
CKY Parsing
Ling 571

Deep Processing Techniques for NLP
January 15, 2014

Roadmap
�  Motivation:

�  Parsing (In) efficiency

�  Dynamic Programming

�  Cocke-Kasami-Younger Parsing Algorithm
�  Chomsky Normal Form

�  Conversion

�  CKY Algorithm
�  Parsing by tabulation

Repeated Work
�  Top-down and bottom-up parsing both lead to repeated

substructures
�  Globally bad parses can construct good subtrees

�  But overall parse will fail
�  Require reconstruction on other branch

�  No static backtracking strategy can avoid

�  Efficient parsing techniques require storage of shared
substructure
�  Typically with dynamic programming

�  Example: a flight from Indianapolis to Houston on TWA

Parsing w/Dynamic
Programming

�  Avoids repeated work

�  Allows implementation of (relatively) efficient
parsing algorithms
�  Polynomial time in input length

�  Typically cubic () or less

�  Several different implementations
�  Cocke-Kasami-Younger (CKY) algorithm

�  Earley algorithm
�  Chart parsing

n3

Dynamic Programming in
CKY

�  Key idea:
�  For a parse spanning substring [i,j] , there exists

some k such there are parses spanning [i,k] and [k,j]
�  We can construct parses for whole sentence by building

up from these stored partial parses

Dynamic Programming in
CKY

�  Key idea:
�  For a parse spanning substring [i,j] , there exists

some k such there are parses spanning [i,k] and [k,j]
�  We can construct parses for whole sentence by building

up from these stored partial parses

�  So,
�  To have a rule A -> B C in [i,j],

�  We must have B in [i,k] and C in [k,j], for some i<k<j
�  CNF grammar forces this for all j>i+1

CKY
�  Given an input string S of length n,

�  Build table (n+1) x (n+1)

�  Indexes correspond to inter-word positions
�  E.g., 0 Book 1 That 2 Flight 3

CKY
�  Given an input string S of length n,

�  Build table (n+1) x (n+1)

�  Indexes correspond to inter-word positions
�  E.g., 0 Book 1 That 2 Flight 3

�  Cells [i,j] contain sets of non-terminals of ALL
constituents spanning i,j
�  [j-1,j] contains pre-terminals
�  If [0,n] contains Start, the input is recognized

CKY Table
�  Book the flight through Houston

CKY Algorithm

CKY Parsing
�  Table fills:

�  Column-by-column

�  Left-to-right
�  Bottom-to-top

�  Why?

CKY Parsing
�  Table fills:

�  Column-by-column

�  Left-to-right
�  Bottom-to-top

�  Why?
�  Necessary info available (below and left)
�  Allows online sentence analysis

�  Works across input string as it arrives

Filling a CKY cell

0 Book 1 the 2 flight 3 through 4 Houston 5
Book the Flight through Houston

NN, VB,
Nominal, VP, S
[0,1]

0 Book 1 the 2 flight 3 through 4 Houston 5
Book the Flight through Houston

NN, VB,
Nominal, VP, S
[0,1]

Det
[1,2]

0 Book 1 the 2 flight 3 throught 4 Houston 5
Book the Flight Through Houston

NN, VB,
Nominal, VP, S
[0,1]

[0,2]

Det
[1,2]

0 Book 1 the 2 flight 3 through 4 Houston 5

Book the Flight through Houston

NN, VB,
Nominal, VP, S
[0,1]

[0,2]

Det
[1,2]

NN, Nominal
[2,3]

0 Book 1 the 2 flight 3 through 4 Houston 5

Book the Flight through Houston

NN, VB,
Nominal, VP, S
[0,1]

[0,2]

Det
[1,2]

NP
[1,3]

NN, Nominal
[2,3]

0 Book 1 the 2 flight 3 through 4 Houston 5

Book the Flight Through Houston

NN, VB,
Nominal, VP, S
[0,1]

[0,2]

S, VP, X2

[0,3]

Det
[1,2]

NP
[1,3]

NN, Nominal
[2,3]

0 Book 1 the 2 flight 3 through 4 Houston 5

Book the Flight Through Houston

NN, VB,
Nominal, VP, S
[0,1]

