PCFG Parsing, Evaluation, \& Improvements

Ling 571
Deep Processing Techniques for NLP January 28, 2014

Roadmap

- Parsing PCGFs:
- Probabilistic CKY parsing
- Evaluation
- Parseval
- Issues:
- Positional and lexical independence assumptions
- Improvements:
- Lexicalization: PLCFGs

Parsing Problem for PCFGs

- Select T such that:

$$
\hat{T}(S)=\underset{T s . t, S=\operatorname{yield}_{(T)}}{\operatorname{argmax}} P(T)
$$

- String of words S is yield of parse tree over S
- Select tree that maximizes probability of parse

Parsing Problem for PCFGs

- Select T such that:

$$
\hat{T}(S)=\underset{T s . t, S=\operatorname{yield}^{(T)}}{\operatorname{argmax}} P(T)
$$

- String of words S is yield of parse tree over S
- Select tree that maximizes probability of parse
- Extend existing algorithms: CKY \& Earley
- Most modern PCFG parsers based on CKY
- Augmented with probabilities

Probabilistic CKY

- Like regular CKY
- Assume grammar in Chomsky Normal Form (CNF)
- Productions:
- A -> B C or A -> w
- Represent input with indices b/t words
- E.g., o Book ${ }_{1}$ that ${ }_{2}$ flight ${ }_{3}$ through $_{4}$ Houston $_{5}$

Probabilistic CKY

- Like regular CKY
- Assume grammar in Chomsky Normal Form (CNF)
- Productions:
- A -> B C or A -> w
- Represent input with indices b/t words
- E.g., o Book ${ }_{1}$ that ${ }_{2}$ flight ${ }_{3}$ through $_{4}$ Houston $_{5}$
- For input string length n and non-terminals V
- Cell[i,j,A] in $(n+1) x(n+1) x V$ matrix contains
- Probability that constituent A spans [i,j]

Probabilistic CKY Algorithm

function PROBABILISTIC-CKY(words,grammar) returns most probable parse and its probability
for $j \leftarrow$ from 1 to LENGTH(words) do
for all $\{A \mid A \rightarrow$ words $[j] \in$ grammar $\}$
table $[j-1, j, A] \leftarrow P(A \rightarrow$ words $[j])$
for $i \leftarrow$ from $j-2$ downto 0 do
for $k \leftarrow i+1$ to $j-1$ do
for all $\{A \mid A \rightarrow B C \in$ grammar,
and table $[i, k, B]>0$ and table $[k, j, C]>0\}$
if $($ table $[i, j, A]<P(A \rightarrow B C) \times$ table $[i, k, B] \times$ table $[k, j, C])$ then table $[i, j, A] \leftarrow P(A \rightarrow B C) \times$ table $[i, k, B] \times$ table $[k, j, C]$ back $[i, j, A] \leftarrow\{k, B, C\}$
return BUILD_TREE(back[1, LENGTH(words), S]), table[1, LENGTH(words), S]

PCKY Grammar Segment

S	$\rightarrow N P V P$.80	Det \rightarrow the

PCKY Matrix:
 The flight includes a meal

Det: 0.4				
[0,1]				

PCKY Matrix:
 The flight includes a meal

$\left.\begin{array}{|l|l|l|l|l|}\hline \begin{array}{l}\text { Det: } \mathbf{0 . 4} \\ \text { [0,1] }\end{array} & & & & \\ \hline & \text { N: 0.2 } \\ {[1,2]}\end{array}\right)$

PCKY Matrix:
 The flight includes a meal

Det: 0.4	NP: $0.3^{* 0.4 * 0.2 ~}$ [0,1] $=.0024$ $[0,2]$			
	N: 0.2			
	$[1,2]$			

PCKY Matrix:
 The flight includes a meal

Det: 0.4	NP: $0.3 * 0.4 * 0.2$ [0,1] [0.224			
	N: 0.2			
	$[1,2]$			
		V: 0.05		
		$[2,3]$		

