
Dependency &
Feature-Based Parsing

Deep Processing for NLP
Ling571

February 3, 2014

Roadmap
�  Dependency Parsing:

�  Convert dependency trees to PS trees
�  Parse using standard algorithms O(n3)

�  Employ graph-based optimization
�  Weights learned by machine learning

�  Shift-reduce approaches based on current word/state
�  Attachment based on machine learning

Dependency Parse Example
�  They hid the letter on the shelf

Parsing by PS Conversion
�  Can map any projective dependency tree to PS tree

�  Non-terminals indexed by words
�  “Projective”: no crossing dependency arcs for ordered words

Dep to PS Tree Conversion
�  For each node w with outgoing arcs,

�  Convert the subtree w and its dependents t1,..,tn to

�  New subtree rooted at Xw with child w and
�  Subtrees at t1,..,tn in the original sentence order

Dep to PS Tree Conversion

Xeffect

Xlittle Xon

little on Right
subtree

effect

E.g., for ‘effect’

Dep to PS Tree Conversion

Xeffect

Xlittle Xon

little on Right
subtree

effect

E.g., for ‘effect’

PS to Dep Tree Conversion
�  What about the dependency labels?

�  Attach labels to non-terminals associated with non-heads

�  E.g. Xlittleè Xlittle:nmod

PS to Dep Tree Conversion
�  What about the dependency labels?

�  Attach labels to non-terminals associated with non-heads

�  E.g. Xlittleè Xlittle:nmod

�  Doesn’t create typical PS trees
�  Does create fully lexicalized, context-free trees

�  Also labeled

PS to Dep Tree Conversion
�  What about the dependency labels?

�  Attach labels to non-terminals associated with non-heads

�  E.g. Xlittleè Xlittle:nmod

�  Doesn’t create typical PS trees
�  Does create fully lexicalized, context-free trees

�  Also labeled

�  Can be parsed with any standard CFG parser
�  E.g. CKY, Earley

Full Example Trees

Example from J. Moore, 2013

Graph-based Dependency Parsing
�  Goal: Find the highest scoring dependency tree T

for sentence S
�  If S is unambiguous, T is the correct parse.

�  If S is ambiguous, T is the highest scoring parse.

Graph-based Dependency Parsing
�  Goal: Find the highest scoring dependency tree T

for sentence S
�  If S is unambiguous, T is the correct parse.

�  If S is ambiguous, T is the highest scoring parse.

�  Where do scores come from?
�  Weights on dependency edges by machine learning
�  Learned from large dependency treebank

Graph-based Dependency Parsing
�  Goal: Find the highest scoring dependency tree T

for sentence S
�  If S is unambiguous, T is the correct parse.

�  If S is ambiguous, T is the highest scoring parse.

�  Where do scores come from?
�  Weights on dependency edges by machine learning
�  Learned from large dependency treebank

�  Where are the grammar rules?

Graph-based Dependency Parsing
�  Goal: Find the highest scoring dependency tree T

for sentence S
�  If S is unambiguous, T is the correct parse.

�  If S is ambiguous, T is the highest scoring parse.

�  Where do scores come from?
�  Weights on dependency edges by machine learning
�  Learned from large dependency treebank

�  Where are the grammar rules?
�  There aren’t any; data-driven processing

Graph-based Dependency Parsing
�  Map dependency parsing to maximum spanning tree

Graph-based Dependency Parsing
�  Map dependency parsing to maximum spanning tree

�  Idea:
�  Build initial graph: fully connected

�  Nodes: words in sentence to parse

Graph-based Dependency Parsing
�  Map dependency parsing to maximum spanning tree

�  Idea:
�  Build initial graph: fully connected

�  Nodes: words in sentence to parse

�  Edges: Directed edges between all words
�  + Edges from ROOT to all words

Graph-based Dependency Parsing
�  Map dependency parsing to maximum spanning tree

�  Idea:
�  Build initial graph: fully connected

�  Nodes: words in sentence to parse

�  Edges: Directed edges between all words
�  + Edges from ROOT to all words

�  Identify maximum spanning tree
�  Tree s.t. all nodes are connected

�  Select such tree with highest weight

Graph-based Dependency Parsing
�  Map dependency parsing to maximum spanning tree

