Dependency &
Feature-Based Parsing

Deep Processing for NLP
Ling571
February 3, 2014




Roadmap

® Dependency Parsing:

e Convert dependency trees to PS trees
® Parse using standard algorithms O(n3)

® Employ graph-based optimization
® Weights learned by machine learning

® Shift-reduce approaches based on current word/state
® Attachment based on machine learning




Dependency Parse Example
® They hid the letter on the shelf

hid
/N
nsubj dobj

¥ RN

They letter
/ N\

det on

¥ Y
the shelj




Parsing by PS Conversion

e Can map any projective dependency tree to PS tree
® Non-terminals indexed by words
® “Projective”: no crossing dependency arcs for ordered words

PRED

ATT SBJ

m\

hearing IS scheduled on B



Dep to PS Tree Conversion

® For each node w with outgoing arcs,

® Convert the subtree w and its dependents t,,..,t, to

® New subtree rooted at X,, with child w and
® Subtrees at t;,..,t, in the original sentence order




Dep to PS Tree Conversion

E.g., for ‘effect’

PU
PRED PC
0BJ
aYaViaala
ROOT Economic news had little effect f | market

. effect ; | .



Dep to PS Tree Conversion

E.g., for ‘effect’

ROOT Economic news had little effect on financial markets .

| /T~

little  effect on Right
su btree

.




PS to Dep Tree Conversion

* What about the dependency labels?
e Attach labels to non-terminals associated with non-heads
> Eg ><Ii’c’tle9 XIi’ttle:nmod




PS to Dep Tree Conversion

* What about the dependency labels?

® Attach labels to non-terminals associated with non-heads
> Eg ><Ii’ttle9 XIi’t’cle:nmod

® Doesn’t create typical PS trees

® Does create fully lexicalized, context-free trees
® Also labeled




PS to Dep Tree Conversion

* What about the dependency labels?
® Attach labels to non-terminals associated with non-heads
> Eg ><Ii’ttle9 XIi’t’cle:nmod

® Doesn’t create typical PS trees

® Does create fully lexicalized, context-free trees
® Also labeled

® Can be parsed with any standard CFG parser
e [ g CKY, Earley




Full Example Trees

ROOT
arked
Xdog barked  Xat X.
N |
/-\ /-\ Xthe dog at  Xcat
/
ROOT The dog barked at the cat . Xthe cat

the

—



Graph-based Dependency Parsing

® Goal: Find the highest scoring dependency tree T
for sentence S

e |f Sis unambiguous, T is the correct parse.
e |[f Sisambiguous, T is the highest scoring parse.




Graph-based Dependency Parsing

® Goal: Find the highest scoring dependency tree T
for sentence S

e |f Sis unambiguous, T is the correct parse.
e |[f Sisambiguous, T is the highest scoring parse.

® Where do scores come from?
® Weights on dependency edges by machine learning
® | earned from large dependency treebank




Graph-based Dependency Parsing

® Goal: Find the highest scoring dependency tree T
for sentence S

e |f Sis unambiguous, T is the correct parse.
e |[f Sisambiguous, T is the highest scoring parse.

® Where do scores come from?
® Weights on dependency edges by machine learning
® | earned from large dependency treebank

® Where are the grammar rules?




Graph-based Dependency Parsing

® Goal: Find the highest scoring dependency tree T
for sentence S

e |f Sis unambiguous, T is the correct parse.
e |[f Sisambiguous, T is the highest scoring parse.

® Where do scores come from?
® Weights on dependency edges by machine learning
® | earned from large dependency treebank

® Where are the grammar rules?
® There aren’t any; data-driven processing




Graph-based Dependency Parsing

® Map dependency parsing to maximum spanning tree




Graph-based Dependency Parsing

® Map dependency parsing to maximum spanning tree

® |dea:

e Build initial graph: fully connected
® Nodes: words in sentence to parse




Graph-based Dependency Parsing

® Map dependency parsing to maximum spanning tree

® |dea:

e Build initial graph: fully connected
® Nodes: words in sentence to parse

® Edges: Directed edges between all words
® + Edges from ROOT to all words




Graph-based Dependency Parsing

® Map dependency parsing to maximum spanning tree

® |dea:

e Build initial graph: fully connected
® Nodes: words in sentence to parse

® Edges: Directed edges between all words
® + Edges from ROOT to all words

® |dentify maximum spanning tree
® Tree s.t. all nodes are connected
® Select such tree with highest weight




