CKY Parsing

Ling 571 Deep Processing Techniques for NLP January 15, 2014

Roadmap

- Motivation:
 - Parsing (In) efficiency
- Dynamic Programming
- Cocke-Kasami-Younger Parsing Algorithm
 - Chomsky Normal Form
 - Conversion
 - CKY Algorithm
 - Parsing by tabulation

Repeated Work

- Top-down and bottom-up parsing both lead to repeated substructures
 - Globally bad parses can construct good subtrees
 - But overall parse will fail
 - Require reconstruction on other branch
 - No static backtracking strategy can avoid
- Efficient parsing techniques require storage of shared substructure
 - Typically with dynamic programming
- Example: a flight from Indianapolis to Houston on TWA

Parsing w/Dynamic Programming

- Avoids repeated work
- Allows implementation of (relatively) efficient parsing algorithms
 - Polynomial time in input length
 - Typically cubic (n^3) or less
- Several different implementations
 - Cocke-Kasami-Younger (CKY) algorithm
 - Earley algorithm
 - Chart parsing

Dynamic Programming in CKY

- Key idea:
 - For a parse spanning substring [i,j], there exists some k such there are parses spanning [i,k] and [k,j]
 - We can construct parses for whole sentence by building up from these stored partial parses

Dynamic Programming in CKY

- Key idea:
 - For a parse spanning substring [i,j], there exists some k such there are parses spanning [i,k] and [k,j]
 - We can construct parses for whole sentence by building up from these stored partial parses
- So,
 - To have a rule A -> B C in [i,j],
 - We must have B in [i,k] and C in [k,j], for some i<k<j
 - CNF grammar forces this for all j>i+1

CKY

- Given an input string S of length n,
 - Build table (n+1) x (n+1)
 - Indexes correspond to inter-word positions
 - E.g., 0 Book 1 That 2 Flight 3

CKY

- Given an input string S of length n,
 - Build table (n+1) x (n+1)
 - Indexes correspond to inter-word positions
 - E.g., 0 Book 1 That 2 Flight 3
- Cells [i,j] contain sets of non-terminals of ALL constituents spanning i,j
 - [j-1,j] contains pre-terminals
 - If [0,n] contains Start, the input is recognized

CKY Table

Book the flight through Houston

	nign	through	Houston
	S,VP,X2		S, VP
0,2]	[0,3]	[0,4]	[0,5]
Det	NP		NP
1,2]	[1,3]	[1,4]	[1,5]
	Nominal, Noun		Nominal
_	[2,3]	[2,4]	[2,5]
		Prep	PP
		[3,4]	[3,5]
			NP, Proper- Noun
			[4,5]
),2] Det 1,2]	S,VP,X2 [0,3] Det NP 1,2] [1,3] Nominal, Noun [2,3]	S,VP,X2 0,2] [0,3] [0,4] Det NP [1,4] 1,2] [1,3] [1,4] Nominal, Noun [2,3] [2,4] Prep [3,4]

CKY Algorithm

function CKY-PARSE(words, grammar) returns table

for $j \leftarrow$ from 1 to LENGTH(words) do $table[j-1, j] \leftarrow \{A \mid A \rightarrow words[j] \in grammar\}$ for $i \leftarrow$ from j-2 downto 0 do for $k \leftarrow i+1$ to j-1 do $table[i,j] \leftarrow table[i,j] \cup$ $\{A \mid A \rightarrow BC \in grammar,$ $B \in table[i,k],$ $C \in table[k, j]\}$

CKY Parsing

- Table fills:
 - Column-by-column
 - Left-to-right
 - Bottom-to-top
- Why?