PCKY Matrix:
 The flight includes a meal

Det: 0.4	NP: 0.3*0.4*0.2 [0,1] .0024			
	N: 0.2$]$			
	$[1,2]$	$[1,3]$		
		$\mathrm{V}: 0.05$		
		$[2,3]$		

PCKY Matrix:
 The flight includes a meal

Det: 0.4	NP: $0.3 * 0.4 * 0.2$ [0,1] $[0.224$			
	N: 0,3$]$			
	$[1,2]$	$[1,3]$		
		V: 0.05		
		$[2,3]$		

PCKY Matrix:
 The flight includes a meal

Det: $\mathbf{0 . 4}$	NP: O.3*0.4*0.2 [0,1] $[0,2]$			
	N: 0.2			
	$[1,2]$	$[1,3]$		
		V: 0.05		
		$[2,3]$		
			Det: 0.4	
			$[3,4]$	

PCKY Matrix:
 The flight includes a meal

Det: $\mathbf{0 . 4}$	NP: O.3*0.4*0.2 [0,1] $[0,2]$			
	N: 0.2			
	$[1,2]$	$[1,3]$		
		V: 0.05		
		$[2,3]$	$[2,4]$	
			Det: 0.4	
			$[3,4]$	

PCKY Matrix:
 The flight includes a meal

Det: 0.4 $[0,1]$	$\begin{array}{\|l\|} \hline \text { NP: } \\ 0.3 * 0.4 * 0.2 \\ =.0024 \\ {[0,2]} \end{array}$	[0,3]		
	$\begin{aligned} & \mathrm{N}: 0.2 \\ & {[1,2]} \end{aligned}$	[1,3]	[1,4]	
		$\begin{aligned} & \mathrm{V}: 0.05 \\ & {[2,3]} \end{aligned}$	[2,4]	
			$[3,4]$	

PCKY Matrix:
 The flight includes a meal

Det: $\mathbf{0 . 4}$	NP: 0.3*0.4*0.2 [0,1] $[0,022$	$[0,3]$	$[\mathbf{0 , 4]}$	
	$\mathrm{N}: 0.2$			
	$[1,2]$	$[1,3]$	$[1,4]$	
		$\mathrm{V}: 0.05$		
		$[2,3]$	$[2,4]$	
			Det: 0.4	
			$[3,4]$	

PCKY Matrix:
 The flight includes a meal

Det: 0.4 $[0,1]$	NP: $\begin{aligned} & 0.3 * 0.4 * 0.02 \\ & =.0024 \end{aligned}$ $[0,2]$	[0,3]	[0,4]	
	$\begin{aligned} & \mathrm{N}: 0.2 \\ & {[1,2]} \end{aligned}$	[1,3]	[1,4]	
		$\begin{aligned} & \mathrm{V}: 0.05 \\ & {[2,3]} \end{aligned}$	[2,4]	
			Det: 0.4 $[3,4]$	
				$\begin{aligned} & \mathrm{N}: 0.01 \\ & {[4,5]} \end{aligned}$

PCKY Matrix:
 The flight includes a meal

Det: 0.4 $[0,1]$	$\begin{aligned} & \text { NP: } \\ & 0.3 * 0.4 * 0.02 \\ & =.0024 \\ & {[0,2]} \end{aligned}$	[0,3]	[0,4]	
	$\begin{aligned} & \mathrm{N}: 0.2 \\ & {[1,2]} \end{aligned}$	[1,3]	[1,4]	
		$\begin{aligned} & \mathrm{V}: 0.05 \\ & {[2,3]} \end{aligned}$	[2,4]	
			Det: 0.4 $[3,4]$	$\begin{aligned} & \text { NP: } \\ & 0.3 * 0.4 * 0.01 \\ & =0.0012 \\ & {[3,5]} \end{aligned}$
				$\begin{aligned} & \mathrm{N}: 0.01 \\ & {[4,5]} \end{aligned}$

