
PCFG Parsing,
Evaluation, &
Improvements

Ling 571
Deep Processing Techniques for NLP

January 28, 2014

Roadmap
�  Parsing PCGFs:

�  Probabilistic CKY parsing

�  Evaluation
�  Parseval

�  Issues:
�  Positional and lexical independence assumptions

�  Improvements:
�  Lexicalization: PLCFGs

Parsing Problem for PCFGs
�  Select T such that:

�  String of words S is yield of parse tree over S
�  Select tree that maximizes probability of parse

T
∧

(S) = argmax
Ts.t,S=yield (T)

P(T)

Parsing Problem for PCFGs
�  Select T such that:

�  String of words S is yield of parse tree over S
�  Select tree that maximizes probability of parse

�  Extend existing algorithms: CKY & Earley
�  Most modern PCFG parsers based on CKY

�  Augmented with probabilities

T
∧

(S) = argmax
Ts.t,S=yield (T)

P(T)

Probabilistic CKY
�  Like regular CKY

�  Assume grammar in Chomsky Normal Form (CNF)
�  Productions:

�  A -> B C or A -> w

�  Represent input with indices b/t words
�  E.g., 0 Book 1 that 2 flight 3 through 4 Houston 5

Probabilistic CKY
�  Like regular CKY

�  Assume grammar in Chomsky Normal Form (CNF)
�  Productions:

�  A -> B C or A -> w

�  Represent input with indices b/t words
�  E.g., 0 Book 1 that 2 flight 3 through 4 Houston 5

�  For input string length n and non-terminals V
�  Cell[i,j,A] in (n+1)x(n+1)xV matrix contains

�  Probability that constituent A spans [i,j]

Probabilistic CKY Algorithm

PCKY Grammar Segment

PCKY Matrix:
The flight includes a meal

Det: 0.4

[0,1]

PCKY Matrix:
The flight includes a meal

Det: 0.4

[0,1]

N: 0.2

[1,2]

PCKY Matrix:
The flight includes a meal

Det: 0.4

[0,1]

NP:
0.3*0.4*0.2
=.0024
[0,2]

N: 0.2

[1,2]

PCKY Matrix:
The flight includes a meal

Det: 0.4

[0,1]

NP:
0.3*0.4*0.2
=.0024
[0,2]

N: 0.2

[1,2]

V: 0.05

[2,3]

PCKY Matrix:
The flight includes a meal

Det: 0.4

[0,1]

NP:
0.3*0.4*0.2
=.0024
[0,2]

N: 0.2

[1,2]

[1,3]

V: 0.05

[2,3]

PCKY Matrix:
The flight includes a meal

Det: 0.4

[0,1]

NP:
0.3*0.4*0.2
=.0024
[0,2]

[0,3]

N: 0.2

[1,2]

[1,3]

V: 0.05

[2,3]

PCKY Matrix:
The flight includes a meal

Det: 0.4

[0,1]

NP:
0.3*0.4*0.2
=.0024
[0,2]

[0,3]

N: 0.2

[1,2]

[1,3]

V: 0.05

[2,3]

Det: 0.4

[3,4]

PCKY Matrix:
The flight includes a meal

Det: 0.4

[0,1]

NP:
0.3*0.4*0.2
=.0024
[0,2]

[0,3]

N: 0.2

[1,2]

[1,3]

V: 0.05

[2,3]

[2,4]

Det: 0.4

[3,4]

PCKY Matrix:
The flight includes a meal

Det: 0.4

[0,1]

NP:
0.3*0.4*0.2
=.0024
[0,2]

[0,3]

N: 0.2

[1,2]

[1,3]

[1,4]

V: 0.05

[2,3]

[2,4]

Det: 0.4

[3,4]

PCKY Matrix:
The flight includes a meal

Det: 0.4

[0,1]

NP:
0.3*0.4*0.2
=.0024
[0,2]

[0,3]

[0,4]

N: 0.2

[1,2]

[1,3]

[1,4]

V: 0.05

[2,3]

[2,4]

Det: 0.4

[3,4]