CKY Parsing

- Table fills:
 - Column-by-column
 - Left-to-right
 - Bottom-to-top
- Why?
 - Necessary info available (below and left)
 - Allows online sentence analysis
 - Works across input string as it arrives

Filling a CKY cell

\mathscr{L}_1 Grammar	\mathscr{L}_1 in CNF
$S \rightarrow NP VP$	$S \rightarrow NP VP$
$S \rightarrow Aux NP VP$	$S \rightarrow X1 VP$
	$X1 \rightarrow Aux NP$
$S \rightarrow VP$	$S \rightarrow book \mid include \mid prefer$
	$S \rightarrow Verb NP$
	$S \rightarrow X2 PP$
	$S \rightarrow Verb PP$
	$S \rightarrow VP PP$
$NP \rightarrow Pronoun$	$NP \rightarrow I \mid she \mid me$
$NP \rightarrow Proper-Noun$	$NP \rightarrow TWA \mid Houston$
$NP \rightarrow Det Nominal$	$NP \rightarrow Det Nominal$
Nominal \rightarrow Noun	Nominal \rightarrow book flight meal money
Nominal \rightarrow Nominal Noun	Nominal \rightarrow Nominal Noun
Nominal \rightarrow Nominal PP	Nominal \rightarrow Nominal PP
$VP \rightarrow Verb$	$VP \rightarrow book \mid include \mid prefer$
$VP \rightarrow Verb NP$	$VP \rightarrow Verb NP$
$VP \rightarrow Verb NP PP$	$VP \rightarrow X2 PP$
	$X2 \rightarrow Verb NP$
$VP \rightarrow Verb PP$	$VP \rightarrow Verb PP$
$VP \rightarrow VP PP$	$VP \rightarrow VP PP$
$PP \rightarrow Preposition NP$	$PP \rightarrow Preposition NP$

Book	the	Flight	through	Houston
NN, VB, Nominal, VP, S [0,1]				

Book	the	Flight	through	Houston
NN, VB, Nominal, VP, S [0,1]				
	Det [1,2]			

Book	the	Flight	Through	Houston
NN, VB, Nominal, VP, S [0,1]	[0,2]			
	Det [1,2]			

Book	the	Flight	through	Houston
NN, VB, Nominal, VP, S [0,1]	[0,2]			
	Det [1,2]			
		NN, Nominal [2,3]		

Book	the	Flight	through	Houston
NN, VB, Nominal, VP, S [0,1]	[0,2]			
	Det [1,2]	NP [1,3]		
		NN, Nominal [2,3]		

Book	the	Flight	Through	Houston
NN, VB, Nominal, VP, S [0,1]	[0,2]	S, VP, X2 [0,3]		
	Det [1,2]	NP [1,3]		
		NN, Nominal [2,3]		

Book	the	Flight	Through	Houston
NN, VB, Nominal, VP, S [0,1]	[0,2]	S, VP, X2 [0,3]		
	Det [1,2]	NP [1,3]		
		NN, Nominal [2,3]		
			Prep	
			[3,4]	

Book	the	Flight	Through	Houston
NN, VB, Nominal, VP, S	[0 2]	S, VP, X2	ΓO <i>4</i> 1	
[0,1]	[0,2] Det [1,2]	[0,3] NP [1,3]	[1,4]	
		NN, Nominal [2,3]	[2,4]	
			Prep	
			[3,4]	
			and the second second	

Book	the	Flight	Through	Houston
NN, VB, Nominal, VP, S [0 1]	[0 2]	S, VP, X2	[0 4]	
[0,1]	Det [1,2]	NP [1,3]	[1,4]	
		NN, Nominal [2,3]	[2,4]	
			Prep	
			[3,4]	NNP, NP [4,5]

Book	the	Flight	Through	Houston
NN, VB, Nominal, VP, S [0 1]	[0 2]	S, VP, X2	[0.4]	
[0,1]	Det [1,2]	NP [1,3]	[1,4]	
		NN, Nominal [2,3]	[2,4]	
			Prep	PP
			[3,4]	[3,5]
				NNP, NP [4,5]

Book	the	Flight	Through	Houston
NN, VB, Nominal, VP, S [0.1]	[0.2]	S, VP, X2	[0.4]	
	Det [1,2]	NP [1,3]	[1,4]	
		NN, Nominal [2,3]	[2,4]	Nominal [2,5]
			Prep	PP
			[3,4]	[3,5]
				NNP, NP [4,5]