[0,2]

S, VP, X2

[0,3]

Det
[1,2]

NP
[1,3]

NN, Nominal
[2,3]

Prep

[3,4]

0 Book 1 the 2 flight 3 through 4 Houston 5

Book the Flight Through Houston

NN, VB,
Nominal, VP, S
[0,1]

[0,2]

S, VP, X2

[0,3]

[0,4]

Det
[1,2]

NP
[1,3]

[1,4]

NN, Nominal
[2,3]

[2,4]

Prep

[3,4]

0 Book 1 the 2 flight 3 through 4 Houston 5

Book the Flight Through Houston

NN, VB,
Nominal, VP, S
[0,1]

[0,2]

S, VP, X2

[0,3]

[0,4]

Det
[1,2]

NP
[1,3]

[1,4]

NN, Nominal
[2,3]

[2,4]

Prep

[3,4]

NNP, NP
[4,5]

0 Book 1 the 2 flight 3 through 4 Houston 5

Book the Flight Through Houston

NN, VB,
Nominal, VP, S
[0,1]

[0,2]

S, VP, X2

[0,3]

[0,4]

Det
[1,2]

NP
[1,3]

[1,4]

NN, Nominal
[2,3]

[2,4]

Prep

[3,4]

PP

[3,5]

NNP, NP
[4,5]

0 Book 1 the 2 flight 3 through 4 Houston 5

Book the Flight Through Houston

NN, VB,
Nominal, VP, S
[0,1]

[0,2]

S, VP, X2

[0,3]

[0,4]

Det
[1,2]

NP
[1,3]

[1,4]

NN, Nominal
[2,3]

[2,4]

Nominal
[2,5]

Prep

[3,4]

PP

[3,5]

NNP, NP
[4,5]

0 Book 1 the 2 flight 3 through 4 Houston 5

Book the Flight Through Houston

NN, VB,
Nominal, VP, S
[0,1]

[0,2]

S, VP, X2

[0,3]

[0,4]

Det
[1,2]

NP
[1,3]

[1,4]

NP
[1,5]

NN, Nominal
[2,3]

[2,4]

Nominal
[2,5]

Prep

[3,4]

PP

[3,5]

NNP, NP
[4,5]

0 Book 1 the 2 flight 3 through 4 Houston 5

Book the Flight Through Houston

NN, VB,
Nominal, VP, S
[0,1]

[0,2]

S, VP, X2

[0,3]

[0,4]

S, VP, X2
[0,5]

Det
[1,2]

NP
[1,3]

[1,4]

NP
[1,5]

NN, Nominal
[2,3]

[2,4]

Nominal
[2,5]

Prep

[3,4]

PP

[3,5]

NNP, NP
[4,5]

Is this a parser?

From Recognition to Parsing
�  Limitations of current recognition algorithm:

From Recognition to Parsing
�  Limitations of current recognition algorithm:

�  Only stores non-terminals in cell
�  Not rules or cells corresponding to RHS

From Recognition to Parsing
�  Limitations of current recognition algorithm:

�  Only stores non-terminals in cell
�  Not rules or cells corresponding to RHS

�  Stores SETS of non-terminals
�  Can’t store multiple rules with same LHS

From Recognition to Parsing
�  Limitations of current recognition algorithm:

�  Only stores non-terminals in cell
�  Not rules or cells corresponding to RHS

�  Stores SETS of non-terminals
�  Can’t store multiple rules with same LHS

�  Parsing solution:
�  All repeated versions of non-terminals

From Recognition to Parsing
�  Limitations of current recognition algorithm:

�  Only stores non-terminals in cell
�  Not rules or cells corresponding to RHS

�  Stores SETS of non-terminals
�  Can’t store multiple rules with same LHS

�  Parsing solution:
�  All repeated versions of non-terminals
�  Pair each non-terminal with pointers to cells

�  Backpointers

From Recognition to Parsing
�  Limitations of current recognition algorithm:

�  Only stores non-terminals in cell
�  Not rules or cells corresponding to RHS

�  Stores SETS of non-terminals
�  Can’t store multiple rules with same LHS

�  Parsing solution:
�  All repeated versions of non-terminals
�  Pair each non-terminal with pointers to cells

�  Backpointers

�  Last step: construct trees from back-pointers in [0,n]

Filling column 5

CKY Discussion
�  Running time:

O(n3)

CKY Discussion
�  Running time:

�  where n is the length of the input string O(n3)

CKY Discussion
�  Running time:

�  where n is the length of the input string

�  Inner loop grows as square of # of non-terminals

�  Expressiveness:

O(n3)

CKY Discussion
�  Running time:

�  where n is the length of the input string

�  Inner loop grows as square of # of non-terminals

�  Expressiveness:
�  As implemented, requires CNF

�  Weakly equivalent to original grammar

�  Doesn’t capture full original structure
�  Back-conversion?

O(n3)

CKY Discussion
�  Running time:

�  where n is the length of the input string
�  Inner loop grows as square of # of non-terminals

�  Expressiveness:
�  As implemented, requires CNF

�  Weakly equivalent to original grammar
�  Doesn’t capture full original structure

�  Back-conversion?
�  Can do binarization, terminal conversion
�  Unit non-terminals require change in CKY

O(n3)

Parsing Efficiently
�  With arbitrary grammars

�  Earley algorithm
�  Top-down search

�  Dynamic programming
�  Tabulated partial solutions

�  Some bottom-up constraints

Earley Parsing
�  Avoid repeated work/recursion problem

�  Dynamic programming
�  Store partial parses in “chart”

�  Compactly encodes ambiguity

�  O(N 3)

Earley Parsing
�  Avoid repeated work/recursion problem

�  Dynamic programming
�  Store partial parses in “chart”

�  Compactly encodes ambiguity

� 

�  Chart entries:
�  Subtree for a single grammar rule
�  Progress in completing subtree

�  Position of subtree wrt input

O(N 3)

Earley Algorithm

�  First, left-to-right pass fills out a chart
with N+1 states
�  Think of chart entries as sitting between

words in the input string, keeping track of
states of the parse at these positions

�  For each word position, chart contains set of
states representing all partial parse trees
generated to date. E.g. chart[0] contains all
partial parse trees generated at the beginning
of the sentence

Chart Entries

� predicted constituents

�  in-progress constituents

�  completed constituents

Represent three types of constituents:

Parse Progress
�  Represented by Dotted Rules

�  Position of • indicates type of constituent

�  0 Book 1 that 2 flight 3
�  S → • VP, [0,0] (predicted)

Parse Progress
�  Represented by Dotted Rules

�  Position of • indicates type of constituent

�  0 Book 1 that 2 flight 3
�  S → • VP, [0,0] (predicted)

�  NP → Det • Nom, [1,2] (in progress)

Parse Progress
�  Represented by Dotted Rules

�  Position of • indicates type of constituent

�  0 Book 1 that 2 flight 3
�  S → • VP, [0,0] (predicted)

�  NP → Det • Nom, [1,2] (in progress)

�  VP →V NP •, [0,3] (completed)

Parse Progress
�  Represented by Dotted Rules

�  Position of • indicates type of constituent

�  0 Book 1 that 2 flight 3
�  S → • VP, [0,0] (predicted)

�  NP → Det • Nom, [1,2] (in progress)

�  VP →V NP •, [0,3] (completed)

�  [x,y] tells us what portion of the input is
spanned so far by this rule

Parse Progress
�  Represented by Dotted Rules

�  Position of • indicates type of constituent

�  0 Book 1 that 2 flight 3
�  S → • VP, [0,0] (predicted)

�  NP → Det • Nom, [1,2] (in progress)
�  VP →V NP •, [0,3] (completed)

�  [x,y] tells us what portion of the input is spanned
so far by this rule

�  Each State si:
<dotted rule>, [<back pointer>,<current position>]

S → • VP, [0,0]
�  First 0 means S constituent begins at the

start of input

�  Second 0 means the dot here, too

�  So, this is a top-down prediction

0 Book 1 that 2 flight 3

S → • VP, [0,0]
�  First 0 means S constituent begins at the

start of input
�  Second 0 means the dot here too
�  So, this is a top-down prediction