PCKY Matrix:
The flight includes a meal

Det: 0.4

[0,1]

NP:
0.3*0.4*0.02
=.0024
[0,2]

[0,3]

[0,4]

N: 0.2
[1,2]

[1,3]

[1,4]

V: 0.05

[2,3]

[2,4]

Det: 0.4

[3,4]

N: 0.01
[4,5]

PCKY Matrix:
The flight includes a meal

Det: 0.4

[0,1]

NP:
0.3*0.4*0.02
=.0024
[0,2]

[0,3]

[0,4]

N: 0.2
[1,2]

[1,3]

[1,4]

V: 0.05

[2,3]

[2,4]

Det: 0.4

[3,4]

NP:
0.3*0.4*0.01
=0.0012
[3,5]

N: 0.01
[4,5]

PCKY Matrix:
The flight includes a meal

Det: 0.4

[0,1]

NP:
0.3*0.4*0.02
=.0024
[0,2]

[0,3]

[0,4]

N: 0.2
[1,2]

[1,3]

[1,4]

V: 0.05

[2,3]

[2,4]

VP:
0.2*0.05*
0.0012=0.0
00012 [2,5]

Det: 0.4

[3,4]

NP:
0.3*0.4*0.01
=0.0012
[3,5]

N: 0.01
[4,5]

PCKY Matrix:
The flight includes a meal

Det: 0.4

[0,1]

NP:
0.3*0.4*0.02
=.0024
[0,2]

[0,3]

[0,4]

S: 0.8*
0.000012*
0.0024
[0,5]

N: 0.2
[1,2]

[1,3]

[1,4]

[1,5]

V: 0.05

[2,3]

[2,4]

VP:
0.2*0.05*
0.0012=0.0
00012 [2,5]

Det: 0.4

[3,4]

NP:
0.3*0.4*0.01
=0.0012
[3,5]

N: 0.01
[4,5]

Probabilistic Parser
Development Paradigm

�  Training:
�  (Large) Set of sentences with associated parses (Treebank)

�  E.g., Wall Street Journal section of Penn Treebank, sec 2-21
�  39,830 sentences

�  Used to estimate rule probabilities

Probabilistic Parser
Development Paradigm

�  Training:
�  (Large) Set of sentences with associated parses (Treebank)

�  E.g., Wall Street Journal section of Penn Treebank, sec 2-21
�  39,830 sentences

�  Used to estimate rule probabilities

�  Development (dev):
�  (Small) Set of sentences with associated parses (WSJ, 22)

�  Used to tune/verify parser; check for overfitting, etc.

Probabilistic Parser
Development Paradigm

�  Training:
�  (Large) Set of sentences with associated parses (Treebank)

�  E.g., Wall Street Journal section of Penn Treebank, sec 2-21
�  39,830 sentences

�  Used to estimate rule probabilities

�  Development (dev):
�  (Small) Set of sentences with associated parses (WSJ, 22)

�  Used to tune/verify parser; check for overfitting, etc.

�  Test:
�  (Small-med) Set of sentences w/parses (WSJ, 23)

�  2416 sentences
�  Held out, used for final evaluation

Parser Evaluation
�  Assume a ‘gold standard’ set of parses for test set

�  How can we tell how good the parser is?

�  How can we tell how good a parse is?

Parser Evaluation
�  Assume a ‘gold standard’ set of parses for test set

�  How can we tell how good the parser is?

�  How can we tell how good a parse is?
�  Maximally strict: identical to ‘gold standard’

Parser Evaluation
�  Assume a ‘gold standard’ set of parses for test set

�  How can we tell how good the parser is?

�  How can we tell how good a parse is?
�  Maximally strict: identical to ‘gold standard’

�  Partial credit:

Parser Evaluation
�  Assume a ‘gold standard’ set of parses for test set

�  How can we tell how good the parser is?

�  How can we tell how good a parse is?
�  Maximally strict: identical to ‘gold standard’

�  Partial credit:
�  Constituents in output match those in reference

�  Same start point, end point, non-terminal symbol

Parseval
�  How can we compute parse score from constituents?