Book	the	Flight	Through	Houston
NN, VB, Nominal, VP, S [0,1]	[0,2]	S, VP, X2 [0,3]	[0,4]	
	Det [1,2]	NP [1,3]	[1,4]	NP [1,5]
		NN, Nominal [2,3]	[2,4]	Nominal [2,5]
			Prep	PP
			[3,4]	[3,5]
				NNP, NP [4,5]

Book	the	Flight	Through	Houston
NN, VB, Nominal, VP, S [0,1]	[0,2]	S, VP, X2 [0,3]	[0,4]	S, VP, X2 [0,5]
	Det [1,2]	NP [1,3]	[1,4]	NP [1,5]
		NN, Nominal [2,3]	[2,4]	Nominal [2,5]
			Prep	PP
			[3,4]	[3,5]
				NNP, NP [4,5]

Is this a parser?

• Limitations of current recognition algorithm:

- Limitations of current recognition algorithm:
 - Only stores non-terminals in cell
 - Not rules or cells corresponding to RHS

- Limitations of current recognition algorithm:
 - Only stores non-terminals in cell
 - Not rules or cells corresponding to RHS
 - Stores SETS of non-terminals
 - Can't store multiple rules with same LHS

- Limitations of current recognition algorithm:
 - Only stores non-terminals in cell
 - Not rules or cells corresponding to RHS
 - Stores SETS of non-terminals
 - Can't store multiple rules with same LHS
- Parsing solution:
 - All repeated versions of non-terminals

- Limitations of current recognition algorithm:
 - Only stores non-terminals in cell
 - Not rules or cells corresponding to RHS
 - Stores SETS of non-terminals
 - Can't store multiple rules with same LHS
- Parsing solution:
 - All repeated versions of non-terminals
 - Pair each non-terminal with pointers to cells
 - Backpointers

- Limitations of current recognition algorithm:
 - Only stores non-terminals in cell
 - Not rules or cells corresponding to RHS
 - Stores SETS of non-terminals
 - Can't store multiple rules with same LHS
- Parsing solution:
 - All repeated versions of non-terminals
 - Pair each non-terminal with pointers to cells
 - Backpointers
 - Last step: construct trees from back-pointers in [0,n]

Filling column 5

Book	the	flight	through	Houston
S, VP, Verb, Nominal, Noun		S,VP,X2		
[0,1]	[0,2]	[0,3]	[0,4]	[0,5]
	Det	NP		
	[1,2]	[1,3]	[1,4]	[1,5]
		Nominal, Noun		Nominal
		[2,3]	[2,4]	[2,5]
			Prep	
			[3,4]	[3,5]
				NP, Proper- Noun
				[4,5]

	Book	the	flight	through	Houston	
	S, VP, Verb, Nominal, Noun		S,VP,X2			
	[0,1]	[0,2]	[0,3]	[0,4]	[0,5]	
		Det	NP		NP	
		[1,2]	[1,3]	[1,4]	[1,5]	
			Nominal, Noun			
		_	[2,3]	[2,4]	[2,5]	
				Prep <	PP	
				[[3,4]	[3,5] ¥	
					NP, Proper- Noun	
_					[4,5]	
Book	the	flight	through	Houston		
----------------------------------	-------	-------------------------------	---------	------------------------		
S, VP, Verb, Nominal, Noun		S,VP,X2				
[0,1]	[0,2]	[0,3]	[0,4]	[0,5]		
	Det	NP		NP		
	[1,2]	[1,3]	[1,4]	[1,5]		
		Nominal, ∢ Noun		-Nominal		
		[2,3]	[2,4]	[2,5]		
			Prep	PP		
			[3,4]	[3,5]		
				NP, Proper- Noun		
				[4,5]		

• Running time: $O(n^3)$

• Running time:

• $O(n^3)$ where *n* is the length of the input string

- Running time:
 - $O(n^3)$ where *n* is the length of the input string
 - Inner loop grows as square of # of non-terminals
- Expressiveness:

- Running time:
 - $O(n^3)$ where *n* is the length of the input string
 - Inner loop grows as square of # of non-terminals
- Expressiveness:
 - As implemented, requires CNF
 - Weakly equivalent to original grammar
 - Doesn't capture full original structure
 - Back-conversion?

