
Feature-based
Grammar

Ling 571
Deep Techniques for NLP

February 2, 2001

Roadmap
�  Implementing feature-based grammars

�  Features in NLTK

�  Designing feature grammars
�  A Complex Agreement Example

�  Semantic features

Summary
�  Features defined

�  Modeling features:
�  Attribute-Value Matrices (AVM)
�  Directed Acyclic Graph (DAG)

�  Mechanisms for features:
�  Subsumption
�  Unification

�  Parsing with features:
�  Augmenting the Earley parser

Feature Grammar in NLTK
�  NLTK supports feature-based grammars

�  Includes ways of associating features with CFG rules

�  Includes readers for feature grammars

�  .fcfg files

�  Includes parsers
�  Nltk.parse.FeatureEarleyChartParse

Creating and Accessing
NLTK Feature Structures

�  Create with FeatStruct

Creating and Accessing
NLTK Feature Structures

�  Create with FeatStruct

�  >>> fs1 = nltk.FeatStruct(NUMBER=‘pl’,PERSON=3)
�  >>>print fs1

�  [NUMBER = ‘pl’]
�  [PERSON = 3]

�  >>> print fs1[‘NUMBER’]
�  pl
�  >> fs1[‘NUMBER’] = ‘sg’

Creating and Accessing
NLTK Feature Structures

�  Create with FeatStruct

�  >>> fs1 = nltk.FeatStruct(NUMBER=‘pl’,PERSON=3)

Creating and Accessing
NLTK Feature Structures

�  Create with FeatStruct

�  >>> fs1 = nltk.FeatStruct(NUMBER=‘pl’,PERSON=3)
�  >>>print fs1

�  [NUMBER = ‘pl’]
�  [PERSON = 3]

Creating and Accessing
NLTK Feature Structures

�  Create with FeatStruct

�  >>> fs1 = nltk.FeatStruct(NUMBER=‘pl’,PERSON=3)
�  >>>print fs1

�  [NUMBER = ‘pl’]
�  [PERSON = 3]

�  >>> print fs1[‘NUMBER’]
�  pl

Creating and Accessing
NLTK Feature Structures

�  Create with FeatStruct

�  >>> fs1 = nltk.FeatStruct(NUMBER=‘pl’,PERSON=3)
�  >>>print fs1

�  [NUMBER = ‘pl’]
�  [PERSON = 3]

�  >>> print fs1[‘NUMBER’]
�  pl
�  >> fs1[‘NUMBER’] = ‘sg’

Complex Feature Structures
�  >>>fs2 = nltk.FeatStruct(POS=‘N’,AGR=fs1)

Complex Feature Structures
�  >>>fs2 = nltk.FeatStruct(POS=‘N’,AGR=fs1)
�  >>>print fs2
�  [POS = ‘N’]

�  [[NUMBER = ‘sg’]]
�  [AGR = [PERSON = 3]]

Complex Feature Structures
�  >>>fs2 = nltk.FeatStruct(POS=‘N’,AGR=fs1)
�  >>>print fs2
�  [POS = ‘N’]

�  [[NUMBER = ‘sg’]]
�  [AGR = [PERSON = 3]]

�  Alternatively,
�  >>> fs3 = nltk.FeatStruct(“[POS=‘N’,

�  AGR=[NUM=‘pl’,PER=3]]”)

Reentrant Feature
Structures

�  First instance
�  Parenthesized integer: (1)

Reentrant Feature
Structures

�  First instance
�  Parenthesized integer: (1)

�  Subsequent instances:
�  ‘Pointer’: -> (1)

Reentrant Feature
Structures

�  First instance
�  Parenthesized integer: (1)

�  Subsequent instances:
�  ‘Pointer’: -> (1)

�  >>> print nltk.FeatStruct("[A='a', B=(1)[C='c'], D->(1)]”

Reentrant Feature
Structures

�  First instance
�  Parenthesized integer: (1)

�  Subsequent instances:
�  ‘Pointer’: -> (1)

�  >>> print nltk.FeatStruct("[A='a', B=(1)[C='c'], D->(1)]”

�  [A = ‘a’]
�  [B = (1) [C = ‘c’]]
�  [D -> (1)]