�  Multiple measures:
�  Labeled recall (LR):

�  # of correct constituents in hyp. parse

�  # of constituents in reference parse

Parseval
�  How can we compute parse score from constituents?

�  Multiple measures:
�  Labeled recall (LR):

�  # of correct constituents in hyp. parse

�  # of constituents in reference parse

�  Labeled precision (LP):
�  # of correct constituents in hyp. parse

�  # of total constituents in hyp. parse

Parseval (cont’d)
�  F-measure:

�  Combines precision and recall

�  F1-measure: β=1

�  Crossing-brackets:
�  # of constituents where reference parse has

bracketing ((A B) C) and hyp. has (A (B C))

Fβ =
(β 2 +1)PR
β 2 (P + R)

F1 =
2PR
(P + R)

Precision and Recall
�  Gold standard

�  (S (NP (A a)) (VP (B b) (NP (C c)) (PP (D d))))

�  Hypothesis
�  (S (NP (A a)) (VP (B b) (NP (C c) (PP (D d)))))

Precision and Recall
�  Gold standard

�  (S (NP (A a)) (VP (B b) (NP (C c)) (PP (D d))))

�  Hypothesis
�  (S (NP (A a)) (VP (B b) (NP (C c) (PP (D d)))))

�  G: S(0,4) NP(0,1) VP (1,4) NP (2,3) PP(3,4)

Precision and Recall
�  Gold standard

�  (S (NP (A a)) (VP (B b) (NP (C c)) (PP (D d))))

�  Hypothesis
�  (S (NP (A a)) (VP (B b) (NP (C c) (PP (D d)))))

�  G: S(0,4) NP(0,1) VP (1,4) NP (2,3) PP(3,4)

�  H: S(0,4) NP(0,1) VP (1,4) NP (2,4) PP(3,4)

Precision and Recall
�  Gold standard

�  (S (NP (A a)) (VP (B b) (NP (C c)) (PP (D d))))

�  Hypothesis
�  (S (NP (A a)) (VP (B b) (NP (C c) (PP (D d)))))

�  G: S(0,4) NP(0,1) VP (1,4) NP (2,3) PP(3,4)

�  H: S(0,4) NP(0,1) VP (1,4) NP (2,4) PP(3,4)

�  LP: 4/5

Precision and Recall
�  Gold standard

�  (S (NP (A a)) (VP (B b) (NP (C c)) (PP (D d))))

�  Hypothesis
�  (S (NP (A a)) (VP (B b) (NP (C c) (PP (D d)))))

�  G: S(0,4) NP(0,1) VP (1,4) NP (2,3) PP(3,4)

�  H: S(0,4) NP(0,1) VP (1,4) NP (2,4) PP(3,4)

�  LP: 4/5

�  LR: 4/5

Precision and Recall
�  Gold standard

�  (S (NP (A a)) (VP (B b) (NP (C c)) (PP (D d))))

�  Hypothesis
�  (S (NP (A a)) (VP (B b) (NP (C c) (PP (D d)))))

�  G: S(0,4) NP(0,1) VP (1,4) NP (2,3) PP(3,4)

�  H: S(0,4) NP(0,1) VP (1,4) NP (2,4) PP(3,4)

�  LP: 4/5

�  LR: 4/5

�  F1: 4/5

State-of-the-Art Parsing
�  Parsers trained/tested on Wall Street Journal PTB

�  LR: 90%;

�  LP: 90%;
�  Crossing brackets: 1%

�  Standard implementation of Parseval: evalb

Evaluation Issues
�  Constituents?

Evaluation Issues
�  Constituents?

�  Other grammar formalisms
�  LFG, Dependency structure, ..

�  Require conversion to PTB format

Evaluation Issues
�  Constituents?

�  Other grammar formalisms
�  LFG, Dependency structure, ..

�  Require conversion to PTB format

�  Extrinsic evaluation
�  How well does this match semantics, etc?