PCKY Matrix:
 The flight includes a meal

Det: 0.4 $[0,1]$	$\begin{aligned} & \text { NP: } \\ & 0.3^{*} 0.4^{*} 0.02 \\ & =.0024 \\ & {[0,2]} \end{aligned}$	[0,3]	[0,4]	
	$\begin{aligned} & \mathrm{N}: 0.2 \\ & {[1,2]} \end{aligned}$	[1,3]	[1,4]	
		$\begin{aligned} & V: 0.05 \\ & {[2,3]} \end{aligned}$	[2,4]	VP: 0.2*0.05* $0.0012=0.0$ $00012[2,5]$ 00012 [2,5]
			Det: 0.4 $[3,4]$	$\begin{aligned} & \text { NP: } \\ & 0.3 * 0.4 * 0.01 \\ & =0.0012 \\ & {[3,5]} \end{aligned}$
				$\begin{aligned} & \mathrm{N}: 0.01 \\ & {[4,5]} \end{aligned}$

PCKY Matrix:
 The flight includes a meal

Det: $\mathbf{0 . 4}$	NP: 0.3*0.4*0.02 [0,1] =.0024 $[0,2]$		$[\mathbf{0 , 3]}$	$[\mathbf{0 , 4]}$

Probabilistic Parser Development Paradigm

- Training:
- (Large) Set of sentences with associated parses (Treebank)
- E.g., Wall Street Journal section of Penn Treebank, sec 2-21
- 39,830 sentences
- Used to estimate rule probabilities

Probabilistic Parser Development Paradigm

- Training:
- (Large) Set of sentences with associated parses (Treebank)
- E.g., Wall Street Journal section of Penn Treebank, sec 2-21
- 39,830 sentences
- Used to estimate rule probabilities
- Development (dev):
- (Small) Set of sentences with associated parses (WSJ, 22) - Used to tune/verify parser; check for overfitting, etc.

Probabilistic Parser Development Paradigm

- Training:
- (Large) Set of sentences with associated parses (Treebank)
- E.g., Wall Street Journal section of Penn Treebank, sec 2.21
- 39,830 sentences
- Used to estimate rule probabilities
- Development (dev):
- (Small) Set of sentences with associated parses (WSJ, 22)
- Used to tune/verify parser; check for overfitting, etc.
- Test:
- (Small-med) Set of sentences w/parses (WSJ, 23)
- 2416 sentences
- Held out, used for final evaluation

Parser Evaluation

- Assume a 'gold standard' set of parses for test set
- How can we tell how good the parser is?
- How can we tell how good a parse is?

Parser Evaluation

- Assume a 'gold standard' set of parses for test set
- How can we tell how good the parser is?
- How can we tell how good a parse is?
- Maximally strict: identical to 'gold standard'

Parser Evaluation

- Assume a 'gold standard' set of parses for test set
- How can we tell how good the parser is?
- How can we tell how good a parse is?
- Maximally strict: identical to 'gold standard'
- Partial credit:

Parser Evaluation

- Assume a 'gold standard’ set of parses for test set
- How can we tell how good the parser is?
- How can we tell how good a parse is?
- Maximally strict: identical to 'gold standard'
- Partial credit:
- Constituents in output match those in reference
- Same start point, end point, non-terminal symbol

Parseval

- How can we compute parse score from constituents?
- Multiple measures:
- Labeled recall (LR):
- \# of correct constituents in hyp. parse
- \# of constituents in reference parse

Parseval

- How can we compute parse score from constituents?
- Multiple measures:
- Labeled recall (LR):
- \# of correct constituents in hyp. parse
- \# of constituents in reference parse
- Labeled precision (LP):
- \# of correct constituents in hyp. parse
- \# of total constituents in hyp. parse

Parseval (cont'd)

- F-measure:
- Combines precision and recall

$$
F_{\beta}=\frac{\left(\beta^{2}+1\right) P R}{\beta^{2}(P+R)}
$$

- F1-measure: $\beta=1 \quad F_{1}=\frac{2 P R}{(P+R)}$
- Crossing-brackets:
- \# of constituents where reference parse has bracketing ((A B) C) and hyp. has (A (B C))