Augmenting Grammars
�  Attach feature information to non-terminals, on

�  N[AGR=[NUM='pl']] -> 'students’
�  N[AGR=[NUM=’sg']] -> 'student’

Augmenting Grammars
�  Attach feature information to non-terminals, on

�  N[AGR=[NUM='pl']] -> 'students’
�  N[AGR=[NUM=’sg']] -> 'student’

�  So far, all values are literal or reentrant

Augmenting Grammars
�  Attach feature information to non-terminals, on

�  N[AGR=[NUM='pl']] -> 'students’
�  N[AGR=[NUM=’sg']] -> 'student’

�  So far, all values are literal or reentrant
�  Variables allow generalization: ?a

�  Allows underspecification, e.g. Det[GEN=?a]

Augmenting Grammars
�  Attach feature information to non-terminals, on

�  N[AGR=[NUM='pl']] -> 'students’
�  N[AGR=[NUM=’sg']] -> 'student’

�  So far, all values are literal or reentrant
�  Variables allow generalization: ?a

�  Allows underspecification, e.g. Det[GEN=?a]

�  NP[AGR=?a] -> Det[AGR=?a] N[AGR=?a]

Mechanics
�  >>> fs3 = nltk.FeatStruct(NUM=‘pl’,PER=3)

�  >>> fs4 = nltk.FeatStruct(NUM=‘pl’)

�  >>> print fs4.unify(fs3)

�  [NUM = ‘pl’]

�  [PER = 3]

Morphosyntactic Features
�  Grammatical feature that influences morphological

or syntactic behavior
�  English:

�  Number:
�  Dog, dogs

�  Person:
�  Am; are; is

�  Case:
�  I – me; he – him; etc

�  Countability:

More Complex German
Example

�  Subject – singular, masc
�  der Hund

�  The dog

�  Subject –plural, masc
�  die Hunde

�  The dogs

More Complex German
Example

�  Objects – determined by verb

�  Dative – singular, masc
�  dem Hund

�  The dog

�  Accusative –plural, masc
�  die Hunde

�  The dogs

Contrast
�  Subject:

�  Die Katze

�  The cat

�  Subject: plural
�  Die Katze

�  The cats

Contrast
�  Object:

�  Die Katze

�  The cat

�  Object:
�  Der Katze

�  The cat

Analysis
�  What are the key contrasts?

�  Number
�  Singular, plural

�  Gender
�  Masc, Fem, ….

�  Case:
�  Subject (nom), dative, accusative, ….

