Dependency & Feature-Based Parsing

Deep Processing for NLP Ling571 February 3, 2014

Roadmap

- Dependency Parsing:
 - Convert dependency trees to PS trees
 - Parse using standard algorithms O(n³)
 - Employ graph-based optimization
 - Weights learned by machine learning
 - Shift-reduce approaches based on current word/state
 - Attachment based on machine learning

Dependency Parse Example

They hid the letter on the shelf

Parsing by PS Conversion

- Can map any projective dependency tree to PS tree
 - Non-terminals indexed by words
 - "Projective": no crossing dependency arcs for ordered words

Dep to PS Tree Conversion

- For each node w with outgoing arcs,
 - Convert the subtree w and its dependents t₁,..,t_n to
 - New subtree rooted at X_w with child w and
 - Subtrees at $t_1,...,t_n$ in the original sentence order

Dep to PS Tree Conversion

E.g., for 'effect'

Dep to PS Tree Conversion

E.g., for 'effect'

PS to Dep Tree Conversion

- What about the dependency labels?
 - Attach labels to non-terminals associated with non-heads
 - E.g. X_{little} → X_{little:nmod}

PS to Dep Tree Conversion

- What about the dependency labels?
 - Attach labels to non-terminals associated with non-heads
 - E.g. X_{little} → X_{little:nmod}
- Doesn't create typical PS trees
 - Does create fully lexicalized, context-free trees
 - Also labeled

PS to Dep Tree Conversion

- What about the dependency labels?
 - Attach labels to non-terminals associated with non-heads
 - E.g. X_{little} → X_{little:nmod}
- Doesn't create typical PS trees
 - Does create fully lexicalized, context-free trees
 - Also labeled
- Can be parsed with any standard CFG parser
 - E.g. CKY, Earley

Full Example Trees

- Goal: Find the highest scoring dependency tree T for sentence S
 - If S is unambiguous, T is the correct parse.
 - If S is ambiguous, T is the highest scoring parse.

- Goal: Find the highest scoring dependency tree T for sentence S
 - If S is unambiguous, T is the correct parse.
 - If S is ambiguous, T is the highest scoring parse.
- Where do scores come from?
 - Weights on dependency edges by machine learning
 - Learned from large dependency treebank

- Goal: Find the highest scoring dependency tree T for sentence S
 - If S is unambiguous, T is the correct parse.
 - If S is ambiguous, T is the highest scoring parse.
- Where do scores come from?
 - Weights on dependency edges by machine learning
 - Learned from large dependency treebank
- Where are the grammar rules?

- Goal: Find the highest scoring dependency tree T for sentence S
 - If S is unambiguous, T is the correct parse.
 - If S is ambiguous, T is the highest scoring parse.
- Where do scores come from?
 - Weights on dependency edges by machine learning
 - Learned from large dependency treebank
- Where are the grammar rules?
 - There aren't any; data-driven processing

Map dependency parsing to maximum spanning tree

- Map dependency parsing to maximum spanning tree
- Idea:
 - Build initial graph: fully connected
 - Nodes: words in sentence to parse

- Map dependency parsing to maximum spanning tree
- Idea:
 - Build initial graph: fully connected
 - Nodes: words in sentence to parse
 - Edges: Directed edges between all words
 - + Edges from ROOT to all words

- Map dependency parsing to maximum spanning tree
- Idea:
 - Build initial graph: fully connected
 - Nodes: words in sentence to parse
 - Edges: Directed edges between all words
 - + Edges from ROOT to all words
 - Identify maximum spanning tree
 - Tree s.t. all nodes are connected
 - Select such tree with highest weight

- Map dependency parsing to maximum spanning tree
- Idea:
 - Build initial graph: fully connected
 - Nodes: words in sentence to parse
 - Edges: Directed edges between all words
 - + Edges from ROOT to all words
 - Identify maximum spanning tree
 - Tree s.t. all nodes are connected
 - Select such tree with highest weight
 - Arc-factored model: Weights depend on end nodes & link
 - Weight of tree is sum of participating arcs

Initial Tree

- Sentence: John saw Mary (McDonald et al, 2005)
 - All words connected; ROOT only has outgoing arcs

Initial Tree

- Sentence: John saw Mary (McDonald et al, 2005)
 - All words connected; ROOT only has outgoing arcs
- Goal: Remove arcs to create a tree covering all words
 - Resulting tree is dependency parse

 McDonald et al, 2005 use variant of Chu-Liu-Edmonds algorithm for MST (CLE)

- McDonald et al, 2005 use variant of Chu-Liu-Edmonds algorithm for MST (CLE)
- Sketch of algorithm:
 - For each node, greedily select incoming arc with max w
 - If the resulting set of arcs forms a tree, this is the MST.
 - If not, there must be a cycle.