- Running time:
 - $O(n^3)$ where *n* is the length of the input string
 - Inner loop grows as square of # of non-terminals
- Expressiveness:
 - As implemented, requires CNF
 - Weakly equivalent to original grammar
 - Doesn't capture full original structure
 - Back-conversion?
 - Can do binarization, terminal conversion
 - Unit non-terminals require change in CKY

Parsing Efficiently

- With arbitrary grammars
 - Earley algorithm
 - Top-down search
 - Dynamic programming
 - Tabulated partial solutions
 - Some bottom-up constraints

Earley Parsing

- Avoid repeated work/recursion problem
 - Dynamic programming
 - Store partial parses in "chart"
 - Compactly encodes ambiguity
 - $O(N^3)$

Earley Parsing

- Avoid repeated work/recursion problem
 - Dynamic programming
 - Store partial parses in "chart"
 - Compactly encodes ambiguity

• $O(N^3)$

- Chart entries:
 - Subtree for a single grammar rule
 - Progress in completing subtree
 - Position of subtree wrt input

Earley Algorithm

- First, left-to-right pass fills out a chart with N+1 states
 - Think of chart entries as sitting between words in the input string, keeping track of states of the parse at these positions
 - For each word position, chart contains set of states representing all partial parse trees generated to date. E.g. chart[0] contains all partial parse trees generated at the beginning of the sentence

Chart Entries

Represent three types of constituents:

predicted constituents

in-progress constituents

completed constituents

- Represented by Dotted Rules
- Position of indicates type of constituent
- $_0$ Book $_1$ that $_2$ flight $_3$ • S \rightarrow • VP, [0,0] (predicted)

- Represented by Dotted Rules
- Position of indicates type of constituent
- 0 Book 1 that 2 flight 3
 - S \rightarrow VP, [0,0] (predicted)
 - NP \rightarrow Det Nom, [1,2] (in progress)

- Represented by Dotted Rules
- Position of indicates type of constituent
- 0 Book 1 that 2 flight 3
 - S \rightarrow VP, [0,0] (predicted)
 - NP \rightarrow Det Nom, [1,2] (in progress)
 - VP \rightarrow V NP •, [0,3] (completed)

- Represented by Dotted Rules
- Position of indicates type of constituent
- 0 Book 1 that 2 flight 3
 - $S \rightarrow \bullet VP$, [0,0] (predicted)
 - NP \rightarrow Det Nom, [1,2] (in progress)
 - VP \rightarrow V NP •, [0,3] (completed)
- [x,y] tells us what portion of the input is spanned so far by this rule

- Represented by Dotted Rules
- Position of indicates type of constituent
- 0 Book 1 that 2 flight 3
 - $S \rightarrow \bullet VP$, [0,0] (predicted)
 - NP \rightarrow Det Nom, [1,2] (in progress)
 - VP →V NP •, [0,3] (completed)
- [x,y] tells us what portion of the input is spanned so far by this rule
- Each State s_i: <dotted rule>, [<back pointer>,<current position>]

0 Book 1 that 2 flight 3

 $S \rightarrow \bullet VP$, [0,0]

- First 0 means S constituent begins at the start of input
- Second 0 means the dot here, too
- So, this is a top-down prediction

0 Book 1 that 2 flight 3

 $S \rightarrow \bullet VP$, [0,0]

- First 0 means S constituent begins at the start of input
- Second 0 means the dot here too
- So, this is a top-down prediction

 $NP \rightarrow Det \cdot Nom, [1,2]$

- the NP begins at position 1
- the dot is at position 2
- so, Det has been successfully parsed
- Nom predicted next

