PCFG Parsing, Evaluation, & Improvements

Ling 571
Deep Processing Techniques for NLP
January 28, 2014

Roadmap

- Parsing PCGFs:
 - Probabilistic CKY parsing
- Evaluation
 - Parseval
- Issues:
 - Positional and lexical independence assumptions
- Improvements:
 - Lexicalization: PLCFGs

Parsing Problem for PCFGs

Select T such that:

$$\hat{T}(S) = \underset{Ts.t, S=yield(T)}{\operatorname{argmax}} P(T)$$

- String of words S is yield of parse tree over S
- Select tree that maximizes probability of parse

Parsing Problem for PCFGs

Select T such that:

$$\hat{T}(S) = \underset{Ts.t, S=yield(T)}{\operatorname{argmax}} P(T)$$

- String of words S is yield of parse tree over S
- Select tree that maximizes probability of parse
- Extend existing algorithms: CKY & Earley
 - Most modern PCFG parsers based on CKY
 - Augmented with probabilities

Probabilistic CKY

- Like regular CKY
 - Assume grammar in Chomsky Normal Form (CNF)
 - Productions:
 - A -> B C or A -> w
 - Represent input with indices b/t words
 - E.g., ₀ Book ₁ that ₂ flight ₃ through ₄ Houston ₅

Probabilistic CKY

- Like regular CKY
 - Assume grammar in Chomsky Normal Form (CNF)
 - Productions:
 - A -> B C or A -> w
 - Represent input with indices b/t words
 - E.g., ₀ Book ₁ that ₂ flight ₃ through ₄ Houston ₅
- For input string length n and non-terminals V
 - Cell[i,j,A] in (n+1)x(n+1)xV matrix contains
 - Probability that constituent A spans [i,j]

Probabilistic CKY Algorithm

```
function PROBABILISTIC-CKY(words, grammar) returns most probable parse
                                                       and its probability
  for j \leftarrow from 1 to LENGTH(words) do
     for all \{A \mid A \rightarrow words[j] \in grammar\}
        table[j-1, j, A] \leftarrow P(A \rightarrow words[j])
     for i \leftarrow from j - 2 downto 0 do
         for k \leftarrow i+1 to j-1 do
                 for all \{A \mid A \rightarrow BC \in grammar,
                                 and table[i,k,B] > 0 and table[k,j,C] > 0
                        if (table[i,j,A] < P(A \rightarrow BC) \times table[i,k,B] \times table[k,j,C]) then
                            table[i,j,A] \leftarrow P(A \rightarrow BC) \times table[i,k,B] \times table[k,j,C]
                            back[i,j,A] \leftarrow \{k,B,C\}
     return BUILD_TREE(back[1, LENGTH(words), S]), table[1, LENGTH(words), S]
```

PCKY Grammar Segment

S	$\rightarrow NP VP$.80	Det	\rightarrow	the	.40
NP	\rightarrow <i>Det</i> N	.30	Det	\longrightarrow	a	.40
VP	$\rightarrow VNP$.20	N	\longrightarrow	meal	.01
V	\rightarrow includes	.05	N	\longrightarrow	flight	.02

Det: 0.4		
[0,1]		

Det: 0.4			
[0,1]			
	N: 0.2		
	[1,2]		

Det: 0.4 [0,1]	NP: 0.3*0.4*0.2 =.0024 [0,2]		
	N: 0.2 [1,2]		

Det: 0.4 [0,1]	NP: 0.3*0.4*0.2 =.0024 [0,2]		
	N: 0.2 [1,2]		
		V: 0.05	
		[2,3]	

Det: 0.4 [0,1]	NP: 0.3*0.4*0.2 =.0024 [0,2]		
	N: 0.2 [1,2]	[1,3]	
		V: 0.05 [2,3]	

Det: 0.4	NP: 0.3*0.4*0.2		
[0,1]	=.0024 [0,2]	[0,3]	
	N: 0.2		
	[1,2]	[1,3]	
		V: 0.05	
		[2,3]	

Det: 0.4 [0,1]	NP: 0.3*0.4*0.2 =.0024 [0,2]	[0,3]		
	N: 0.2			
	[1,2]	[1,3]		
		V: 0.05		
		[2,3]		
			Det: 0.4	
			[3,4]	