- McDonald et al, 2005 use variant of Chu-Liu-Edmonds algorithm for MST (CLE)
- Sketch of algorithm:
 - For each node, greedily select incoming arc with max w
 - If the resulting set of arcs forms a tree, this is the MST.
 - If not, there must be a cycle.
 - "Contract" the cycle: Treat it as a single vertex
 - Recalculate weights into/out of the new vertex
 - Recursively do MST algorithm on resulting graph

- McDonald et al, 2005 use variant of Chu-Liu-Edmonds algorithm for MST (CLE)
- Sketch of algorithm:
 - For each node, greedily select incoming arc with max w
 - If the resulting set of arcs forms a tree, this is the MST.
 - If not, there must be a cycle.
 - "Contract" the cycle: Treat it as a single vertex
 - Recalculate weights into/out of the new vertex
 - Recursively do MST algorithm on resulting graph
- Running time: naïve: O(n³); Tarjan: O(n²)
 - Applicable to non-projective graphs

Initial Tree

Find maximum incoming arcs

Find maximum incoming arcs

• Is the result a tree?

- Find maximum incoming arcs
 - Is the result a tree?
 - No
 - Is there a cycle?

- Find maximum incoming arcs
 - Is the result a tree?
 - No
 - Is there a cycle?
 - Yes, John/saw

- Since there's a cycle:
 - Contract cycle & reweight
 - John+saw as single vertex

- Since there's a cycle:
 - Contract cycle & reweight
 - John+saw as single vertex
 - Calculate weights in & out as:
 - Maximum based on internal arcs and original nodes
 - Just single outside arc + (at most) inside
- Recurse

CLE: Recursive Step

- In new graph, find graph of
 - Max weight incoming arc for each word

CLE: Recursive Step

- In new graph, find graph of
 - Max weight incoming arc for each word
- Is it a tree?

CLE: Recursive Step

- In new graph, find graph of
 - Max weight incoming arc for each word
- Is it a tree? Yes!
 - MST, but must recover internal arcs → parse

Learning Weights

- Weights for arc-factored model learned from corpus
 - Weights learned for tuple (w_i,w_i,l)

Learning Weights

- Weights for arc-factored model learned from corpus
 - Weights learned for tuple (w_i,w_i,l)
- McDonald et al, 2005 employed discriminative ML
 - Perceptron algorithm or large margin variant

Learning Weights

- Weights for arc-factored model learned from corpus
 - Weights learned for tuple (w_i,w_i,l)
- McDonald et al, 2005 employed discriminative ML
 - Perceptron algorithm or large margin variant
- Features: Local
 - Base features
 - Identity, POS of w_i,w_i; Label, direction of I
 - Sequence of POS tags, words between w_i,w_i
 - POS of words adjacent to w_i,w_i
 - Also conjunctions of features
 - Projective tree not required

Dependency Parsing

- Dependency grammars:
 - Compactly represent pred-arg structure
 - Lexicalized, localized
 - Natural handling of flexible word order
- Dependency parsing:
 - Conversion to phrase structure trees
 - Graph-based parsing (MST), efficient non-proj O(n²)
 - ...

Features

Roadmap

- Features: Motivation
 - Constraint & compactness
- Features
 - Definitions & representations
- Unification
- Application of features in the grammar
 - Agreement, subcategorization
- Parsing with features & unification
 - Augmenting the Earley parser, unification parsing
- Extensions: Types, inheritance, etc
- Conclusion

Constraints & Compactness

- Constraints in grammar
 - S -> NP VP
 - They run.
 - He runs.

Constraints & Compactness

- Constraints in grammar
 - S -> NP VP
 - They run.
 - He runs.
 - But...
 - *They runs
 - *He run
 - *He disappeared the flight

Constraints & Compactness

- Constraints in grammar
 - S -> NP VP
 - They run.
 - He runs.
 - But...
 - *They runs
 - *He run
 - *He disappeared the flight
 - Violate agreement (number), subcategorization

- Enforcing constraints
 - Add categories, rules

- Enforcing constraints
 - Add categories, rules
 - Agreement:
 - S-> NPsg3p VPsg3p,
 - S-> NPpl3p VPpl3p,

- Enforcing constraints
 - Add categories, rules
 - Agreement:
 - S-> NPsg3p VPsg3p,
 - S-> NPpl3p VPpl3p,
 - Subcategorization:
 - VP-> Vtrans NP,
 - VP -> Vintrans,
 - VP->Vditrans NP NP

- Enforcing constraints
 - Add categories, rules
 - Agreement:
 - S-> NPsg3p VPsg3p,
 - S-> NPpl3p VPpl3p,
 - Subcategorization:
 - VP-> Vtrans NP,
 - VP -> Vintrans,
 - VP->Vditrans NP NP
 - Explosive!, loses key generalizations

- Need compact, general constraints
 - S -> NP VP

- Need compact, general constraints
 - S -> NP VP
 - Only if NP and VP agree

- Need compact, general constraints
 - S -> NP VP
 - Only if NP and VP agree
- How can we describe agreement, subcat?