NP → Det • Nom, [1,2]
�  the NP begins at position 1
�  the dot is at position 2
�  so, Det has been successfully parsed
�  Nom predicted next

0 Book 1 that 2 flight 3

0 Book 1 that 2 flight 3
(continued)

VP → V NP •, [0,3]
�  Successful VP parse of entire input

Successful Parse
�  Final answer found by looking at last entry in chart

Successful Parse
�  Final answer found by looking at last entry in chart

�  If entry resembles S → α • [0,N] then input parsed
successfully

�  Chart will also contain record of all possible parses
of input string, given the grammar

Parsing Procedure for the
Earley Algorithm

�  Move through each set of states in order,
applying one of three operators to each
state:
�  predictor: add predictions to the chart
�  scanner: read input and add corresponding

state to chart
�  completer: move dot to right when new

constituent found

Parsing Procedure for the
Earley Algorithm

�  Move through each set of states in order,
applying one of three operators to each
state:
�  predictor: add predictions to the chart
�  scanner: read input and add corresponding

state to chart
�  completer: move dot to right when new

constituent found

�  Results (new states) added to current or
next set of states in chart

Parsing Procedure for the
Earley Algorithm

�  Move through each set of states in order,
applying one of three operators to each
state:
�  predictor: add predictions to the chart
�  scanner: read input and add corresponding state

to chart
�  completer: move dot to right when new

constituent found

�  Results (new states) added to current or next
set of states in chart

�  No backtracking and no states removed:
keep complete history of parse

States and State Sets

�  Dotted Rule si represented as
<dotted rule>, [<back pointer>, <current position>]

�  State Set Sj to be a collection of states si with the same
<current position>.

Earley Algorithm from Book

Earley Algorithm from Book

Earley Algorithm (simpler!)
 1. Add Start → · S, [0,0] to state set 0

Let i=1

2. Predict all states you can, adding new predictions to
state set 0

3. Scan input word i—add all matched states to state set Si.
Add all new states produced by Complete to state set Si
Add all new states produced by Predict to state set Si
Let i = i + 1
Unless i=n, repeat step 3.

4. At the end, see if state set n contains Start → S ·, [0,n]

3 Main Sub-Routines of
Earley Algorithm

• Predictor: Adds predictions into the chart.
• Completer: Moves the dot to the right

when new constituents are found.
• Scanner: Reads the input words and enters

states representing those words into the
chart.

Predictor
�  Intuition: create new state for top-down

prediction of new phrase.

Predictor
�  Intuition: create new state for top-down

prediction of new phrase.

�  Applied when non part-of-speech non-
terminals are to the right of a dot: S → •
VP [0,0]

Predictor
�  Intuition: create new state for top-down

prediction of new phrase.

�  Applied when non part-of-speech non-
terminals are to the right of a dot: S → •
VP [0,0]

�  Adds new states to current chart
�  One new state for each expansion of the non-

terminal in the grammar
VP → • V [0,0]
VP → • V NP [0,0]

Predictor
�  Intuition: create new state for top-down

prediction of new phrase.

�  Applied when non part-of-speech non-
terminals are to the right of a dot: S → •
VP [0,0]

�  Adds new states to current chart
�  One new state for each expansion of the non-

terminal in the grammar
VP → • V [0,0]
VP → • V NP [0,0]

�  Formally:
 Sj: A → α · B β, [i,j]
 Sj: B → · γ, [j,j]

1/14/14
 Speech and Language Processing -
Jurafsky and Martin

Chart[0]

Note that given a grammar, these entries are
the same for all inputs; they can be pre-loaded.

1/15/14
 Speech and Language Processing -
Jurafsky and Martin

Chart[0]

Note that given a grammar, these entries are
the same for all inputs; they can be pre-loaded.

1/15/14
 Speech and Language Processing -
Jurafsky and Martin

Chart[0]

Note that given a grammar, these entries are
the same for all inputs; they can be pre-loaded.