Det: 0.4 [0,1]	NP: 0.3*0.4*0.2 =.0024 [0,2]	[0,3]		
	N: 0.2 [1,2]	[1,3]		
	L / J	V: 0.05 [2,3]	[2,4]	
		L / - J	Det: 0.4 [3,4]	

Det: 0.4 [0,1]	NP: 0.3*0.4*0.2 =.0024 [0,2]	[0,3]		
	N: 0.2 [1,2]	[1,3]	[1,4]	
	L-,-J	V: 0.05 [2,3]	[2,4]	
		L / - J	Det: 0.4 [3,4]	

Det: 0.4	NP: 0.3*0.4*0.2 =.0024			
[0,1]	[0,2]	[0,3]	[0,4]	
	N: 0.2			
	[1,2]	[1,3]	[1,4]	
		V: 0.05		
		[2,3]	[2,4]	
			Det: 0.4	
			[3,4]	

Det: 0.4 [0,1]	NP: 0.3*0.4*0.02 =.0024 [0,2]	[0,3]	[0,4]	
	N: 0.2 [1,2]	[1,3]	[1,4]	
		V: 0.05		
		[2,3]	[2,4]	
			Det: 0.4	
			[3,4]	
				N: 0.01 [4,5]

Det: 0.4 [0,1]	NP: 0.3*0.4*0.02 =.0024 [0,2]	[0,3]	[0,4]	
	N: 0.2 [1,2]	[1,3]	[1,4]	
		V: 0.05		
		[2,3]	[2,4]	
			Det: 0.4	NP: 0.3*0.4*0.01
			[3,4]	=0.0012 [3,5]
				N: 0.01 [4,5]

Det: 0.4 [0,1]	NP: 0.3*0.4*0.02 =.0024 [0,2]	[0,3]	[0,4]	
	N: 0.2 [1,2]	[1,3]	[1,4]	
		V: 0.05 [2,3]	[2,4]	VP: 0.2*0.05* 0.0012=0.0 00012 [2,5]
			Det: 0.4 [3,4]	NP: 0.3*0.4*0.01 =0.0012 [3,5]
				N: 0.01 [4,5]

Det: 0.4 [0,1]	NP: 0.3*0.4*0.02 =.0024 [0,2]	[0,3]	[0,4]	S: 0.8* 0.000012* 0.0024 [0,5]
	N: 0.2 [1,2]	[1,3]	[1,4]	[1,5]
		V: 0.05 [2,3]	[2,4]	VP: 0.2*0.05* 0.0012=0.0 00012 [2,5]
			Det: 0.4 [3,4]	NP: 0.3*0.4*0.01 =0.0012 [3,5]
				N: 0.01 [4,5]

Probabilistic Parser Development Paradigm

- Training:
 - (Large) Set of sentences with associated parses (Treebank)
 - E.g., Wall Street Journal section of Penn Treebank, sec 2-21
 - 39,830 sentences
 - Used to estimate rule probabilities

Probabilistic Parser Development Paradigm

- Training:
 - (Large) Set of sentences with associated parses (Treebank)
 - E.g., Wall Street Journal section of Penn Treebank, sec 2-21
 - 39,830 sentences
 - Used to estimate rule probabilities
- Development (dev):
 - (Small) Set of sentences with associated parses (WSJ, 22)
 - Used to tune/verify parser; check for overfitting, etc.

Probabilistic Parser Development Paradigm

- Training:
 - (Large) Set of sentences with associated parses (Treebank)
 - E.g., Wall Street Journal section of Penn Treebank, sec 2-21
 - 39,830 sentences
 - Used to estimate rule probabilities
- Development (dev):
 - (Small) Set of sentences with associated parses (WSJ, 22)
 - Used to tune/verify parser; check for overfitting, etc.
- Test:
 - (Small-med) Set of sentences w/parses (WSJ, 23)
 - 2416 sentences
 - Held out, used for final evaluation

- Assume a 'gold standard' set of parses for test set
- How can we tell how good the parser is?
- How can we tell how good a parse is?

