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Roadmap 
�  Parsing PCGFs: 

�  Probabilistic CKY parsing 

�  Evaluation 
�  Parseval 

�  Issues:   
�  Positional and lexical independence assumptions 

�  Improvements: 
�  Lexicalization: PLCFGs 



Parsing Problem for PCFGs 
�  Select T such that: 

�  String of  words S is yield of  parse tree over S 
�  Select tree that maximizes probability of  parse 

T
∧

(S) = argmax
Ts.t,S=yield (T )

P(T )



Parsing Problem for PCFGs 
�  Select T such that: 

�  String of  words S is yield of  parse tree over S 
�  Select tree that maximizes probability of  parse 

�  Extend existing algorithms: CKY & Earley 
�  Most modern PCFG parsers based on CKY 

�  Augmented with probabilities 

T
∧

(S) = argmax
Ts.t,S=yield (T )

P(T )



Probabilistic CKY 
�  Like regular CKY  

�  Assume grammar in Chomsky Normal Form (CNF) 
�  Productions: 

�  A -> B C or A -> w 

�  Represent input with indices b/t words 
�  E.g., 0 Book 1 that 2 flight 3 through 4 Houston 5 



Probabilistic CKY 
�  Like regular CKY  

�  Assume grammar in Chomsky Normal Form (CNF) 
�  Productions: 

�  A -> B C or A -> w 

�  Represent input with indices b/t words 
�  E.g., 0 Book 1 that 2 flight 3 through 4 Houston 5 

�  For input string length n and non-terminals V 
�  Cell[i,j,A] in (n+1)x(n+1)xV  matrix contains 

�  Probability that constituent A spans [i,j] 



Probabilistic CKY Algorithm 



PCKY Grammar Segment 
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Probabilistic Parser 
Development Paradigm 

�  Training: 
�  (Large) Set of  sentences with associated parses (Treebank) 

�  E.g., Wall Street Journal section of  Penn Treebank, sec 2-21 
�  39,830 sentences 

�  Used to estimate rule probabilities 

�  Development (dev): 
�  (Small) Set of  sentences with associated parses (WSJ, 22) 

�  Used to tune/verify parser; check for overfitting, etc. 

�  Test: 
�  (Small-med) Set of  sentences w/parses (WSJ, 23) 

�  2416 sentences 
�  Held out, used for final evaluation 
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Parser Evaluation 
�  Assume a ‘gold standard’ set of  parses for test set 

�  How can we tell how good the parser is? 

�  How can we tell how good a parse is? 
�  Maximally strict:  identical to ‘gold standard’ 

�  Partial credit: 
�  Constituents in output match those in reference 

�  Same start point, end point, non-terminal symbol 
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Parseval 
�  How can we compute parse score from constituents? 

�  Multiple measures: 
�  Labeled recall (LR):  

�  # of  correct constituents in hyp. parse 

�  # of  constituents in reference parse 

�  Labeled precision (LP): 
�  # of  correct constituents in hyp. parse 

�  # of  total constituents in hyp. parse 



Parseval (cont’d) 
�  F-measure:  

�  Combines precision and recall 

�  F1-measure: β=1 

�  Crossing-brackets: 
�  # of  constituents where reference parse has 

bracketing ((A B) C) and hyp. has (A (B C)) 

Fβ =
(β 2 +1)PR
β 2 (P + R)

F1 =
2PR
(P + R)
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Precision and Recall 
�  Gold standard 

�  (S (NP (A a) ) (VP (B b) (NP (C c)) (PP (D d)))) 

�  Hypothesis 
�  (S (NP (A a)) (VP (B b) (NP (C c) (PP (D d))))) 

�  G: S(0,4) NP(0,1) VP (1,4) NP (2,3) PP(3,4) 

�  H: S(0,4) NP(0,1) VP (1,4) NP (2,4) PP(3,4) 

�  LP: 4/5 

�  LR: 4/5 

�  F1: 4/5 



State-of-the-Art Parsing 
�  Parsers trained/tested on Wall Street Journal PTB 

�  LR: 90%;  

�  LP: 90%;  
�  Crossing brackets: 1% 

�  Standard implementation of  Parseval: evalb 
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Evaluation Issues 
�  Constituents? 