Precision and Recall

- Gold standard
- (S (NP (A a)) (VP (B b) (NP (C c)) (PP (D d))))
- Hypothesis
- (S (NP (A a)) (VP (B b) (NP (C c) (PP (D d)))))

Precision and Recall

- Gold standard
- (S (NP (A a)) (VP (B b) (NP (C c)) (PP (D d))))
- Hypothesis
- (S (NP (A a)) (VP (B b) (NP (C c) (PP (D d)))))
- $G: S(0,4) N P(0,1) V P(1,4) N P(2,3) P P(3,4)$

Precision and Recall

- Gold standard
- (S (NP (A a)) (VP (B b) (NP (C c)) (PP (D d))))
- Hypothesis
- (S (NP (A a)) (VP (B b) (NP (C c) (PP (D d)))))
- $G: S(0,4) N P(0,1) \vee P(1,4) N P(2,3) P P(3,4)$
- H: $S(0,4) N P(0,1) V P(1,4) N P(2,4) P P(3,4)$

Precision and Recall

- Gold standard
- (S (NP (A a)) (VP (B b) (NP (C c)) (PP (D d))))
- Hypothesis
- (S (NP (A a)) (VP (B b) (NP (C c) (PP (D d)))))
- $G: S(0,4) N P(0,1) \vee P(1,4) N P(2,3) P P(3,4)$
- H: S(0,4) NP(0,1)VP(1,4)NP(2,4)PP(3,4)
- LP: 4/5

Precision and Recall

- Gold standard
- (S (NP (A a)) (VP (B b) (NP (C c)) (PP (D d))))
- Hypothesis
- (S (NP (A a)) (VP (B b) (NP (C c) (PP (D d)))))
- $G: S(0,4) N P(0,1) V P(1,4) N P(2,3) P P(3,4)$
- H: $S(0,4) N P(0,1) V P(1,4) N P(2,4) P P(3,4)$
- LP: 4/5
- LR: 4/5

Precision and Recall

- Gold standard
- (S (NP (A a)) (VP (B b) (NP (C c)) (PP (D d))))
- Hypothesis
- (S (NP (A a)) (VP (B b) (NP (C c) (PP (D d)))))
- $G: S(0,4) N P(0,1) V P(1,4) N P(2,3) P P(3,4)$
- H: S(0,4) NP(0,1)VP(1,4)NP(2,4)PP(3,4)
- LP: 4/5
- LR: 4/5
- F1: 4/5

State-of-the-Art Parsing

- Parsers trained/tested on Wall Street Journal PTB
- LR: 90\%;
- LP: 90\%;
- Crossing brackets: 1%
- Standard implementation of Parseval: evalb

Evaluation Issues

- Constituents?

Evaluation Issues

- Constituents?
- Other grammar formalisms
- LFG, Dependency structure, ..
- Require conversion to PTB format

Evaluation Issues

- Constituents?
- Other grammar formalisms
- LFG, Dependency structure, ..
- Require conversion to PTB format
- Extrinsic evaluation
- How well does this match semantics, etc?

Issues with PCFGs

- Independence assumptions:
- Rule expansion is context-independent
- Allows us to multiply probabilities
- Is this valid?

Issues with PCFGs

- Independence assumptions:
- Rule expansion is context-independent
- Allows us to multiply probabilities
- Is this valid?

	Pronoun	Non-pronoun
Subject	91%	9%
Object		

Issues with PCFGs

- Independence assumptions:
- Rule expansion is context-independent
- Allows us to multiply probabilities
- Is this valid?

	Pronoun	Non-pronoun
Subject	91%	9%
Object	34%	66%

Issues with PCFGs

- Independence assumptions:
- Rule expansion is context-independent
- Allows us to multiply probabilities
- Is this valid?

	Pronoun	Non-pronoun
Subject	91%	9%
Object	34%	66%

- In Treebank: roughly equi-probable
- How can we handle this?

Issues with PCFGs

- Independence assumptions:
- Rule expansion is context-independent
- Allows us to multiply probabilities
- Is this valid?