Issues with PCFGs
�  Independence assumptions:

�  Rule expansion is context-independent
�  Allows us to multiply probabilities

�  Is this valid?

Issues with PCFGs
�  Independence assumptions:

�  Rule expansion is context-independent
�  Allows us to multiply probabilities

�  Is this valid?

Pronoun Non-pronoun

Subject 91% 9%

Object

Issues with PCFGs
�  Independence assumptions:

�  Rule expansion is context-independent
�  Allows us to multiply probabilities

�  Is this valid?

Pronoun Non-pronoun

Subject 91% 9%

Object 34% 66%

Issues with PCFGs
�  Independence assumptions:

�  Rule expansion is context-independent
�  Allows us to multiply probabilities

�  Is this valid?

�  In Treebank: roughly equi-probable

�  How can we handle this?

Pronoun Non-pronoun

Subject 91% 9%

Object 34% 66%

Issues with PCFGs
�  Independence assumptions:

�  Rule expansion is context-independent
�  Allows us to multiply probabilities

�  Is this valid?

�  In Treebank: roughly equi-probable

�  How can we handle this?
�  Condition on Subj/Obj with parent annotation

Pronoun Non-pronoun

Subject 91% 9%

Object 34% 66%

Issues with PCFGs
�  Insufficient lexical conditioning

�  Present in pre-terminal rules

�  Are there cases where other rules should be
conditioned on words?

Issues with PCFGs
�  Insufficient lexical conditioning

�  Present in pre-terminal rules

�  Are there cases where other rules should be
conditioned on words?

Issues with PCFGs
�  Insufficient lexical conditioning

�  Present in pre-terminal rules

�  Are there cases where other rules should be
conditioned on words?

Different verbs & prepositions have different attachment preferences

Parser Issues
�  PCFGs make many (unwarranted) independence

assumptions
�  Structural Dependency

�  NP -> Pronoun: much more likely in subject position

�  Lexical Dependency
�  Verb subcategorization

�  Coordination ambiguity

Improving PCFGs:
Structural Dependencies

�  How can we capture Subject/Object asymmetry?
�  E.g., NPsubj-à Pron vs NPObjàPron

Improving PCFGs:
Structural Dependencies

�  How can we capture Subject/Object asymmetry?
�  E.g., NPsubj-à Pron vs NPObjàPron

�  Parent annotation:
�  Annotate each node with parent in parse tree

�  E.g., NP^S vs NP^VP

Improving PCFGs:
Structural Dependencies

�  How can we capture Subject/Object asymmetry?
�  E.g., NPsubj-à Pron vs NPObjàPron

�  Parent annotation:
�  Annotate each node with parent in parse tree

�  E.g., NP^S vs NP^VP
�  Also annotate pre-terminals:

�  RB^ADVP vs RB^VP
�  IN^SBAR vs IN^PP

�  Can also split rules on other conditions

Parent Annotation

Parent Annotation:
Pre-terminals

Parent Annotation
�  Advantages:

�  Captures structural dependency in grammars

Parent Annotation
�  Advantages:

�  Captures structural dependency in grammars

�  Disadvantages:
�  Increases number of rules in grammar

Parent Annotation
�  Advantages:

�  Captures structural dependency in grammars

�  Disadvantages:
�  Increases number of rules in grammar
�  Decreases amount of training per rule

�  Strategies to search for optimal # of rules

Improving PCFGs:
Lexical Dependencies

�  Lexicalized rules:
�  Best known parsers: Collins, Charniak parsers

Improving PCFGs:
Lexical Dependencies

�  Lexicalized rules:
�  Best known parsers: Collins, Charniak parsers

�  Each non-terminal annotated with its lexical head
�  E.g. verb with verb phrase, noun with noun phrase

Improving PCFGs:
Lexical Dependencies

�  Lexicalized rules:
�  Best known parsers: Collins, Charniak parsers

�  Each non-terminal annotated with its lexical head
�  E.g. verb with verb phrase, noun with noun phrase