- Assume a 'gold standard' set of parses for test set
- How can we tell how good the parser is?
- How can we tell how good a parse is?
 - Maximally strict: identical to 'gold standard'

- Assume a 'gold standard' set of parses for test set
- How can we tell how good the parser is?
- How can we tell how good a parse is?
 - Maximally strict: identical to 'gold standard'
 - Partial credit:

- Assume a 'gold standard' set of parses for test set
- How can we tell how good the parser is?
- How can we tell how good a parse is?
 - Maximally strict: identical to 'gold standard'
 - Partial credit:
 - Constituents in output match those in reference
 - Same start point, end point, non-terminal symbol

Parseval

- How can we compute parse score from constituents?
- Multiple measures:
 - Labeled recall (LR):
 - # of correct constituents in hyp. parse
 - # of constituents in reference parse

Parseval

- How can we compute parse score from constituents?
- Multiple measures:
 - Labeled recall (LR):
 - # of correct constituents in hyp. parse
 - # of constituents in reference parse
 - Labeled precision (LP):
 - # of correct constituents in hyp. parse
 - # of total constituents in hyp. parse

Parseval (cont'd)

- F-measure:
 - Combines precision and recall

$$F_{\beta} = \frac{(\beta^2 + 1)PR}{\beta^2 (P + R)}$$

• F1-measure:
$$\beta = 1$$
 $F_1 = \frac{2PR}{(P+R)}$

- Crossing-brackets:
 - # of constituents where reference parse has bracketing ((A B) C) and hyp. has (A (B C))

- Gold standard
 - (S (NP (A a)) (VP (B b) (NP (C c)) (PP (D d))))
- Hypothesis
 - (S (NP (A a)) (VP (B b) (NP (C c) (PP (D d)))))

- Gold standard
 - (S (NP (A a)) (VP (B b) (NP (C c)) (PP (D d))))
- Hypothesis
 - (S (NP (A a)) (VP (B b) (NP (C c) (PP (D d)))))
- G: S(0,4) NP(0,1) VP (1,4) NP (2,3) PP(3,4)

- Gold standard
 - (S (NP (A a)) (VP (B b) (NP (C c)) (PP (D d))))
- Hypothesis
 - (S (NP (A a)) (VP (B b) (NP (C c) (PP (D d)))))
- G: S(0,4) NP(0,1) VP (1,4) NP (2,3) PP(3,4)
- H: S(0,4) NP(0,1) VP (1,4) NP (2,4) PP(3,4)

- Gold standard
 - (S (NP (A a)) (VP (B b) (NP (C c)) (PP (D d))))
- Hypothesis
 - (S (NP (A a)) (VP (B b) (NP (C c) (PP (D d)))))
- G: S(0,4) NP(0,1) VP (1,4) NP (2,3) PP(3,4)
- H: S(0,4) NP(0,1) VP (1,4) NP (2,4) PP(3,4)
- LP: 4/5

Precision and Recall

- Gold standard
 - (S (NP (A a)) (VP (B b) (NP (C c)) (PP (D d))))
- Hypothesis
 - (S (NP (A a)) (VP (B b) (NP (C c) (PP (D d)))))
- G: S(0,4) NP(0,1) VP (1,4) NP (2,3) PP(3,4)
- H: S(0,4) NP(0,1) VP (1,4) NP (2,4) PP(3,4)
- LP: 4/5
- LR: 4/5

Precision and Recall

- Gold standard
 - (S (NP (A a)) (VP (B b) (NP (C c)) (PP (D d))))
- Hypothesis
 - (S (NP (A a)) (VP (B b) (NP (C c) (PP (D d)))))
- G: S(0,4) NP(0,1) VP (1,4) NP (2,3) PP(3,4)
- H: S(0,4) NP(0,1) VP (1,4) NP (2,4) PP(3,4)
- LP: 4/5
- LR: 4/5
- F1: 4/5

State-of-the-Art Parsing

- Parsers trained/tested on Wall Street Journal PTB
 - LR: 90%;
 - LP: 90%;
 - Crossing brackets: 1%
- Standard implementation of Parseval: evalb

Evaluation Issues

Constituents?

Evaluation Issues

- Constituents?
 - Other grammar formalisms
 - LFG, Dependency structure, ...
 - Require conversion to PTB format

Evaluation Issues

- Constituents?
 - Other grammar formalisms
 - LFG, Dependency structure, ...
 - Require conversion to PTB format
 - Extrinsic evaluation
 - How well does this match semantics, etc?