	Pronoun	Non-pronoun
Subject	91%	9%
Object	34%	66%

- In Treebank: roughly equi-probable
- How can we handle this?

Condition on Subj/Obj with parent annotation

Issues with PCFGs

- Insufficient lexical conditioning
- Present in pre-terminal rules
- Are there cases where other rules should be conditioned on words?

Issues with PCFGs

- Insufficient lexical conditioning
- Present in pre-terminal rules
- Are there cases where other rules should be conditioned on words?

Issues with PCFGs

- Insufficient lexical conditioning
- Present in pre-terminal rules
- Are there cases where other rules should be conditioned on words?

Different verbs \& prepositions have different attachment preferences

Parser Issues

- PCFGs make many (unwarranted) independence assumptions
- Structural Dependency
- NP .> Pronoun: much more likely in subject position
- Lexical Dependency
- Verb subcategorization
- Coordination ambiguity

Improving PCFGs: Structural Dependencies

- How can we capture Subject/Object asymmetry?
- E.g., $\mathrm{NP}_{\text {subj }} \rightarrow$ Pron vs $\mathrm{NP}_{\text {obj }} \rightarrow$ Pron

Improving PCFGs: Structural Dependencies

- How can we capture Subject/Object asymmetry?
- E.g., $\mathrm{NP}_{\text {subj }} \rightarrow$ Pron vs $\mathrm{NP}_{\text {obj }} \rightarrow$ Pron
- Parent annotation:
- Annotate each node with parent in parse tree
- E.g., NP^S vs NP^VP

Improving PCFGs:
 Structural Dependencies

- How can we capture Subject/Object asymmetry?
- E.g., $\mathrm{NP}_{\text {subj }} \rightarrow$ Pron vs $\mathrm{NP}_{\text {obj }} \rightarrow$ Pron
- Parent annotation:
- Annotate each node with parent in parse tree
- E.g., NP^S vs NP^VP
- Also annotate pre-terminals:
- RB^ADVP vs RB^VP
- IN^SBAR vs IN^PP
- Can also split rules on other conditions

Parent Annotation

Parent Annotation: Pre-terminals

Parent Annotation

- Advantages:
- Captures structural dependency in grammars

Parent Annotation

- Advantages:
- Captures structural dependency in grammars
- Disadvantages:
- Increases number of rules in grammar

Parent Annotation

- Advantages:
- Captures structural dependency in grammars
- Disadvantages:
- Increases number of rules in grammar
- Decreases amount of training per rule
- Strategies to search for optimal \# of rules

Improving PCFGs: Lexical Dependencies

- Lexicalized rules:
- Best known parsers: Collins, Charniak parsers

Improving PCFGs: Lexical Dependencies

- Lexicalized rules:
- Best known parsers: Collins, Charniak parsers
- Each non-terminal annotated with its lexical head
- E.g. verb with verb phrase, noun with noun phrase

Improving PCFGs: Lexical Dependencies

- Lexicalized rules:
- Best known parsers: Collins, Charniak parsers
- Each non-terminal annotated with its lexical head
- E.g. verb with verb phrase, noun with noun phrase
- Each rule must identify RHS element as head
- Heads propagate up tree

Improving PCFGs: Lexical Dependencies

- Lexicalized rules:
- Best known parsers: Collins, Charniak parsers
- Each non-terminal annotated with its lexical head
- E.g. verb with verb phrase, noun with noun phrase
- Each rule must identify RHS element as head
- Heads propagate up tree
- Conceptually like adding 1 rule per head value
- VP(dumped) \rightarrow VBD(dumped)NP(sacks)PP(into)
- VP(dumped) \rightarrow VBD(dumped)NP(cats)PP(into)

Lexicalized PCFGs

- Also, add head tag to non-terminals
- Head tag: Part-of-speech tag of head word
- VP(dumped) \rightarrow VBD(dumped)NP(sacks)PP(into)
- VP(dumped,VBD) \rightarrow VBD(dumped,VBD)NP(sacks,NNS)PP(into,IN)