1/15/14
 Speech and Language Processing -
Jurafsky and Martin

Chart[0]

Note that given a grammar, these entries are
the same for all inputs; they can be pre-loaded.

Scanner
�  Intuition: Create new states for rules

matching part of speech of next word.

Scanner
�  Intuition: Create new states for rules

matching part of speech of next word.

�  Applicable when part of speech is to the
right of a dot: VP → • V NP [0,0] ‘Book…’

Scanner
�  Intuition: Create new states for rules

matching part of speech of next word.

�  Applicable when part of speech is to the
right of a dot: VP → • V NP [0,0] ‘Book…’

�  Looks at current word in input

�  If match, adds state(s) to next chart
VP → V • NP [0,1]

Scanner
�  Intuition: Create new states for rules matching

part of speech of next word.

�  Applicable when part of speech is to the right
of a dot: VP → • V NP [0,0] ‘Book…’

�  Looks at current word in input

�  If match, adds state(s) to next chart
VP → V • NP [0,1]

�  Formally:
 Sj: A → α · B β, [i,j]
 Sj+1: A → α B ·β, [i,j+1]

Completer
�  Intuition: parser has finished a new

phrase, so must find and advance states
all that were waiting for this

Completer
�  Intuition: parser has finished a new

phrase, so must find and advance states
all that were waiting for this

�  Applied when dot has reached right end
of rule
NP → Det Nom • [1,3]

Completer
�  Intuition: parser has finished a new phrase, so

must find and advance states all that were
waiting for this

�  Applied when dot has reached right end of rule
NP → Det Nom • [1,3]

�  Find all states w/dot at 1 and expecting an NP:
�  VP → V • NP [0,1]

�  Adds new (completed) state(s) to current chart :
�  VP → V NP • [0,3]

Completer
�  Intuition: parser has finished a new phrase, so must

find and advance states all that were waiting for this

�  Applied when dot has reached right end of rule
NP → Det Nom • [1,3]

�  Find all states w/dot at 1 and expecting an NP:
�  VP → V • NP [0,1]

�  Adds new (completed) state(s) to current chart :
�  VP → V NP • [0,3]

�  Formally: Sk: B → δ ·, [j,k]
 Sk: A → α B · β, [i,k],
 where: Sj: A → α · B β, [i,j].

1/15/14
 Speech and Language Processing -
Jurafsky and Martin

Chart[0]

Note that given a grammar, these entries are
the same for all inputs; they can be pre-loaded.

1/15/14
 Speech and Language Processing -
Jurafsky and Martin 85

Chart[1]

1/15/14
 Speech and Language Processing -
Jurafsky and Martin 86

Chart[1]

1/15/14
 Speech and Language Processing -
Jurafsky and Martin 87

Chart[1]

1/15/14
 Speech and Language Processing -
Jurafsky and Martin 88

Chart[1]

1/15/14
 Speech and Language Processing -
Jurafsky and Martin 89

Chart[1]

Prediction of Next Rule

�  When VP → V • is itself processed by the
Completer, S → VP • is added to Chart[1]
since VP is a left corner of S

�  Last few rules in Chart[1] are added by
Predictor when VP → V • NP is processed

�  And so on….

1/15/14
 Speech and Language Processing -
Jurafsky and Martin

Charts[2] and [3]

1/15/14
 Speech and Language Processing -
Jurafsky and Martin

Charts[2] and [3]

1/15/14
 Speech and Language Processing -
Jurafsky and Martin

Charts[2] and [3]

1/15/14
 Speech and Language Processing -
Jurafsky and Martin

Charts[2] and [3]

1/15/14
 Speech and Language Processing -
Jurafsky and Martin

Charts[2] and [3]

1/15/14
 Speech and Language Processing -
Jurafsky and Martin

Charts[2] and [3]

How do we retrieve the
parses at the end?

�  Augment the Completer to add pointers to prior
states it advances as a field in the current state
�  i.e. what state did we advance here?

�  Read the pointers back from the final state

�  What about ambiguity?

�  What about ambiguity?

�  CKY/Earley can represent it

�  What about ambiguity?

�  CKY/Earley can represent it

�  Can’t resolve it