- Independence assumptions:
 - Rule expansion is context-independent
 - Allows us to multiply probabilities
 - Is this valid?

- Independence assumptions:
 - Rule expansion is context-independent
 - Allows us to multiply probabilities
 - Is this valid?

	Pronoun	Non-pronoun
Subject	91%	9%
Object		

- Independence assumptions:
 - Rule expansion is context-independent
 - Allows us to multiply probabilities
 - Is this valid?

	Pronoun	Non-pronoun			
Subject	91%	9%			
Object	34%	66%			

- Independence assumptions:
 - Rule expansion is context-independent
 - Allows us to multiply probabilities
 - Is this valid?

	Pronoun	Non-pronoun
Subject	91%	9%
Object	34%	66%

- In Treebank: roughly equi-probable
- How can we handle this?

- Independence assumptions:
 - Rule expansion is context-independent
 - Allows us to multiply probabilities
 - Is this valid?

	Pronoun	Non-pronoun
Subject	91%	9%
Object	34%	66%

- In Treebank: roughly equi-probable
- How can we handle this?
 - Condition on Subj/Obj with parent annotation

- Insufficient lexical conditioning
 - Present in pre-terminal rules
- Are there cases where other rules should be conditioned on words?

- Insufficient lexical conditioning
 - Present in pre-terminal rules
- Are there cases where other rules should be conditioned on words?

- Insufficient lexical conditioning
 - Present in pre-terminal rules
- Are there cases where other rules should be conditioned on words?

Different verbs & prepositions have different attachment preferences

Parser Issues

- PCFGs make many (unwarranted) independence assumptions
 - Structural Dependency
 - NP -> Pronoun: much more likely in subject position
 - Lexical Dependency
 - Verb subcategorization
 - Coordination ambiguity

Improving PCFGs: Structural Dependencies

- How can we capture Subject/Object asymmetry?
 - E.g., $NP_{subj} \rightarrow Pron vs NP_{Obj} \rightarrow Pron$

Improving PCFGs: Structural Dependencies

- How can we capture Subject/Object asymmetry?
 - E.g., $NP_{subj} \rightarrow Pron vs NP_{Obj} \rightarrow Pron$
- Parent annotation:
 - Annotate each node with parent in parse tree
 - E.g., NP^S vs NP^VP

Improving PCFGs: Structural Dependencies

- How can we capture Subject/Object asymmetry?
 - E.g., NP_{subj}-→ Pron vs NP_{Obj}→Pron
- Parent annotation:
 - Annotate each node with parent in parse tree
 - E.g., NP^S vs NP^VP
 - Also annotate pre-terminals:
 - RB^ADVP vs RB^VP
 - IN^SBAR vs IN^PP
- Can also split rules on other conditions

Parent Annotaation

Parent Annotation: Pre-terminals

Parent Annotaation

- Advantages:
 - Captures structural dependency in grammars

Parent Annotation

- Advantages:
 - Captures structural dependency in grammars
- Disadvantages:
 - Increases number of rules in grammar

Parent Annotation

- Advantages:
 - Captures structural dependency in grammars
- Disadvantages:
 - Increases number of rules in grammar
 - Decreases amount of training per rule
 - Strategies to search for optimal # of rules

- Lexicalized rules:
 - Best known parsers: Collins, Charniak parsers

- Lexicalized rules:
 - Best known parsers: Collins, Charniak parsers
 - Each non-terminal annotated with its lexical head
 - E.g. verb with verb phrase, noun with noun phrase

- Lexicalized rules:
 - Best known parsers: Collins, Charniak parsers
 - Each non-terminal annotated with its lexical head
 - E.g. verb with verb phrase, noun with noun phrase
 - Each rule must identify RHS element as head
 - Heads propagate up tree

- Lexicalized rules:
 - Best known parsers: Collins, Charniak parsers
 - Each non-terminal annotated with its lexical head
 - E.g. verb with verb phrase, noun with noun phrase
 - Each rule must identify RHS element as head
 - Heads propagate up tree
 - Conceptually like adding 1 rule per head value
 - VP(dumped) → VBD(dumped)NP(sacks)PP(into)
 - VP(dumped) → VBD(dumped)NP(cats)PP(into)