Graph-based Dependency Parsing

® Map dependency parsing to maximum spanning tree

® |dea:

e Build initial graph: fully connected
® Nodes: words in sentence to parse

® Edges: Directed edges between all words
e + Edges from ROOT to all words

® |dentify maximum spanning tree
® Tree s.t. all nodes are connected
® Select such tree with highest weight

® Arc-factored model: Weights depend on end nodes & link
® Weight of tree is sum of participating arcs




Initial Tree

: ROOT\I:)
TR

John Mary
N——

11

« Sentence: John saw Mary (McDonald et al, 2005)
« All words connected; ROOT only has outgoing arcs




Initial Tree

ROOT\I:)
Lo

11

« Sentence: John saw Mary (McDonald et al, 2005)
« All words connected; ROOT only has outgoing arcs

Goal: Remove arcs to create a tree covering all words
» Resulting tree is dependency parse




Maximum Spanning Tree

® McDonald et al, 2005 use variant of Chu-Liu-
Edmonds algorithm for MST (CLE)

- -



Maximum Spanning Tree

® McDonald et al, 2005 use variant of Chu-Liu-
Edmonds algorithm for MST (CLE)

e Sketch of algorithm:
® For each node, greedily select incoming arc with max w
® |f the resulting set of arcs forms a tree, this is the MST.

® |f not, there must be a cycle.




Maximum Spanning Tree

® McDonald et al, 2005 use variant of Chu-Liu-
Edmonds algorithm for MST (CLE)

e Sketch of algorithm:
® For each node, greedily select incoming arc with max w
® |f the resulting set of arcs forms a tree, this is the MST.
® |f not, there must be a cycle.
® “Contract” the cycle: Treat it as a single vertex
® Recalculate weights into/out of the new vertex
® Recursively do MST algorithm on resulting graph




Maximum Spanning Tree

® McDonald et al, 2005 use variant of Chu-Liu-Edmonds
algorithm for MST (CLE)

e Sketch of algorithm:
® For each node, greedily select incoming arc with max w
e |[f the resulting set of arcs forms a tree, this is the MST.
® |f not, there must be a cycle.
® “Contract” the cycle: Treat it as a single vertex
® Recalculate weights into/out of the new vertex
® Recursively do MST algorithm on resulting graph

® Running time: naive: O(n3); Tarjan: O(n?)
® Applicable to non-projective graphs




Initial Tree

P

John/f’ ‘\D/Mary

\j_/

11

- -



CLE: Step 1

® Find maximum incoming arcs




CLE: Step 1

® Find maximum incoming arcs

ROOT —10
® |s the result a tree? 9( \\ *ﬂo\




CLE: Step 1

® Find maximum incoming arcs

ROOT\I:)
® |s the result a tree? 9 saw*ﬂo\
* No /
~—_3 v
® |s there a cycle? \_/




CLE: Step 1

® Find maximum incoming arcs

ROOT\I:)
® |s the result a tree? 9 saw*ﬂo\
* No /
~—_3 v
® |s there a cycle? \_/

® Yes, John/saw




CLE: Step 2

® Since there’s a cycle: ROOT— 10
e Contract cycle & reweight 9( N\ —«30\

saw
® John+saw as single vertex Iohn‘/36 Mary

—

11




CLE: Step 2

® Since there’s a cycle:

® Contract cycle & reweight ROOT\li)
® John+saw as single vertex |

e (Calculate weights in & out as: w
® Maximum based on internal arcs
and original nodes

® Just single outside arc + 9
(at most ) inside

ROOT\4‘0
® Recurse Sa \




CLE: Recursive Step

® |n new graph, find graph of
® Max weight incoming arc for each word




CLE: Recursive Step

® |n new graph, find graph of
® Max weight incoming arc for each word

® |s it atree?

