>The.Nom.Fem.sg<br>The cat sees the<br>dog | Katze<br>Cat.3.FEM.SG | Sieht<br>See.3.sg | Dem<br>The.Dat.Masc.sg | Hund<br>Dog.3.Masc.sg |

| Die<br>The.Nom.Fem.sg<br>The cat sees the<br>dog  | Katze<br>Cat.3.FEM.SG | Sieht<br>See.3.sg  | Den<br>The.Acc.Masc.sg | Hund<br>Dog.3.Masc.sg |
|---------------------------------------------------|-----------------------|--------------------|------------------------|-----------------------|
| *Die<br>The.Nom.Fem.sg<br>The cat sees the<br>dog | Katze<br>Cat.3.FEM.SG | Sieht<br>See.3.sg  | Dem<br>The.Dat.Masc.sg | Hund<br>Dog.3.Masc.sg |
| Die<br>The.Nom.Fem.sg<br>The cat helps the<br>dog | Katze<br>Cat.3.FEM.SG | hilft<br>help.3.sg | Dem<br>The.Dat.Masc.sg | Hund<br>Dog.3.Masc.sg |

| Die<br>The.Nom.Fem.sg<br>The cat sees the<br>dog  | Katze<br>Cat.3.FEM.SG | Sieht<br>See.3.sg  | Den<br>The.Acc.Masc.sg | Hund<br>Dog.3.Masc.sg |
|---------------------------------------------------|-----------------------|--------------------|------------------------|-----------------------|
| *Die<br>The.Nom.Fem.sg<br>The cat sees the<br>dog | Katze<br>Cat.3.FEM.SG | Sieht<br>See.3.sg  | Dem<br>The.Dat.Masc.sg | Hund<br>Dog.3.Masc.sg |
| Die<br>The.Nom.Fem.sg<br>The cat helps the<br>dog | Katze<br>Cat.3.FEM.SG | hilft<br>help.3.sg | Dem<br>The.Dat.Masc.sg | Hund<br>Dog.3.Masc.sg |
| *Die<br>The.Nom.Fem.sg<br>The cat sees the<br>dog | Katze<br>Cat.3.FEM.SG | hilft<br>help.3.sg | Dem<br>The.Acc.Masc.sg | Hund<br>Dog.3.Masc.sg |

German verbs in, at least, 2 classes: assign diff't object case

#### Semantic Features

- Grammatical features that influence semantic (meaning) behavior of associated units
- E.g.:

#### Semantic Features

- Grammatical features that influence semantic (meaning) behavior of associated units
- E.g.:
  - ?The rocks slept.

#### Semantic Features

- Grammatical features that influence semantic (meaning) behavior of associated units
- E.g.:
  - ?The rocks slept.
  - ?Colorless green ideas sleep furiously.

#### Semantic Features

- Many proposed:
  - Animacy: +/-
  - Natural gender: masculine, feminine, neuter
  - Human: +/-
  - Adult: +/-
  - Liquid: +/-
  - Etc.
  - The milk spilled.
  - ?The cat spilled.

• The climber hiked for six hours.

- The climber hiked for six hours.
- The climber hiked on Saturday.

- The climber hiked for six hours.
- The climber hiked on Saturday.
- The climber reached the summit on Saturday.

- The climber hiked for six hours.
- The climber hiked on Saturday.
- The climber reached the summit on Saturday.
- \*The climber reached the summit for six hours.

Contrast:

- The climber hiked for six hours.
- The climber hiked on Saturday.
- The climber reached the summit on Saturday.
- \*The climber reached the summit for six hours.

- Contrast:
  - Achievement vs activity

- Can filter some classes of ambiguity
  - Old men and women slept.

- Can filter some classes of ambiguity
  - Old men and women slept.
  - (Old men) and (women) slept.

- Can filter some classes of ambiguity
  - Old men and women slept.
  - (Old men) and (women) slept.
  - (Old (men and women)) slept.

- Can filter some classes of ambiguity
  - Old men and women slept.
  - (Old men) and (women) slept.
  - (Old (men and women)) slept.
  - Sleeping people and books lie flat.

- Can filter some classes of ambiguity
  - Old men and women slept.
  - (Old men) and (women) slept.
  - (Old (men and women)) slept.
  - Sleeping people and books lie flat.
  - (Sleeping people) and (books) lie flat.

- Can filter some classes of ambiguity
  - Old men and women slept.
  - (Old men) and (women) slept.
  - (Old (men and women)) slept.
  - Sleeping people and books lie flat.
  - (Sleeping people) and (books) lie flat.
  - (Sleeping (people and books ))lie flat.

- Can filter some classes of ambiguity
  - Old men and women slept.
  - (Old men) and (women) slept.
  - (Old (men and women)) slept.
  - Sleeping people and books lie flat.
  - (Sleeping people) and (books) lie flat.
  - \*(Sleeping (people and books ))lie flat.

#### Summary

- Features
  - Enable compact representation of grammatical constraints
  - Capture basic linguistic patterns
- Unification
  - Creates and maintains consistency over features
- Integration with parsing allows filtering of illformed analyses