Lexicalized PCFGs

- Also, add head tag to non-terminals
- Head tag: Part-of-speech tag of head word
- VP(dumped) \rightarrow VBD(dumped)NP(sacks)PP(into)
- VP(dumped,VBD) \rightarrow VBD(dumped,VBD)NP(sacks,NNS)PP(into,IN)
- Two types of rules:
- Lexical rules: pre-terminal \rightarrow word

Lexicalized PCFGs

- Also, add head tag to non-terminals
- Head tag: Part-of-speech tag of head word
- VP(dumped) \rightarrow VBD(dumped)NP(sacks)PP(into)
- VP(dumped,VBD) \rightarrow VBD(dumped,VBD)NP(sacks,NNS)PP(into,IN)
- Two types of rules:
- Lexical rules: pre-terminal \rightarrow word
- Deterministic, probability 1

Lexicalized PCFGs

- Also, add head tag to non-terminals
- Head tag: Part-of-speech tag of head word
- VP(dumped) \rightarrow VBD(dumped)NP(sacks)PP(into)
- VP(dumped,VBD) \rightarrow VBD(dumped,VBD)NP(sacks,NNS)PP(into,IN)
- Two types of rules:
- Lexical rules: pre-terminal \rightarrow word
- Deterministic, probability 1
- Internal rules: all other expansions

Lexicalized PCFGs

- Also, add head tag to non-terminals
- Head tag: Part-of-speech tag of head word
- VP(dumped) \rightarrow VBD(dumped)NP(sacks)PP(into)
- VP(dumped,VBD) \rightarrow VBD(dumped,VBD)NP(sacks,NNS)PP(into,IN)
- Two types of rules:
- Lexical rules: pre-terminal \rightarrow word
- Deterministic, probability 1
- Internal rules: all other expansions
- Must estimate probabilities

PLCFGs

Issue:

PLCFGs

- Issue: Too many rules
- No way to find corpus with enough examples

PLCFGs

- Issue: Too many rules
- No way to find corpus with enough examples
- (Partial) Solution: Independence assumed
- Condition rule on

PLCFGs

- Issue: Too many rules
- No way to find corpus with enough examples
- (Partial) Solution: Independence assumed
- Condition rule on
- Category of LHS, head
- Condition head on

PLCFGs

- Issue: Too many rules
- No way to find corpus with enough examples
- (Partial) Solution: Independence assumed
- Condition rule on
- Category of LHS, head
- Condition head on
- Category of LHS and parent's head

PLCFGs

- Issue: Too many rules
- No way to find corpus with enough examples
- (Partial) Solution: Independence assumed
- Condition rule on
- Category of LHS, head
- Condition head on
- Category of LHS and parent's head

$$
P(T, S)=\prod_{n \in T} p(r(n) \mid n, h(n)) * p(h(n) \mid n, h(m(n)))
$$

Disambiguation Example

Disambiguation Example

$$
\begin{aligned}
& P(V P \rightarrow V B D N P P P \mid V P, \text { dumped }) \\
& =\frac{C(V P(\text { dumped }) \rightarrow V B D N P P)}{\sum_{\beta} C(V P(\text { dumped }) \rightarrow \beta)} \\
& =6 / 9=0.67
\end{aligned}
$$

$$
\begin{aligned}
& p(V P \rightarrow V B D N P \mid V P, \text { dumped }) \\
& =\frac{C(V P(\text { dumped }) \rightarrow V B D N P)}{\sum_{\beta} C(V P(\text { dumped }) \rightarrow \beta)} \\
& =0 / 9=0
\end{aligned}
$$

$$
\begin{aligned}
& p(\text { in } \mid P P, \text { dumped }) \\
& =\frac{C(X(\text { dumped }) \rightarrow \ldots P P(\text { in }) . .)}{\sum_{\beta} C(X(\text { dumped }) \rightarrow \ldots P P \ldots)} \\
& =2 / 9=0.22
\end{aligned}
$$

$$
\begin{aligned}
& p(\text { in } \mid P P, \text { sacks }) \\
& =\frac{C(X(\text { sacks }) \rightarrow \ldots P P(\text { in }) \ldots)}{\sum_{\beta} C(X(\text { sacks }) \rightarrow \ldots P P \ldots)} \\
& =0 / 0
\end{aligned}
$$