OO0 9 ROOT\I‘O
\‘ ’“30\ 3}} Saw '\
// Saw

John ?X\/Mary John




CLE: Recursive Step

® |n new graph, find graph of
® Max weight incoming arc for each word

® |s it atree? Yes!
e MST, but must recover internal arcs = parse




Learning Weights

®* Weights for arc-factored model learned from corpus
® Weights learned for tuple (w;,w;,l)




Learning Weights

Weights for arc-factored model learned from corpus
® Weights learned for tuple (w;,w;,l)

® McDonald et al, 2005 employed discriminative ML
Perceptron algorithm or large margin variant




Learning Weights

®* Weights for arc-factored model learned from corpus
® Weights learned for tuple (w;,w;,1)

® McDonald et al, 2005 employed discriminative ML
® Perceptron algorithm or large margin variant

® fFeatures: Local
® Base features

* l|dentity, POS of w;,w;; Label, direction of |
® Sequence of POS tags, words between Wi, W,
e POS of words adjacent to Wi, W,

® Also conjunctions of features
® Projective tree not required




Dependency Parsing

® Dependency grammars:
e Compactly represent pred-arg structure
® | exicalized, localized
e Natural handling of flexible word order

® Dependency parsing:
® Conversion to phrase structure trees
® Graph-based parsing (MST), efficient non-proj O(n?)




Features

—



Roadmap

® Features: Motivation
® (Constraint & compactness

® Features
e Definitions & representations

® Unification

® Application of features in the grammar
® Agreement, subcategorization

® Parsing with features & unification
® Augmenting the Earley parser, unification parsing

® Extensions: Types, inheritance, etc

® Conclusion




Constraints & Compactness

® Constraints in grammar
e S->NPVP
® They run.
® He runs.




Constraints & Compactness

® Constraints in grammar
e S->NPVP
® They run.

® He runs.
e But...
® *They runs
® *He run
® *He disappeared the flight




Constraints & Compactness

® Constraints in grammar

e S->NPVP
® They run.
® He runs.

e But...
® *They runs
® *He run
® *He disappeared the flight

® \iolate agreement (number), subcategorization




Enforcing Constraints

® Enforcing constraints




Enforcing Constraints

® Enforcing constraints
® Add categories, rules




Enforcing Constraints

® Enforcing constraints
® Add categories, rules

® Agreement:
o S-> NPsg3p VPsg3p,
e S-> NPpl3p VPpl3p,




Enforcing Constraints

® Enforcing constraints
® Add categories, rules

® Agreement:
o S-> NPsg3p VPsg3p,
e S-> NPpl3p VPpl3p,

® Subcategorization:
e \VP-> Vtrans NP,
e VP -> Vintrans,
e VP->Vditrans NP NP




Enforcing Constraints

® Enforcing constraints
e Add categories, rules

®* Agreement:
o S-> NPsg3p VPsg3p,
e S-> NPpl3p VPpl3p,
® Subcategorization:
e \VP-> Vtrans NP,
e VP -> Vintrans,
e \VP->Vditrans NP NP

® Explosive!, loses key generalizations




Why features?

® Need compact, general constraints
e S.>NPVP




Why features?

® Need compact, general constraints

e S.>NPVP
® Only if NP and VP agree




Why features?

® Need compact, general constraints

e S.>NPVP
® Only if NP and VP agree

® How can we describe agreement, subcat?




Why features?

® Need compact, general constraints

e S.>NPVP
® Only if NP and VP agree

® How can we describe agreement, subcat?

® Decompose into elementary features that must
be consistent

® F.g. Agreement




Why features?

® Need compact, general constraints

e S.>NPVP
® Only if NP and VP agree

® How can we describe agreement, subcat?

® Decompose into elementary features that must
be consistent

® F.g. Agreement

® Number, person, gender, etc




Why features?

® Need compact, general constraints
e S.>NPVP
® Only if NP and VP agree

® How can we describe agreement, subcat?