�  Other grammar formalisms   
�  LFG, Dependency structure, .. 

�  Require conversion to PTB format 

�  Extrinsic evaluation 
�  How well does this match semantics, etc? 
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Issues with PCFGs 
�  Independence assumptions: 

�  Rule expansion is context-independent 
�  Allows us to multiply probabilities 

�  Is this valid? 

�  In Treebank: roughly equi-probable 

�  How can we handle this? 
�  Condition on Subj/Obj with parent annotation 

Pronoun Non-pronoun 

Subject 91% 9% 

Object 34% 66% 
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Issues with PCFGs 
�  Insufficient lexical conditioning 

�  Present in pre-terminal rules 

�  Are there cases where other rules should be 
conditioned on words? 

Different verbs & prepositions have different attachment preferences 



Parser Issues 
�  PCFGs make many (unwarranted) independence 

assumptions 
�  Structural Dependency 

�  NP -> Pronoun: much more likely in subject position 

�  Lexical Dependency 
�  Verb subcategorization 

�  Coordination ambiguity 
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Improving PCFGs: 
Structural Dependencies 

�  How can we capture Subject/Object asymmetry? 
�  E.g., NPsubj-à Pron vs NPObjàPron 

�  Parent annotation: 
�  Annotate each node with parent in parse tree 

�  E.g., NP^S vs NP^VP 
�  Also annotate pre-terminals: 

�  RB^ADVP vs RB^VP 
�  IN^SBAR vs IN^PP 

�  Can also split rules on other conditions 
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Parent Annotation 
�  Advantages: 

�  Captures structural dependency in grammars 

�  Disadvantages: 
�  Increases number of  rules in grammar 
�  Decreases amount of  training per rule 

�  Strategies to search for optimal # of  rules 
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Improving PCFGs: 
Lexical Dependencies 

�  Lexicalized rules: 
�  Best known parsers: Collins, Charniak parsers 

�  Each non-terminal annotated with its lexical head 
�  E.g. verb with verb phrase, noun with noun phrase 

�  Each rule must identify RHS element as head 
�  Heads propagate up tree 

�  Conceptually like adding 1 rule per head value 

�  VP(dumped) à VBD(dumped)NP(sacks)PP(into) 

�  VP(dumped) à VBD(dumped)NP(cats)PP(into) 



Lexicalized PCFGs 
�  Also, add head tag to non-terminals 

�  Head tag: Part-of-speech tag of  head word 
�  VP(dumped) à VBD(dumped)NP(sacks)PP(into) 

�  VP(dumped,VBD) à 
VBD(dumped,VBD)NP(sacks,NNS)PP(into,IN) 



Lexicalized PCFGs 
�  Also, add head tag to non-terminals 

�  Head tag: Part-of-speech tag of  head word 
�  VP(dumped) à VBD(dumped)NP(sacks)PP(into) 

�  VP(dumped,VBD) à 
VBD(dumped,VBD)NP(sacks,NNS)PP(into,IN) 

�  Two types of  rules: 
�  Lexical rules: pre-terminal à word 



Lexicalized PCFGs 
�  Also, add head tag to non-terminals 

�  Head tag: Part-of-speech tag of  head word 
�  VP(dumped) à VBD(dumped)NP(sacks)PP(into) 

�  VP(dumped,VBD) à 
VBD(dumped,VBD)NP(sacks,NNS)PP(into,IN) 

�  Two types of  rules: 
�  Lexical rules: pre-terminal à word 

�  Deterministic, probability 1 



Lexicalized PCFGs 
�  Also, add head tag to non-terminals 

�  Head tag: Part-of-speech tag of  head word 
�  VP(dumped) à VBD(dumped)NP(sacks)PP(into) 