O Book 1 that 2 flight 3 (continued)

$VP \rightarrow V NP \bullet, [0,3]$

Successful VP parse of entire input

Successful Parse

• Final answer found by looking at last entry in chart

Successful Parse

- Final answer found by looking at last entry in chart
- If entry resembles S $\rightarrow \alpha \cdot [0,N]$ then input parsed successfully
- Chart will also contain record of all possible parses of input string, given the grammar

Parsing Procedure for the Earley Algorithm

- Move through each set of states in order, applying one of three operators to each state:
 - **predictor:** add predictions to the chart
 - **scanner:** read input and add corresponding state to chart
 - **completer:** move dot to right when new constituent found

Parsing Procedure for the Earley Algorithm

- Move through each set of states in order, applying one of three operators to each state:
 - **predictor:** add predictions to the chart
 - **scanner:** read input and add corresponding state to chart
 - **completer:** move dot to right when new constituent found
- Results (new states) added to current or next set of states in chart

Parsing Procedure for the Earley Algorithm

- Move through each set of states in order, applying one of three operators to each state:
 - **predictor:** add predictions to the chart
 - **scanner:** read input and add corresponding state to chart
 - **completer:** move dot to right when new constituent found
- Results (new states) added to current or next set of states in chart
 - No backtracking and no states removed: keep complete history of parse

States and State Sets

- Dotted Rule s_i represented as <dotted rule>, [<back pointer>, <current position>]
- State Set S_j to be a collection of states s_i with the same <current position>.

Earley Algorithm from Book

function EARLEY-PARSE(words, grammar) returns chart

ENQUEUE(($\gamma \rightarrow \bullet S, [0,0]$), chart[0]) for $i \leftarrow$ from 0 to LENGTH(words) do for each state in chart[i] do if INCOMPLETE?(state) and NEXT-CAT(*state*) is not a part of speech **then** PREDICTOR(*state*) elseif INCOMPLETE?(state) and NEXT-CAT(*state*) is a part of speech **then** SCANNER(*state*) else COMPLETER(*state*) end end return(chart)

Earley Algorithm from Book **procedure** PREDICTOR($(A \rightarrow \alpha \bullet B \beta, [i, j])$) for each $(B \rightarrow \gamma)$ in GRAMMAR-RULES-FOR(B, grammar) do ENQUEUE($(B \rightarrow \bullet \gamma, [j, j]), chart[j]$) end **procedure** SCANNER($(A \rightarrow \alpha \bullet B \beta, [i, j])$) if $B \subset PARTS-OF-SPEECH(word[j])$ then ENQUEUE($(B \rightarrow word[j], [j, j+1]), chart[j+1]$) **procedure** COMPLETER($(B \rightarrow \gamma \bullet, [j,k])$) for each $(A \rightarrow \alpha \bullet B \beta, [i, j])$ in *chart*[j] do ENQUEUE(($A \rightarrow \alpha B \bullet \beta, [i,k]$), chart[k]) end

Earley Algorithm (simpler!)

- 1. Add Start \rightarrow · S, [0,0] to state set 0 Let i=1
- 2. **Predict** all states you can, adding new predictions to state set 0
- 3. Scan input word i—add all matched states to state set S_i. Add all new states produced by Complete to state set S_i Add all new states produced by Predict to state set S_i Let i = i + 1 Unless i=n, repeat step 3.

4. At the end, see if state set *n* contains Start \rightarrow S \cdot , [0,n]

3 Main Sub-Routines of Earley Algorithm

- **Predictor**: Adds predictions into the chart.
- **Completer**: Moves the dot to the right when new constituents are found.
- Scanner: Reads the input words and enters states representing those words into the chart.

 Intuition: create new state for top-down prediction of new phrase.