® Decompose into elementary features that must be
consistent

® F.g. Agreement

® Number, person, gender, etc

®* Augment CF rules with feature constraints
® Develop mechanism to enforce consistency
® Elegant, compact, rich representation




Feature Representations

® Fundamentally, Attribute-Value pairs
® Values may be symbols or feature structures

® Feature path: list of features in structure to value
e “Reentrant feature structures”: share some struct

® Represented as
e Attribute-value matrix (AVM), or
® Directed acyclic graph (DAG)




~
NUMBER

N
-
PERSON
N

NUMBER

PERSON

>

CAT

NUMBER

PL

AN

N

PL

AVM

NP

PL

/
CAT - NP
AGREEMENT NUMBER "L
PERSON 3
\_ N
/EAT // §—
HEAD | AGREEM’ T 1 A
PERSON
o
\\éUBJECT [AGREEMENT_

—




NP

CAT
NUMBE ®
AGREEMENT
PERSON ® 3
CAT S
AGREEMENT

SUBJECT

sg

~ AGREEMENT

PERS




Unification

® Two key roles:

—



Unification

® Two key roles:
® Merge compatible feature structures




Unification

® Two key roles:
® Merge compatible feature structures
® Reject iIncompatible feature structures




Unification

® Two key roles:
® Merge compatible feature structures
® Reject iIncompatible feature structures

® Two structures can unify if




Unification

® Two key roles:
® Merge compatible feature structures
® Reject iIncompatible feature structures

® Two structures can unify if
® Feature structures are identical
® Result in same structure




Unification

® Two key roles:
® Merge compatible feature structures
® Reject incompatible feature structures

® Two structures can unify if

® Feature structures are identical
® Result in same structure

® [Feature structures match where both have values,
differ in missing or underspecified

® Resulting structure incorporates constraints of both




Subsumption

® Relation between feature structures
® | ess specific f.s. subsumes more specific f.s.

® Fs. F subsumes f.s. G iff

® For every feature x in F, F(x) subsumes G(x)
® For all paths pand gin F s.t. F(p)=F(q), G(p)=G(q)




Subsumption

® Relation between feature structures
® | ess specific f.s. subsumes more specific f.s.

® Fs. F subsumes f.s. G iff

® For every feature x in F, F(x) subsumes G(x)
® For all paths pand gin F s.t. F(p)=F(q), G(p)=G(q)

® Examples:
® A:[Number SG], B: [Person 3]
® C:[Number SG]

® [Person 3]




Subsumption

® Relation between feature structures
® | ess specific f.s. subsumes more specific f.s.

® Fs. F subsumes f.s. G iff

® For every feature x in F, F(x) subsumes G(x)
® For all paths pand g in F s.t. F(p)=F(q), G(p)=G(q)

® Examples:
o A: [Number SG], B: [Person 3]
® C:[Number SG]
® [Person 3]

® A subsumes C; B subsumes C; B,A don’t subsume
e Partial order on f.s.

el —




Unification Examples

® |dentical
® [Number SG] U [Number SG]




Unification Examples

® |dentical
® [Number SG] U [Number SG]=[Number SG]

® Underspecified
e [Number SG] U [Number []]




Unification Examples

® |dentical
® [Number SG] U [Number SG]=[Number SG]

¢ Underspecified
® [Number SG] U [Number []] = [Number SG]

® Different specification
® [Number SG] U [Person 3]




Unification Examples

® |dentical
® [Number SG] U [Number SG]=[Number SG]

¢ Underspecified
® [Number SG] U [Number []] = [Number SG]

® Different specification
® [Number SG] U [Person 3] = [Number SG]
° [Person 3]
® [Number SG] U [Number PL]




Unification Examples

® |dentical
® [Number SG] U [Number SG]=[Number SG]

¢ Underspecified
® [Number SG] U [Number []] = [Number SG]

® Different specification
® [Number SG] U [Person 3] = [Number SG]
° [Person 3]

® Mismatched
® [Number SG] U [Number PL] -> Fails!




More Unification Examples

AGREEMENT  [1]
U
SUBJECT [AGREEMENT[il

4 O
PERSON 3
SUBJECT [AGREEMENT [NUMBER SG}} -
\_ _/
/AGREEMENT [1] R
W ~ AR
PERSON 3
SUBJECT | AGREEMENT [1]| NUMBER SG

..