- Also, add head tag to non-terminals
 - Head tag: Part-of-speech tag of head word
 - VP(dumped) → VBD(dumped)NP(sacks)PP(into)
 - VP(dumped,VBD) → VBD(dumped,VBD)NP(sacks,NNS)PP(into,IN)

- Also, add head tag to non-terminals
 - Head tag: Part-of-speech tag of head word
 - VP(dumped) → VBD(dumped)NP(sacks)PP(into)
 - VP(dumped,VBD) → VBD(dumped,VBD)NP(sacks,NNS)PP(into,IN)
- Two types of rules:
 - Lexical rules: pre-terminal → word

- Also, add head tag to non-terminals
 - Head tag: Part-of-speech tag of head word
 - VP(dumped) → VBD(dumped)NP(sacks)PP(into)
 - VP(dumped,VBD) → VBD(dumped,VBD)NP(sacks,NNS)PP(into,IN)
- Two types of rules:
 - Lexical rules: pre-terminal → word
 - Deterministic, probability 1

- Also, add head tag to non-terminals
 - Head tag: Part-of-speech tag of head word
 - VP(dumped) → VBD(dumped)NP(sacks)PP(into)
 - VP(dumped,VBD) → VBD(dumped,VBD)NP(sacks,NNS)PP(into,IN)
- Two types of rules:
 - Lexical rules: pre-terminal → word
 - Deterministic, probability 1
 - Internal rules: all other expansions

- Also, add head tag to non-terminals
 - Head tag: Part-of-speech tag of head word
 - VP(dumped) → VBD(dumped)NP(sacks)PP(into)
 - VP(dumped,VBD) → VBD(dumped,VBD)NP(sacks,NNS)PP(into,IN)
- Two types of rules:
 - Lexical rules: pre-terminal → word
 - Deterministic, probability 1
 - Internal rules: all other expansions
 - Must estimate probabilities

Internal Rules				Lexical Rules		
TOP	\rightarrow	S(dumped, VBD)		NNS(workers,NNS)	$ \to $	workers
S(dumped, VBD)	\rightarrow	NP(workers,NNS)	VP(dumped,VBD)	VBD(dumped, VBD)	\rightarrow	dumped
NP(workers,NNS)	\longrightarrow	NNS(workers,NNS)	VI. VI.	NNS(sacks,NNS)	\rightarrow	sacks
VP(dumped, VBD)	\rightarrow	VBD(dumped, VBD)	NP(sacks,NNS) PP(into,P)	P(into,P)	\rightarrow	into
PP(into,P)	\rightarrow	P(into,P)	NP(bin,NN)	DT(a,DT)	\rightarrow	a
NP(bin,NN)	\rightarrow	DT(a,DT)	NN(bin,NN)	NN(bin,NN)	\rightarrow	bin

PLCFGs

• Issue:

PLCFGs

- Issue: Too many rules
 - No way to find corpus with enough examples

PLCFGs

- Issue: Too many rules
 - No way to find corpus with enough examples
- (Partial) Solution: Independence assumed
 - Condition rule on

PLCFGs

- Issue: Too many rules
 - No way to find corpus with enough examples
- (Partial) Solution: Independence assumed
 - Condition rule on
 - Category of LHS, head
 - Condition head on

PLCFGs

- Issue: Too many rules
 - No way to find corpus with enough examples
- (Partial) Solution: Independence assumed
 - Condition rule on
 - Category of LHS, head
 - Condition head on
 - Category of LHS and parent's head

PLCFGs

- Issue: Too many rules
 - No way to find corpus with enough examples
- (Partial) Solution: Independence assumed
 - Condition rule on
 - Category of LHS, head
 - Condition head on
 - Category of LHS and parent's head

$$P(T,S) = \prod_{n \in T} p(r(n) | n, h(n)) * p(h(n) | n, h(m(n)))$$

Disambiguation Example

Disambiguation Example

$$P(VP \to VBDNPPP | VP, dumped)$$

$$= \frac{C(VP(dumped) \to VBDNPP)}{\sum_{\beta} C(VP(dumped) \to \beta)}$$

$$= 6/9 = 0.67$$

$$p(VP \to VBDNP \mid VP, dumped)$$

$$= \frac{C(VP(dumped) \to VBDNP)}{\sum_{\beta} C(VP(dumped) \to \beta)}$$

$$= 0/9 = 0$$

$$p(in | PP, dumped)$$

$$= \frac{C(X(dumped) \rightarrow ...PP(in)..)}{\sum_{\beta} C(X(dumped) \rightarrow ...PP...)}$$