+ Interactions

Feature Interaction
�  Interactions of German case, number, gender

Case Masc Fem Neut PL

Nom Der Die Das Die

Gen Des Der Des Den

Dat Dem Der Dem Den

Acc Den Die Das Die

Examples of Interaction
Die
The.Nom.Fem.sg
The cat sees the
dog

Katze
Cat.3.FEM.SG

Sieht
See.3.sg

Den
The.Acc.Masc.sg

Hund
Dog.3.Masc.sg

Examples of Interaction
Die
The.Nom.Fem.sg
The cat sees the
dog

Katze
Cat.3.FEM.SG

Sieht
See.3.sg

Den
The.Acc.Masc.sg

Hund
Dog.3.Masc.sg

*Die
The.Nom.Fem.sg
The cat sees the
dog

Katze
Cat.3.FEM.SG

Sieht
See.3.sg

Dem
The.Dat.Masc.sg

Hund
Dog.3.Masc.sg

Examples of Interaction
Die
The.Nom.Fem.sg
The cat sees the
dog

Katze
Cat.3.FEM.SG

Sieht
See.3.sg

Den
The.Acc.Masc.sg

Hund
Dog.3.Masc.sg

*Die
The.Nom.Fem.sg
The cat sees the
dog

Katze
Cat.3.FEM.SG

Sieht
See.3.sg

Dem
The.Dat.Masc.sg

Hund
Dog.3.Masc.sg

Die
The.Nom.Fem.sg
The cat helps the
dog

Katze
Cat.3.FEM.SG

hilft
help.3.sg

Dem
The.Dat.Masc.sg

Hund
Dog.3.Masc.sg

Examples of Interaction

Die
The.Nom.Fem.sg
The cat sees the
dog

Katze
Cat.3.FEM.SG

Sieht
See.3.sg

Den
The.Acc.Masc.sg

Hund
Dog.3.Masc.sg

*Die
The.Nom.Fem.sg
The cat sees the
dog

Katze
Cat.3.FEM.SG

Sieht
See.3.sg

Dem
The.Dat.Masc.sg

Hund
Dog.3.Masc.sg

Die
The.Nom.Fem.sg
The cat helps the
dog

Katze
Cat.3.FEM.SG

hilft
help.3.sg

Dem
The.Dat.Masc.sg

Hund
Dog.3.Masc.sg

*Die
The.Nom.Fem.sg
The cat sees the
dog

Katze
Cat.3.FEM.SG

hilft
help.3.sg

Dem
The.Acc.Masc.sg

Hund
Dog.3.Masc.sg

German verbs in, at least, 2 classes: assign diff’t object case

Semantic Features
�  Grammatical features that influence semantic

(meaning) behavior of associated units

�  E.g.:

Semantic Features
�  Grammatical features that influence semantic

(meaning) behavior of associated units

�  E.g.:
�  ?The rocks slept.

Semantic Features
�  Grammatical features that influence semantic

(meaning) behavior of associated units

�  E.g.:
�  ?The rocks slept.

�  ?Colorless green ideas sleep furiously.

Semantic Features
�  Many proposed:

�  Animacy: +/-

�  Natural gender: masculine, feminine, neuter
�  Human: +/-

�  Adult: +/-
�  Liquid: +/-
�  Etc.

�  The milk spilled.
�  ?The cat spilled.

Examples
�  The climber hiked for six hours.

Examples
�  The climber hiked for six hours.

�  The climber hiked on Saturday.

Examples
�  The climber hiked for six hours.

�  The climber hiked on Saturday.

�  The climber reached the summit on Saturday.

Examples
�  The climber hiked for six hours.

�  The climber hiked on Saturday.

�  The climber reached the summit on Saturday.

�  *The climber reached the summit for six hours.

�  Contrast:

Examples
�  The climber hiked for six hours.

�  The climber hiked on Saturday.

�  The climber reached the summit on Saturday.

�  *The climber reached the summit for six hours.

�  Contrast:
�  Achievement vs activity

Semantic features &
Parsing

�  Can filter some classes of ambiguity

�  Old men and women slept.

Semantic features &
Parsing

�  Can filter some classes of ambiguity

�  Old men and women slept.
�  (Old men) and (women) slept.

Semantic features &
Parsing

�  Can filter some classes of ambiguity

�  Old men and women slept.
�  (Old men) and (women) slept.

�  (Old (men and women)) slept.

Semantic features &
Parsing

�  Can filter some classes of ambiguity

�  Old men and women slept.
�  (Old men) and (women) slept.

�  (Old (men and women)) slept.

�  Sleeping people and books lie flat.

� 

Semantic features &
Parsing

�  Can filter some classes of ambiguity

�  Old men and women slept.
�  (Old men) and (women) slept.

�  (Old (men and women)) slept.

�  Sleeping people and books lie flat.

�  (Sleeping people) and (books) lie flat.

Semantic features &
Parsing

�  Can filter some classes of ambiguity

�  Old men and women slept.
�  (Old men) and (women) slept.

�  (Old (men and women)) slept.

�  Sleeping people and books lie flat.

�  (Sleeping people) and (books) lie flat.
�  (Sleeping (people and books))lie flat.
� 

Semantic features &
Parsing

�  Can filter some classes of ambiguity

�  Old men and women slept.
�  (Old men) and (women) slept.

�  (Old (men and women)) slept.

�  Sleeping people and books lie flat.

�  (Sleeping people) and (books) lie flat.
�  *(Sleeping (people and books))lie flat.
� 

Summary
�  Features

�  Enable compact representation of grammatical
constraints

�  Capture basic linguistic patterns

�  Unification
�  Creates and maintains consistency over features

�  Integration with parsing allows filtering of ill-
formed analyses