Features in CFGs:
Agreement

® Goal:
® Support agreement of NP/VPE, Det Nominal

® Approach:
® Augment CFG rules with features

® Employ head features

® Each phrase: VP, NP has head
® Head: child that provides features to phrase

® Associates grammatical role with word
e VP -V; NP - Nom, etc




Agreement with Heads and
Features

VP -> Verb NP
<VP HEAD> = <Verb HEAD>

NP -> Det Nominal
<NP HEAD> = <Nominal HEAD>
<Det HEAD AGREEMENT> = <Nominal HEAD AGREEMENT>

Nominal -> Noun
<Nominal HEAD> = <Noun HEAD>

Noun -> flights
<Noun HEAD AGREEMENT NUMBER> = PL

Verb -> serves
- <Verb HEAD AGREEMENT NUMBER> = SG
EA»D AGREEMENT PERSON> = 3




Feature Applications

® Subcategorization:
® \erb-Argument constraints

®* Number, type, characteristics of args (e.g. animate)
® Also adjectives, nouns

® |Long distance dependencies
e E. g filler-gap relations in wh-questions, rel




Implementing Unification

® Data Structure:
e Extension of the DAG representation

® Fach f.s. has a content field and a pointer field
® |f pointer field is null, content field has the f.s.
® |f pointer field is non-null, it points to actual f.s.




CONTENT

POINTER

NULL

NUMBER

PERSON

CONTENT

POINTER

CONTENT

POINTER

SG

NULL

NULL




CONTENT

SG
NUMBER
CONTENT
POINTER NULL
CONTENT
NULL ’

POINTER

PERSON

CONTENT

POINTER




NUMBER

CONTENT

PFPERSON

CONTE

FOINTER

POINTER

FOINTER

SG

NULL

NULL

NULI




CONTENT

POINTER

POINTER

CONTENT

NULL

CONTENT

SG
NUMBER
POINTER
NULL
CONTED
PERSON NULL
POINTER
CONTENT
3
PERSON

POINTER




Implementing Unification: ||

e Algorithm:

® QOperates on pairs of feature structures
® Order independent, destructive

e |f fs1 is null, point to fs2

e |f fs2 is null, point to fsl

e |f both are identical, point fsl to fs2, return fs2
® Subsequent updates will update both

® |f non-identical atomic values, fail!




Implementing Unification:
[

® |f non-identical, complex structures
® Recursively traverse all features of fs2

® |f feature in fs2 is missing in fs1
® Add to fsl with value null
e |f all unify, point fs2 to fs1 and return fsl




/'
AGREEMENT [1]

SUBJECT
o

~
NUMBER  SG

>

-

Example

™

<l u
AGREEMENT [1]
)

v

[SUBJECT [AGREEMENT [PERSON 3}}}

[ AGREEMENT [1]] U [AGREEMENT [PERSON 3]]

[NUMBER SG] U [PERSON 3]

[NUMBER  SG]
[PERSON NULL]

U [PERSON 3]



Unification and the Earley
Parser

® Employ constraints to restrict addition to chart

® Actually pretty straightforward




Unification and the Earley
Parser

® Employ constraints to restrict addition to chart

® Actually pretty straightforward
® Augment rules with feature structure




Unification and the Earley
Parser

® Employ constraints to restrict addition to chart

® Actually pretty straightforward
® Augment rules with feature structure
e Augment state (chart entries) with DAG
® Prediction adds DAG from rule

® Completion applies unification (on copies)
e Adds entry only if current DAG is NOT subsumed




Unification Parsing

® Abstracts over categories
e S-> NP VP =>
e X0 -> X1 X2; <X0O cat> = S; <X1 cat>=NP;
o <X2 cat>=VP
® Conjunction:
e X0O->X1 and X2; <X1 cat> =<X2 cat>;
® <XO cat>=<X1 cat>

® |ssue: Completer depends on categories

e Solution: Completer looks for DAGs which unify
with the just-completed state’ s DAG




Extensions

® Types and inheritance

® |ssue: generalization across feature structures
® E.g. many variants of agreement
® More or less specific: 37 vs sg vs 3rdsg
® Approach: Type hierarchy
® Simple atomic types match literally
* Multiple inheritance hierarchy

e Unification of subtypes is most general type that is more
specific than two input types

® Complex types encode legal features, etc




Conclusion

® Features allow encoding of constraints
® Fnables compact representation of rules
® Supports natural generalizations

e Unification ensures compatibility of features
® |ntegrates easily with existing parsing mech.

® Many unification-based grammatical theories