$$= 2/9 = 0.22$$

$$p(in | PP, sacks)$$

$$= \frac{C(X(sacks) \rightarrow ...PP(in)...)}{\sum_{\beta} C(X(sacks) \rightarrow ...PP...)}$$

$$= 0/0$$

- CNF factorization:
 - Converts n-ary branching to binary branching

- CNF factorization:
 - Converts n-ary branching to binary branching
 - Can maintain information about original structure
 - Neighborhood history and parent
 - Issue:
 - Potentially explosive

- CNF factorization:
 - Converts n-ary branching to binary branching
 - Can maintain information about original structure
 - Neighborhood history and parent
 - Issue:
 - Potentially explosive
 - If keep all context: 72 -> 10K non-terminals!!!

- CNF factorization:
 - Converts n-ary branching to binary branching
 - Can maintain information about original structure
 - Neighborhood history and parent
 - Issue:
 - Potentially explosive
 - If keep all context: 72 -> 10K non-terminals!!!
 - How much context should we keep?
 - What Markov order?

Different Markov Orders

Markovization & Costs

(Mohri & Roark 2006)

PCFG	Time (s)	Words/s	V	P	LR	LP	F
Right-factored	4848	6.7	10105	23220	69.2	73.8	71.5
Right-factored, Markov order-2	1302	24.9	2492	11659	68.8	73.8	71.3
Right-factored, Markov order-1	445	72.7	564	6354	68.0	73.0	70.5
Right-factored, Markov order-0	206	157.1	99	3803	61.2	65.5	63.3
Parent-annotated, Right-factored, Markov order-2	7510	4.3	5876	22444	76.2	78.3	77.2

Improving PCFGs: Tradeoffs

- Tensions:
 - Increase accuracy:
 - Increase specificity
 - E.g. Lexicalizing, Parent annotation, Markovization, etc
 - Increases grammar
 - Increases processing times
 - Increases training data requirements
- How can we balance?

Efficiency

- PCKY is |G|n³
 - Grammar can be huge
 - Grammar can be extremely ambiguous
 - 100s of analyses not unusual, esp. for long sentences
- However, only care about best parses
 - Others can be pretty bad
- Can we use this to improve efficiency?

Beam Thresholding

- Inspired by beam search algorithm
- Assume low probability partial parses unlikely to yield high probability overall
 - Keep only top k most probably partial parses
 - Retain only k choices per cell
 - For large grammars, could be 50 or 100
 - For small grammars, 5 or 10

• Intuition: Some rules/partial parses are unlikely to end up in best parse. Don't store those in table.

• Intuition: Some rules/partial parses are unlikely to end up in best parse. Don't store those in table.

- Exclusions:
 - Low frequency: exclude singleton productions

 Intuition: Some rules/partial parses are unlikely to end up in best parse. Don't store those in table.

- Exclusions:
 - Low frequency: exclude singleton productions
 - Low probability: exclude constituents x s.t. $p(x) < 10^{-200}$

 Intuition: Some rules/partial parses are unlikely to end up in best parse. Don't store those in table.

- Exclusions:
 - Low frequency: exclude singleton productions
 - Low probability: exclude constituents x s.t. $p(x) < 10^{-200}$
 - Low relative probability:
 - Exclude x if there exists y s.t. p(y) > 100 * p(x)

Notes on HW#3

- Outline:
 - Induce grammar from (small) treebank
 - Implement Probabilistic CKY
 - Evaluate parser
 - Improve parser

Treebank Format

- Adapted from Penn Treebank Format
 - Rules simplified:
 - Removed traces and other null elements
 - Removed complex tags
 - Reformatted POS tags as non-terminals

Reading the Parses

- POS unary collapse:
 - (NP_NNP Ontario)
 - was
 - (NP (NNP Ontario))
- Binarization:
 - VP -> VP' PP; VP' -> VB PP
 - Was
 - VP -> VB PP PP

Start Early!