- Intuition: create new state for top-down prediction of new phrase.
- Applied when non part-of-speech nonterminals are to the right of a dot: S → •
 VP [0,0]

- Intuition: create new state for top-down prediction of new phrase.
- Applied when non part-of-speech nonterminals are to the right of a dot: S → •
 VP [0,0]
- Adds new states to *current* chart
 - One new state for each expansion of the nonterminal in the grammar
 VP → • V [0,0]
 VP → • V NP [0,0]

- Intuition: create new state for top-down prediction of new phrase.
- Applied when non part-of-speech non-terminals are to the right of a dot: $S \rightarrow \cdot VP[0,0]$
- Adds new states to *current* chart
 - One new state for each expansion of the nonterminal in the grammar
 VP → • V [0,0]
 VP → • V NP [0,0]

• Formally: $S_j: A \rightarrow \alpha \cdot B \beta, [i,j]$ $S_j: B \rightarrow \cdot \gamma, [j,j]$

Chart[0]

SO	$\gamma \rightarrow \bullet S$	[0,0]	Dummy start state			
	Note that given a the same for all in	grammar, these entries puts; they can be pre-	s are loaded.			
Jurafsky and Martin						
S0	$\gamma \rightarrow \bullet S$	[0,0]	Dummy start state			
------------	-----------------------------------	-------	-------------------			
S1	$S \rightarrow \bullet NP VP$	[0,0]	Predictor			
S2	$S \rightarrow \bullet Aux NP VP$	[0,0]	Predictor			
S 3	$S \rightarrow \bullet VP$	[0,0]	Predictor			

Note that given a grammar, these entries are the same for all inputs; they can be pre-loaded.

Jurafsky and Martin

1/15/14

S0	$\gamma \rightarrow \bullet S$	[0,0]	Dummy start state
S1	$S \rightarrow \bullet NP VP$	[0,0]	Predictor
S2	$S \rightarrow \bullet Aux NP VP$	[0,0]	Predictor
S 3	$S \rightarrow \bullet VP$	[0,0]	Predictor
S4	$NP \rightarrow \bullet Pronoun$	[0,0]	Predictor
S5	$NP \rightarrow \bullet Proper-Noun$	[0,0]	Predictor
S6	$NP \rightarrow \bullet Det Nominal$	[0,0]	Predictor

Note that given a grammar, these entries are the same for all inputs; they can be pre-loaded.

Speech and Language Processing -

1/15/14

Jurafsky and Martin

S0	$\gamma \rightarrow \bullet S$	[0,0]	Dummy start state
S1	$S \rightarrow \bullet NP VP$	[0,0]	Predictor
S2	$S \rightarrow \bullet Aux NP VP$	[0,0]	Predictor
S 3	$S \rightarrow \bullet VP$	[0,0]	Predictor
S4	$NP \rightarrow \bullet Pronoun$	[0,0]	Predictor
S5	$NP \rightarrow \bullet Proper-Noun$	[0,0]	Predictor
S6	$NP \rightarrow \bullet Det Nominal$	[0,0]	Predictor
S7	$VP \rightarrow \bullet Verb$	[0,0]	Predictor
S8	$VP \rightarrow \bullet Verb NP$	[0,0]	Predictor
S9	$VP \rightarrow \bullet Verb NP PP$	[0,0]	Predictor
S10	$VP \rightarrow \bullet Verb PP$	[0,0]	Predictor
S11	$VP \rightarrow \bullet VP PP$	[0,0]	Predictor

Note that given a grammar, these entries are the same for all inputs; they can be pre-loaded.

Speech and Language Processing

Jurafsky and Martin

1/15/14

 Intuition: Create new states for rules matching part of speech of next word.

- Intuition: Create new states for rules matching part of speech of next word.
- Applicable when part of speech is to the right of a dot: VP \rightarrow V NP [0,0] 'Book...'