CNF Factorization \& Markovization

- CNF factorization:
- Converts n-ary branching to binary branching

CNF Factorization \& Markovization

- CNF factorization:
- Converts n-ary branching to binary branching
- Can maintain information about original structure
- Neighborhood history and parent
- Issue:
- Potentially explosive

CNF Factorization \& Markovization

- CNF factorization:
- Converts n-ary branching to binary branching
- Can maintain information about original structure
- Neighborhood history and parent
- Issue:
- Potentially explosive
- If keep all context: 72 -> 10K non-terminals!!!

CNF Factorization \& Markovization

- CNF factorization:
- Converts n-ary branching to binary branching
- Can maintain information about original structure
- Neighborhood history and parent
- Issue:
- Potentially explosive
- If keep all context: 72 -> 10K non-terminals!!!
- How much context should we keep?
- What Markov order?

Different Markov Orders

Markovization \& Costs

(Mohri \& Roark 2006)

PCFG	Time (s)	Words/s	$\|V\|$	$\|P\|$	LR	LP	F
Right-factored	4848	6.7	10105	23220	69.2	73.8	71.5
Right-factored, Markov order-2	1302	24.9	2492	11659	68.8	73.8	71.3
Right-factored, Markov order-1	445	72.7	564	6354	68.0	73.0	70.5
Right-factored, Markov order-0	206	157.1	99	3803	61.2	65.5	63.3
Parent-annotated, Right-factored, Markov order-2	7510	4.3	5876	22444	76.2	78.3	77.2

Improving PCFGs: Tradeoffs

- Tensions:
- Increase accuracy:
- Increase specificity
- E.g. Lexicalizing, Parent annotation, Markovization,etc
- Increases grammar
- Increases processing times
- Increases training data requirements
- How can we balance?

Efficiency

- PCKY is $|G| n^{3}$
- Grammar can be huge
- Grammar can be extremely ambiguous
- 100s of analyses not unusual, esp. for long sentences
- However, only care about best parses
- Others can be pretty bad
- Can we use this to improve efficiency?

Beam Thresholding

- Inspired by beam search algorithm
- Assume low probability partial parses unlikely to yield high probability overall
- Keep only top k most probably partial parses
- Retain only k choices per cell
- For large grammars, could be 50 or 100
- For small grammars, 5 or 10

Heuristic Filtering

- Intuition: Some rules/partial parses are unlikely to end up in best parse. Don't store those in table.

Heuristic Filtering

- Intuition: Some rules/partial parses are unlikely to end up in best parse. Don't store those in table.
- Exclusions:
- Low frequency: exclude singleton productions

Heuristic Filtering

- Intuition: Some rules/partial parses are unlikely to end up in best parse. Don't store those in table.
- Exclusions:
- Low frequency: exclude singleton productions
- Low probability: exclude constituents x s.t. $p(x)<10 \cdot 200$

Heuristic Filtering

- Intuition: Some rules/partial parses are unlikely to end up in best parse. Don't store those in table.
- Exclusions:
- Low frequency: exclude singleton productions
- Low probability: exclude constituents x s.t. p(x)<10.200
- Low relative probability:
- Exclude x if there exists y s.t. $p(y)>100 * p(x)$

Notes on HW\#3

- Outline:
- Induce grammar from (small) treebank
- Implement Probabilistic CKY
- Evaluate parser
- Improve parser

Treebank Format

- Adapted from Penn Treebank Format
- Rules simplified:
- Removed traces and other null elements
- Removed complex tags
- Reformatted POS tags as non-terminals

Reading the Parses

- POS unary collapse:
- (NP_NNP Ontario)
- was
- (NP (NNP Ontario))
- Binarization:
- VP .> VP' PP; VP' .> VB PP
- Was
- VP .> VB PP PP

Start Early!