�  VP(dumped,VBD) à 
VBD(dumped,VBD)NP(sacks,NNS)PP(into,IN) 

�  Two types of  rules: 
�  Lexical rules: pre-terminal à word 

�  Deterministic, probability 1 

�  Internal rules: all other expansions 



Lexicalized PCFGs 
�  Also, add head tag to non-terminals 

�  Head tag: Part-of-speech tag of  head word 
�  VP(dumped) à VBD(dumped)NP(sacks)PP(into) 
�  VP(dumped,VBD) à 

VBD(dumped,VBD)NP(sacks,NNS)PP(into,IN) 

�  Two types of  rules: 
�  Lexical rules: pre-terminal à word 

�  Deterministic, probability 1 

�  Internal rules: all other expansions 
�  Must estimate probabilities 
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�  Issue: Too many rules 

�  No way to find corpus with enough examples 

�  (Partial) Solution: Independence assumed 
�  Condition rule on 

�  Category of  LHS, head 

�  Condition head on 
�  Category of  LHS and parent’s head 

P(T,S) = p(r(n) | n,h(n))* p(h(n) | n,h(m(n)))
n∈T
∏



PLCFGs 
�  Issue: Too many rules 

�  No way to find corpus with enough examples 

�  (Partial) Solution: Independence assumed 
�  Condition rule on 

�  Category of  LHS, head 

�  Condition head on 
�  Category of  LHS and parent’s head 

∏
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CNF Factorization & 
Markovization 

�  CNF factorization: 
�  Converts n-ary branching to binary branching 

�  Can maintain information about original structure 
�  Neighborhood history and parent 

�  Issue: 
�  Potentially explosive 

�  If  keep all context: 72 -> 10K non-terminals!!!  

�  How much context should we keep? 
�  What Markov order? 



Different Markov Orders 



Markovization & Costs 
(Mohri & Roark 2006) 



Improving PCFGs: 
Tradeoffs 

�  Tensions: 
�  Increase accuracy: 

�  Increase specificity 
�  E.g. Lexicalizing, Parent annotation, Markovization,etc 

�  Increases grammar 
�  Increases processing times 

�  Increases training data requirements 

�  How can we balance? 



Efficiency 
�  PCKY is |G|n3 

�  Grammar can be huge  

�  Grammar can be extremely ambiguous 
�  100s of  analyses not unusual, esp. for long sentences 

�  However, only care about best parses 
�  Others can be pretty bad 

�  Can we use this to improve efficiency? 



Beam Thresholding 
�  Inspired by beam search algorithm 

�  Assume low probability partial parses unlikely to 
yield high probability overall 
�  Keep only top k most probably partial parses 

�  Retain only k choices per cell 
�  For large grammars, could be 50 or 100 

�  For small grammars, 5 or 10 
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end up in best parse. Don’t store those in table. 
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Heuristic Filtering 
�  Intuition: Some rules/partial parses are unlikely to 

end up in best parse. Don’t store those in table. 

�  Exclusions: 
�  Low frequency: exclude singleton productions 

�  Low probability: exclude  constituents x s.t. p(x) <10-200 

�  Low relative probability: 
�  Exclude x if  there exists y s.t. p(y) > 100 * p(x) 



Notes on HW#3 
�  Outline: 

�  Induce grammar from (small) treebank 

�  Implement Probabilistic CKY 

�  Evaluate parser 

�  Improve parser 



Treebank Format 
�  Adapted from Penn Treebank Format 

�  Rules simplified: 
�  Removed traces and other null elements 

�  Removed complex tags 

�  Reformatted POS tags as non-terminals 



Reading the Parses 
�  POS unary collapse: 

�  (NP_NNP Ontario)  
�  was 

�  (NP (NNP Ontario)) 

�  Binarization: 
�  VP -> VP’ PP; VP’ -> VB PP 

�  Was 

�  VP -> VB PP PP 



Start Early! 