- Intuition: Create new states for rules matching part of speech of next word.
- Applicable when part of speech is to the right of a dot: VP \rightarrow V NP [0,0] 'Book...'
- Looks at current word in input
- If match, adds state(s) to next chart
 VP → V NP [0,1]

- Intuition: Create new states for rules matching part of speech of next word.
- Applicable when part of speech is to the right of a dot: VP → • V NP [0,0] 'Book...'
- Looks at current word in input
- If match, adds state(s) to *next* chart VP \rightarrow V NP [0,1]

• Formally: $S_j: A \rightarrow \alpha \cdot B \beta, [i,j]$ $S_{j+1}: A \rightarrow \alpha B \cdot \beta, [i,j+1]$

 Intuition: parser has finished a new phrase, so must find and advance states all that were waiting for this

- Intuition: parser has finished a new phrase, so must find and advance states all that were waiting for this
- Applied when dot has reached right end of rule

 $NP \rightarrow Det Nom \cdot [1,3]$

- Intuition: parser has finished a new phrase, so must find and advance states all that were waiting for this
- Applied when dot has reached right end of rule NP → Det Nom • [1,3]
- Find all states w/dot at 1 and expecting an NP:
 - $VP \rightarrow V \cdot NP [0,1]$
- Adds new (completed) state(s) to *current* chart :
 - $VP \rightarrow V NP \cdot [0,3]$

- Intuition: parser has finished a new phrase, so must find and advance states all that were waiting for this
- Applied when dot has reached right end of rule NP → Det Nom • [1,3]
- Find all states w/dot at 1 and expecting an NP:
 VP → V NP [0,1]
- Adds new (completed) state(s) to *current* chart :
 - $VP \rightarrow V NP \cdot [0,3]$
- Formally: $S_k: B \to \delta \cdot , [j,k]$ $S_k: A \to \alpha B \cdot \beta , [i,k],$ where: $S_i: A \to \alpha \cdot B \beta , [i,j].$

S0	$\gamma \rightarrow \bullet S$	[0,0]	Dummy start state
S1	$S \rightarrow \bullet NP VP$	[0,0]	Predictor
S2	$S \rightarrow \bullet Aux NP VP$	[0,0]	Predictor
S 3	$S \rightarrow \bullet VP$	[0,0]	Predictor
S4	$NP \rightarrow \bullet Pronoun$	[0,0]	Predictor
S5	$NP \rightarrow \bullet Proper-Noun$	[0,0]	Predictor
S6	$NP \rightarrow \bullet Det Nominal$	[0,0]	Predictor
S7	$VP \rightarrow \bullet Verb$	[0,0]	Predictor
S8	$VP \rightarrow \bullet Verb NP$	[0,0]	Predictor
S9	$VP \rightarrow \bullet Verb NP PP$	[0,0]	Predictor
S10	$VP \rightarrow \bullet Verb PP$	[0,0]	Predictor
S11	$VP \rightarrow \bullet VP PP$	[0,0]	Predictor

Note that given a grammar, these entries are the same for all inputs; they can be pre-loaded.

Speech and Language Processing

Jurafsky and Martin

1/15/14

Chart[1] S12 *Verb* \rightarrow *book* \bullet [0,1]Scanner 86

Chart[1]

S12	$Verb \rightarrow book \bullet$	[0,1]	Scanner
S13	$VP \rightarrow Verb \bullet$	[0,1]	Completer
S14	$VP \rightarrow Verb \bullet NP$	[0,1]	Completer
S15	$VP \rightarrow Verb \bullet NP PP$	[0,1]	Completer
S16	$VP \rightarrow Verb \bullet PP$	[0,1]	Completer

87

Speech and Language Processing -

Jurafsky and Martin

Chart[1]

S12	$Verb \rightarrow book \bullet$	[0,1]	Scanner
S13	$VP \rightarrow Verb \bullet$	[0,1]	Completer
S14	$VP \rightarrow Verb \bullet NP$	[0,1]	Completer
S15	$VP \rightarrow Verb \bullet NP PP$	[0,1]	Completer
S16	$VP \rightarrow Verb \bullet PP$	[0,1]	Completer
S17	$S \rightarrow VP \bullet$	[0,1]	Completer
S18	$VP \rightarrow VP \bullet PP$	[0,1]	Completer

88

Speech and Language Processing -

Jurafsky and Martin

Chart[1]