- Need compact, general constraints
 - S -> NP VP
 - Only if NP and VP agree
- How can we describe agreement, subcat?
 - Decompose into elementary features that must be consistent
 - E.g. Agreement

- Need compact, general constraints
 - S -> NP VP
 - Only if NP and VP agree
- How can we describe agreement, subcat?
 - Decompose into elementary features that must be consistent
 - E.g. Agreement
 - Number, person, gender, etc

- Need compact, general constraints
 - S -> NP VP
 - Only if NP and VP agree
- How can we describe agreement, subcat?
 - Decompose into elementary features that must be consistent
 - E.g. Agreement
 - Number, person, gender, etc
- Augment CF rules with feature constraints
 - Develop mechanism to enforce consistency
 - Elegant, compact, rich representation

Feature Representations

- Fundamentally, Attribute-Value pairs
 - Values may be symbols or feature structures
 - Feature path: list of features in structure to value
 - "Reentrant feature structures": share some struct
 - Represented as
 - Attribute-value matrix (AVM), or
 - Directed acyclic graph (DAG)

AVM

NUMBER	PL	CAT NP
PERSON	3	AGREEMENT NUMBER PL PERSON 3
NUMBER	PL	
PERSON	3	CAT S NUMBER PL
CAT	NP	PERSON 3
NUMBER	PL	SUBJECT (AGREEMENT 1)
PERSON	3	

• Two key roles:

- Two key roles:
 - Merge compatible feature structures

- Two key roles:
 - Merge compatible feature structures
 - Reject incompatible feature structures

- Two key roles:
 - Merge compatible feature structures
 - Reject incompatible feature structures
- Two structures can unify if

- Two key roles:
 - Merge compatible feature structures
 - Reject incompatible feature structures
- Two structures can unify if
 - Feature structures are identical
 - Result in same structure

- Two key roles:
 - Merge compatible feature structures
 - Reject incompatible feature structures
- Two structures can unify if
 - Feature structures are identical
 - Result in same structure
 - Feature structures match where both have values, differ in missing or underspecified
 - Resulting structure incorporates constraints of both

Subsumption

- Relation between feature structures
 - Less specific f.s. subsumes more specific f.s.
 - F.s. F subsumes f.s. G iff
 - For every feature x in F, F(x) subsumes G(x)
 - For all paths p and q in F s.t. F(p)=F(q), G(p)=G(q)

Subsumption

- Relation between feature structures
 - Less specific f.s. subsumes more specific f.s.
 - F.s. F subsumes f.s. G iff
 - For every feature x in F, F(x) subsumes G(x)
 - For all paths p and q in F s.t. F(p)=F(q), G(p)=G(q)
- Examples:
 - A: [Number SG], B: [Person 3]
 - C:[Number SG]
 - [Person 3]

Subsumption

- Relation between feature structures
 - Less specific f.s. subsumes more specific f.s.
 - F.s. F subsumes f.s. G iff
 - For every feature x in F, F(x) subsumes G(x)
 - For all paths p and q in F s.t. F(p)=F(q), G(p)=G(q)
- Examples:
 - A: [Number SG], B: [Person 3]
 - C:[Number SG]
 - [Person 3]
 - A subsumes C; B subsumes C; B,A don't subsume
 - Partial order on f.s.

- Identical
 - [Number SG] U [Number SG]

- Identical
 - [Number SG] U [Number SG]=[Number SG]
- Underspecified
 - [Number SG] U [Number []]

- Identical
 - [Number SG] U [Number SG]=[Number SG]
- Underspecified
 - [Number SG] U [Number []] = [Number SG]
- Different specification
 - [Number SG] U [Person 3]

- Identical
 - [Number SG] U [Number SG]=[Number SG]
- Underspecified
 - [Number SG] U [Number []] = [Number SG]
- Different specification
 - [Number SG] U [Person 3] = [Number SG]
 - [Person 3]
 - [Number SG] U [Number PL]

Unification Examples

- Identical
 - [Number SG] U [Number SG]=[Number SG]
- Underspecified
 - [Number SG] U [Number []] = [Number SG]
- Different specification
 - [Number SG] U [Person 3] = [Number SG]
 - [Person 3]
- Mismatched
 - [Number SG] U [Number PL] -> Fails!