�  Idea:
�  Build initial graph: fully connected

�  Nodes: words in sentence to parse
�  Edges: Directed edges between all words

�  + Edges from ROOT to all words

�  Identify maximum spanning tree
�  Tree s.t. all nodes are connected
�  Select such tree with highest weight
�  Arc-factored model: Weights depend on end nodes & link

�  Weight of tree is sum of participating arcs

Initial Tree

•  Sentence: John saw Mary (McDonald et al, 2005)
•  All words connected; ROOT only has outgoing arcs

Initial Tree

•  Sentence: John saw Mary (McDonald et al, 2005)
•  All words connected; ROOT only has outgoing arcs

•  Goal: Remove arcs to create a tree covering all words
•  Resulting tree is dependency parse

Maximum Spanning Tree
�  McDonald et al, 2005 use variant of Chu-Liu-

Edmonds algorithm for MST (CLE)

Maximum Spanning Tree
�  McDonald et al, 2005 use variant of Chu-Liu-

Edmonds algorithm for MST (CLE)

�  Sketch of algorithm:
�  For each node, greedily select incoming arc with max w
�  If the resulting set of arcs forms a tree, this is the MST.

�  If not, there must be a cycle.

Maximum Spanning Tree
�  McDonald et al, 2005 use variant of Chu-Liu-

Edmonds algorithm for MST (CLE)

�  Sketch of algorithm:
�  For each node, greedily select incoming arc with max w
�  If the resulting set of arcs forms a tree, this is the MST.

�  If not, there must be a cycle.
�  “Contract” the cycle: Treat it as a single vertex

�  Recalculate weights into/out of the new vertex

�  Recursively do MST algorithm on resulting graph

Maximum Spanning Tree
�  McDonald et al, 2005 use variant of Chu-Liu-Edmonds

algorithm for MST (CLE)

�  Sketch of algorithm:
�  For each node, greedily select incoming arc with max w
�  If the resulting set of arcs forms a tree, this is the MST.
�  If not, there must be a cycle.

�  “Contract” the cycle: Treat it as a single vertex
�  Recalculate weights into/out of the new vertex
�  Recursively do MST algorithm on resulting graph

�  Running time: naïve: O(n3); Tarjan: O(n2)
�  Applicable to non-projective graphs

Initial Tree

CLE: Step 1
�  Find maximum incoming arcs

CLE: Step 1
�  Find maximum incoming arcs

�  Is the result a tree?

CLE: Step 1
�  Find maximum incoming arcs

�  Is the result a tree?
�  No

�  Is there a cycle?

CLE: Step 1
�  Find maximum incoming arcs

�  Is the result a tree?
�  No

�  Is there a cycle?
�  Yes, John/saw

CLE: Step 2
�  Since there’s a cycle:

�  Contract cycle & reweight

�  John+saw as single vertex

CLE: Step 2
�  Since there’s a cycle:

�  Contract cycle & reweight

�  John+saw as single vertex

�  Calculate weights in & out as:
�  Maximum based on internal arcs

 and original nodes
�  Just single outside arc +
(at most) inside

�  Recurse

CLE: Recursive Step
�  In new graph, find graph of

�  Max weight incoming arc for each word

CLE: Recursive Step
�  In new graph, find graph of

�  Max weight incoming arc for each word

�  Is it a tree?

CLE: Recursive Step
�  In new graph, find graph of

�  Max weight incoming arc for each word

�  Is it a tree? Yes!
�  MST, but must recover internal arcs è parse

Learning Weights
�  Weights for arc-factored model learned from corpus

�  Weights learned for tuple (wi,wj,l)

Learning Weights
�  Weights for arc-factored model learned from corpus

�  Weights learned for tuple (wi,wj,l)

�  McDonald et al, 2005 employed discriminative ML
�  Perceptron algorithm or large margin variant

Learning Weights
�  Weights for arc-factored model learned from corpus

�  Weights learned for tuple (wi,wj,l)

�  McDonald et al, 2005 employed discriminative ML
�  Perceptron algorithm or large margin variant

�  Features: Local
�  Base features

�  Identity, POS of wi,wj; Label, direction of l
�  Sequence of POS tags, words between wi,wj
�  POS of words adjacent to wi,wj

�  Also conjunctions of features
�  Projective tree not required

Dependency Parsing
�  Dependency grammars:

�  Compactly represent pred-arg structure

�  Lexicalized, localized
�  Natural handling of flexible word order

�  Dependency parsing:
�  Conversion to phrase structure trees

�  Graph-based parsing (MST), efficient non-proj O(n2)
�  …

Features

Roadmap
�  Features: Motivation

�  Constraint & compactness

�  Features
�  Definitions & representations

�  Unification

�  Application of features in the grammar
�  Agreement, subcategorization

�  Parsing with features & unification
�  Augmenting the Earley parser, unification parsing

�  Extensions: Types, inheritance, etc

�  Conclusion

Constraints & Compactness
�  Constraints in grammar

�  S -> NP VP
�  They run.