S12	$Verb \rightarrow book \bullet$	[0,1]	Scanner
S13	$VP \rightarrow Verb \bullet$	[0,1]	Completer
S14	$VP \rightarrow Verb \bullet NP$	[0,1]	Completer
S15	$VP \rightarrow Verb \bullet NP PP$	[0,1]	Completer
S16	$VP \rightarrow Verb \bullet PP$	[0,1]	Completer
S17	$S \rightarrow VP \bullet$	[0,1]	Completer
S18	$VP \rightarrow VP \bullet PP$	[0,1]	Completer
S19	$NP \rightarrow \bullet Pronoun$	[1,1]	Predictor
S20	$NP \rightarrow \bullet Proper-Noun$	[1,1]	Predictor
S21	$NP \rightarrow \bullet Det Nominal$	[1,1]	Predictor
S22	$PP \rightarrow \bullet Prep NP$	[1,1]	Predictor

Prediction of Next Rule

- When VP → V is itself processed by the Completer, S → VP • is added to Chart[1] since VP is a left corner of S
- Last few rules in Chart[1] are added by
 Predictor when VP → V NP is processed

• And so on....

1/15/14

S23 $Det \rightarrow that \bullet$

[1,2]

Scanner

Jurafsky and Martin

S23	$Det \rightarrow that \bullet$	[1,2]	Scanner
S24	$NP \rightarrow Det \bullet Nominal$	[1,2]	Completer

S23	$Det \rightarrow that \bullet$	[1,2]	Scanner
S24	$NP \rightarrow Det \bullet Nominal$	[1,2]	Completer
S25	Nominal $\rightarrow \bullet$ Noun	[2,2]	Predictor
S26	$Nominal \rightarrow \bullet Nominal Noun$	[2,2]	Predictor
S27	Nominal $\rightarrow \bullet$ Nominal PP	[2,2]	Predictor

S23	$Det \rightarrow that \bullet$	[1,2]	Scanner
S24	$NP \rightarrow Det \bullet Nominal$	[1,2]	Completer
S25	Nominal $\rightarrow \bullet$ Noun	[2,2]	Predictor
S26	Nominal $\rightarrow \bullet$ Nominal Noun	[2,2]	Predictor
S27	Nominal $\rightarrow \bullet$ Nominal PP	[2,2]	Predictor
S28	Noun \rightarrow flight \bullet	[2,3]	Scanner

Charts^[2] and ^[3]

S23	$Det \rightarrow that \bullet$	[1,2]	Scanner
S24	$NP \rightarrow Det \bullet Nominal$	[1,2]	Completer
S25	$Nominal \rightarrow \bullet Noun$	[2,2]	Predictor
S26	$Nominal \rightarrow \bullet Nominal Noun$	[2,2]	Predictor
S27	$Nominal \rightarrow \bullet Nominal PP$	[2,2]	Predictor
S28	Noun \rightarrow flight \bullet	[2,3]	Scanner
S29	$Nominal \rightarrow Noun \bullet$	[2,3]	Completer
S30	$NP \rightarrow Det Nominal ullet$	[1,3]	Completer
S31	$Nominal \rightarrow Nominal \bullet Noun$	[2,3]	Completer
S32	Nominal \rightarrow Nominal \bullet PP	[2,3]	Completer
S33	$VP \rightarrow Verb NP \bullet$	[0,3]	Completer
S34	$VP \rightarrow Verb NP \bullet PP$	[0,3]	Completer
S35	$PP \rightarrow \bullet Prep NP$	[3,3]	Predictor
S36	$S \rightarrow VP \bullet$	[0,3]	Completer

How do we retrieve the parses at the end?

- Augment the Completer to add pointers to prior states it advances as a field in the current state
 - i.e. what state did we advance here?
 - Read the pointers back from the final state

• What about ambiguity?

• What about ambiguity?

• CKY/Earley can represent it

• What about ambiguity?

• CKY/Earley can represent it

Can't resolve it