�  Each rule must identify RHS element as head
�  Heads propagate up tree

Improving PCFGs:
Lexical Dependencies

�  Lexicalized rules:
�  Best known parsers: Collins, Charniak parsers

�  Each non-terminal annotated with its lexical head
�  E.g. verb with verb phrase, noun with noun phrase

�  Each rule must identify RHS element as head
�  Heads propagate up tree

�  Conceptually like adding 1 rule per head value

�  VP(dumped) à VBD(dumped)NP(sacks)PP(into)

�  VP(dumped) à VBD(dumped)NP(cats)PP(into)

Lexicalized PCFGs
�  Also, add head tag to non-terminals

�  Head tag: Part-of-speech tag of head word
�  VP(dumped) à VBD(dumped)NP(sacks)PP(into)

�  VP(dumped,VBD) à
VBD(dumped,VBD)NP(sacks,NNS)PP(into,IN)

Lexicalized PCFGs
�  Also, add head tag to non-terminals

�  Head tag: Part-of-speech tag of head word
�  VP(dumped) à VBD(dumped)NP(sacks)PP(into)

�  VP(dumped,VBD) à
VBD(dumped,VBD)NP(sacks,NNS)PP(into,IN)

�  Two types of rules:
�  Lexical rules: pre-terminal à word

Lexicalized PCFGs
�  Also, add head tag to non-terminals

�  Head tag: Part-of-speech tag of head word
�  VP(dumped) à VBD(dumped)NP(sacks)PP(into)

�  VP(dumped,VBD) à
VBD(dumped,VBD)NP(sacks,NNS)PP(into,IN)

�  Two types of rules:
�  Lexical rules: pre-terminal à word

�  Deterministic, probability 1

Lexicalized PCFGs
�  Also, add head tag to non-terminals

�  Head tag: Part-of-speech tag of head word
�  VP(dumped) à VBD(dumped)NP(sacks)PP(into)

�  VP(dumped,VBD) à
VBD(dumped,VBD)NP(sacks,NNS)PP(into,IN)

�  Two types of rules:
�  Lexical rules: pre-terminal à word

�  Deterministic, probability 1

�  Internal rules: all other expansions

Lexicalized PCFGs
�  Also, add head tag to non-terminals

�  Head tag: Part-of-speech tag of head word
�  VP(dumped) à VBD(dumped)NP(sacks)PP(into)
�  VP(dumped,VBD) à

VBD(dumped,VBD)NP(sacks,NNS)PP(into,IN)

�  Two types of rules:
�  Lexical rules: pre-terminal à word

�  Deterministic, probability 1

�  Internal rules: all other expansions
�  Must estimate probabilities

PLCFGs
�  Issue:

PLCFGs
�  Issue: Too many rules

�  No way to find corpus with enough examples

PLCFGs
�  Issue: Too many rules

�  No way to find corpus with enough examples

�  (Partial) Solution: Independence assumed
�  Condition rule on

PLCFGs
�  Issue: Too many rules

�  No way to find corpus with enough examples

�  (Partial) Solution: Independence assumed
�  Condition rule on

�  Category of LHS, head

�  Condition head on

PLCFGs
�  Issue: Too many rules

�  No way to find corpus with enough examples

�  (Partial) Solution: Independence assumed
�  Condition rule on

�  Category of LHS, head

�  Condition head on
�  Category of LHS and parent’s head

PLCFGs
�  Issue: Too many rules

�  No way to find corpus with enough examples

�  (Partial) Solution: Independence assumed
�  Condition rule on

�  Category of LHS, head

�  Condition head on
�  Category of LHS and parent’s head

P(T,S) = p(r(n) | n,h(n))* p(h(n) | n,h(m(n)))
n∈T
∏

PLCFGs
�  Issue: Too many rules

�  No way to find corpus with enough examples

�  (Partial) Solution: Independence assumed
�  Condition rule on

�  Category of LHS, head

�  Condition head on
�  Category of LHS and parent’s head

∏
∈

=
Tn

nmhnnhpnhnnrpSTP)))((,|)((*))(.|)((),(

Disambiguation Example

Disambiguation Example

67.09/6

))((
))((
),|(

==

→

→
=

→

∑β
βdumpedVPC

VBDNPPdumpedVPC
dumpedVPVBDNPPPVPP

09/0

))((
))((
),|(

==

→

→
=

→

∑β
βdumpedVPC
NPVBDdumpedVPC

dumpedVPVBDNPVPp

22.09/2

...)...)((
)..)(...)((

),|(

==

→

→
=
∑β

PPdumpedXC
inPPdumpedXC

dumpedPPinp

0/0

...)...)((
)...)(...)((

),|(

=

→

→
=
∑β

PPsacksXC
inPPsacksXC

sacksPPinp

CNF Factorization &
Markovization

�  CNF factorization:
�  Converts n-ary branching to binary branching

CNF Factorization &
Markovization

�  CNF factorization:
�  Converts n-ary branching to binary branching

�  Can maintain information about original structure
�  Neighborhood history and parent

�  Issue:
�  Potentially explosive

CNF Factorization &
Markovization

�  CNF factorization:
�  Converts n-ary branching to binary branching

�  Can maintain information about original structure
�  Neighborhood history and parent

�  Issue:
�  Potentially explosive

�  If keep all context: 72 -> 10K non-terminals!!!

CNF Factorization &
Markovization

�  CNF factorization:
�  Converts n-ary branching to binary branching

�  Can maintain information about original structure
�  Neighborhood history and parent

�  Issue:
�  Potentially explosive

�  If keep all context: 72 -> 10K non-terminals!!!

�  How much context should we keep?
�  What Markov order?

Different Markov Orders

Markovization & Costs
(Mohri & Roark 2006)

Improving PCFGs:
Tradeoffs

�  Tensions:
�  Increase accuracy:

�  Increase specificity
�  E.g. Lexicalizing, Parent annotation, Markovization,etc

�  Increases grammar
�  Increases processing times

�  Increases training data requirements

�  How can we balance?

Efficiency
�  PCKY is |G|n3

�  Grammar can be huge

�  Grammar can be extremely ambiguous
�  100s of analyses not unusual, esp. for long sentences

�  However, only care about best parses
�  Others can be pretty bad

�  Can we use this to improve efficiency?

Beam Thresholding
�  Inspired by beam search algorithm

�  Assume low probability partial parses unlikely to
yield high probability overall
�  Keep only top k most probably partial parses

�  Retain only k choices per cell
�  For large grammars, could be 50 or 100

�  For small grammars, 5 or 10

Heuristic Filtering
�  Intuition: Some rules/partial parses are unlikely to

end up in best parse. Don’t store those in table.

Heuristic Filtering
�  Intuition: Some rules/partial parses are unlikely to

end up in best parse. Don’t store those in table.

�  Exclusions:
�  Low frequency: exclude singleton productions

Heuristic Filtering
�  Intuition: Some rules/partial parses are unlikely to

end up in best parse. Don’t store those in table.

�  Exclusions:
�  Low frequency: exclude singleton productions

�  Low probability: exclude constituents x s.t. p(x) <10-200

Heuristic Filtering
�  Intuition: Some rules/partial parses are unlikely to

end up in best parse. Don’t store those in table.

�  Exclusions:
�  Low frequency: exclude singleton productions

�  Low probability: exclude constituents x s.t. p(x) <10-200

�  Low relative probability:
�  Exclude x if there exists y s.t. p(y) > 100 * p(x)

Notes on HW#3
�  Outline:

�  Induce grammar from (small) treebank

�  Implement Probabilistic CKY

�  Evaluate parser

�  Improve parser

Treebank Format
�  Adapted from Penn Treebank Format

�  Rules simplified:
�  Removed traces and other null elements

�  Removed complex tags

�  Reformatted POS tags as non-terminals

Reading the Parses
�  POS unary collapse:

�  (NP_NNP Ontario)
�  was

�  (NP (NNP Ontario))

�  Binarization:
�  VP -> VP’ PP; VP’ -> VB PP

�  Was

�  VP -> VB PP PP

Start Early!