More Unification Examples

```
AGREEMENT [1]
 SUBJECT (AGREEMENT [1])
                          PERSON 3
NUMBER SG
          AGREEMENT
SUBJECT
AGREEMENT [1]
                          PERSON
                                    SG
SUBJECT
            AGREEMENT [1]
                           NUMBER
```

Features in CFGs: Agreement

- Goal:
 - Support agreement of NP/VP, Det Nominal
- Approach:
 - Augment CFG rules with features
 - Employ head features
 - Each phrase: VP, NP has head
 - Head: child that provides features to phrase
 - Associates grammatical role with word
 - VP V; NP Nom, etc

Agreement with Heads and Features

```
VP -> Verb NP
<VP HEAD> = <Verb HEAD>

NP -> Det Nominal
```

<NP HEAD> = <Nominal HEAD>
<Det HEAD AGREEMENT> = <Nominal HEAD AGREEMENT>

Nominal -> Noun <Nominal HEAD> = <Noun HEAD>

Noun -> flights <Noun HEAD AGREEMENT NUMBER> = PL

Verb -> serves
<Verb HEAD AGREEMENT NUMBER> = SG
<Verb HEAD AGREEMENT PERSON> = 3

Feature Applications

- Subcategorization:
 - Verb-Argument constraints
 - Number, type, characteristics of args (e.g. animate)
 - Also adjectives, nouns

- Long distance dependencies
 - E.g. filler-gap relations in wh-questions, rel

Implementing Unification

- Data Structure:
 - Extension of the DAG representation
 - Each f.s. has a content field and a pointer field
 - If pointer field is null, content field has the f.s.
 - If pointer field is non-null, it points to actual f.s.

SG 3 NUMBER PERSON

Implementing Unification: II

- Algorithm:
 - Operates on pairs of feature structures
 - Order independent, destructive
 - If fs1 is null, point to fs2
 - If fs2 is null, point to fs1
 - If both are identical, point fs1 to fs2, return fs2
 - Subsequent updates will update both
 - If non-identical atomic values, fail!

Implementing Unification: III

- If non-identical, complex structures
 - Recursively traverse all features of fs2
 - If feature in fs2 is missing in fs1
 - Add to fs1 with value null
 - If all unify, point fs2 to fs1 and return fs1

Example

```
AGREEMENT [1] NUMBER SG
SUBJECT AGREEMENT [1]

SUBJECT AGREEMENT (PERSON 3)
```

[AGREEMENT [1]] U [AGREEMENT [PERSON 3]]

[NUMBER SG] U [PERSON 3]

[NUMBER SG] U [PERSON 3] [PERSON NULL]

Unification and the Earley Parser

- Employ constraints to restrict addition to chart
- Actually pretty straightforward

Unification and the Earley Parser

- Employ constraints to restrict addition to chart
- Actually pretty straightforward
 - Augment rules with feature structure

Unification and the Earley Parser

- Employ constraints to restrict addition to chart
- Actually pretty straightforward
 - Augment rules with feature structure
 - Augment state (chart entries) with DAG
 - Prediction adds DAG from rule
 - Completion applies unification (on copies)
 - Adds entry only if current DAG is NOT subsumed

Unification Parsing

- Abstracts over categories
 - S-> NP VP =>
 - X0 -> X1 X2; <X0 cat> = S; <X1 cat>=NP;
 - <X2 cat>=VP
 - Conjunction:
 - X0->X1 and X2; <X1 cat> =<X2 cat>;
 - <X0 cat>=<X1 cat>
- Issue: Completer depends on categories
- Solution: Completer looks for DAGs which unify with the just-completed state's DAG

Extensions

- Types and inheritance
 - Issue: generalization across feature structures
 - E.g. many variants of agreement
 - More or less specific: 3rd vs sg vs 3rdsg
 - Approach: Type hierarchy
 - Simple atomic types match literally
 - Multiple inheritance hierarchy
 - Unification of subtypes is most general type that is more specific than two input types
 - Complex types encode legal features, etc

Conclusion

- Features allow encoding of constraints
 - Enables compact representation of rules
 - Supports natural generalizations
- Unification ensures compatibility of features
 - Integrates easily with existing parsing mech.
- Many unification-based grammatical theories