�  He runs.

Constraints & Compactness
�  Constraints in grammar

�  S -> NP VP
�  They run.

�  He runs.

�  But…
�  *They runs

�  *He run

�  *He disappeared the flight

Constraints & Compactness
�  Constraints in grammar

�  S -> NP VP
�  They run.

�  He runs.

�  But…
�  *They runs

�  *He run

�  *He disappeared the flight

�  Violate agreement (number), subcategorization

Enforcing Constraints
�  Enforcing constraints

Enforcing Constraints
�  Enforcing constraints

�  Add categories, rules

Enforcing Constraints
�  Enforcing constraints

�  Add categories, rules
�  Agreement:

�  S-> NPsg3p VPsg3p,

�  S-> NPpl3p VPpl3p,

Enforcing Constraints
�  Enforcing constraints

�  Add categories, rules
�  Agreement:

�  S-> NPsg3p VPsg3p,

�  S-> NPpl3p VPpl3p,

�  Subcategorization:
�  VP-> Vtrans NP,

�  VP -> Vintrans,

�  VP->Vditrans NP NP

Enforcing Constraints
�  Enforcing constraints

�  Add categories, rules
�  Agreement:

�  S-> NPsg3p VPsg3p,

�  S-> NPpl3p VPpl3p,

�  Subcategorization:
�  VP-> Vtrans NP,

�  VP -> Vintrans,

�  VP->Vditrans NP NP

�  Explosive!, loses key generalizations

Why features?
� Need compact, general constraints

�  S -> NP VP

Why features?
� Need compact, general constraints

�  S -> NP VP
�  Only if NP and VP agree

Why features?
� Need compact, general constraints

�  S -> NP VP
�  Only if NP and VP agree

� How can we describe agreement, subcat?

Why features?
� Need compact, general constraints

�  S -> NP VP
�  Only if NP and VP agree

� How can we describe agreement, subcat?
�  Decompose into elementary features that must

be consistent
�  E.g. Agreement

Why features?
� Need compact, general constraints

�  S -> NP VP
�  Only if NP and VP agree

� How can we describe agreement, subcat?
�  Decompose into elementary features that must

be consistent
�  E.g. Agreement

�  Number, person, gender, etc

Why features?
�  Need compact, general constraints

�  S -> NP VP
�  Only if NP and VP agree

�  How can we describe agreement, subcat?
�  Decompose into elementary features that must be

consistent
�  E.g. Agreement

�  Number, person, gender, etc

�  Augment CF rules with feature constraints
�  Develop mechanism to enforce consistency
�  Elegant, compact, rich representation

Feature Representations
�  Fundamentally, Attribute-Value pairs

�  Values may be symbols or feature structures
�  Feature path: list of features in structure to value

�  “Reentrant feature structures”: share some struct

�  Represented as
�  Attribute-value matrix (AVM), or

�  Directed acyclic graph (DAG)

AVM

NUMBER PL

PERSON 3

NUMBER PL

PERSON 3

CAT NP

NUMBER PL

PERSON 3

CAT NP

AGREEMENT

NUMBER PL

PERSON 3

CAT S

HEAD AGREEM’T

NUMBER PL

PERSON 3

1

SUBJECT AGREEMENT 1

Unification
�  Two key roles:

Unification
�  Two key roles:

�  Merge compatible feature structures

Unification
�  Two key roles:

�  Merge compatible feature structures

�  Reject incompatible feature structures

Unification
�  Two key roles:

�  Merge compatible feature structures

�  Reject incompatible feature structures

�  Two structures can unify if

Unification
�  Two key roles:

�  Merge compatible feature structures

�  Reject incompatible feature structures

�  Two structures can unify if
�  Feature structures are identical

�  Result in same structure

Unification
�  Two key roles:

�  Merge compatible feature structures

�  Reject incompatible feature structures

�  Two structures can unify if
�  Feature structures are identical

�  Result in same structure

�  Feature structures match where both have values,
differ in missing or underspecified
�  Resulting structure incorporates constraints of both

Subsumption
�  Relation between feature structures

�  Less specific f.s. subsumes more specific f.s.
�  F.s. F subsumes f.s. G iff

�  For every feature x in F, F(x) subsumes G(x)
�  For all paths p and q in F s.t. F(p)=F(q), G(p)=G(q)

Subsumption
�  Relation between feature structures

�  Less specific f.s. subsumes more specific f.s.
�  F.s. F subsumes f.s. G iff

�  For every feature x in F, F(x) subsumes G(x)
�  For all paths p and q in F s.t. F(p)=F(q), G(p)=G(q)

�  Examples:
�  A: [Number SG], B: [Person 3]
�  C:[Number SG]

�  [Person 3]

Subsumption
�  Relation between feature structures

�  Less specific f.s. subsumes more specific f.s.
�  F.s. F subsumes f.s. G iff

�  For every feature x in F, F(x) subsumes G(x)
�  For all paths p and q in F s.t. F(p)=F(q), G(p)=G(q)

�  Examples:
�  A: [Number SG], B: [Person 3]
�  C:[Number SG]

�  [Person 3]

�  A subsumes C; B subsumes C; B,A don’t subsume
�  Partial order on f.s.

Unification Examples
�  Identical

�  [Number SG] U [Number SG]

Unification Examples
�  Identical

�  [Number SG] U [Number SG]=[Number SG]

�  Underspecified
�  [Number SG] U [Number []]

Unification Examples
�  Identical

�  [Number SG] U [Number SG]=[Number SG]

�  Underspecified
�  [Number SG] U [Number []] = [Number SG]

�  Different specification
�  [Number SG] U [Person 3]

Unification Examples
�  Identical

�  [Number SG] U [Number SG]=[Number SG]

�  Underspecified
�  [Number SG] U [Number []] = [Number SG]

�  Different specification
�  [Number SG] U [Person 3] = [Number SG]
�  [Person 3]
�  [Number SG] U [Number PL]

Unification Examples
�  Identical

�  [Number SG] U [Number SG]=[Number SG]

�  Underspecified
�  [Number SG] U [Number []] = [Number SG]

�  Different specification
�  [Number SG] U [Person 3] = [Number SG]
�  [Person 3]

�  Mismatched
�  [Number SG] U [Number PL] -> Fails!

More Unification Examples
AGREEMENT [1]

SUBJECT AGREEMENT [1]

SUBJECT AGREEMENT
PERSON 3
NUMBER SG

U

=

SUBJECT AGREEMENT [1]
PERSON 3
NUMBER SG

AGREEMENT [1]

Features in CFGs:
Agreement

�  Goal:
�  Support agreement of NP/VP, Det Nominal

�  Approach:
�  Augment CFG rules with features
�  Employ head features

�  Each phrase: VP, NP has head
�  Head: child that provides features to phrase

�  Associates grammatical role with word

�  VP – V; NP – Nom, etc

Agreement with Heads and
Features

VP -> Verb NP
<VP HEAD> = <Verb HEAD>

NP -> Det Nominal
<NP HEAD> = <Nominal HEAD>
<Det HEAD AGREEMENT> = <Nominal HEAD AGREEMENT>

Nominal -> Noun
<Nominal HEAD> = <Noun HEAD>

Noun -> flights
<Noun HEAD AGREEMENT NUMBER> = PL

Verb -> serves
<Verb HEAD AGREEMENT NUMBER> = SG
<Verb HEAD AGREEMENT PERSON> = 3

Feature Applications
�  Subcategorization:

�  Verb-Argument constraints
�  Number, type, characteristics of args (e.g. animate)

�  Also adjectives, nouns

�  Long distance dependencies
�  E.g. filler-gap relations in wh-questions, rel

Implementing Unification
�  Data Structure:

�  Extension of the DAG representation

�  Each f.s. has a content field and a pointer field
�  If pointer field is null, content field has the f.s.

�  If pointer field is non-null, it points to actual f.s.

NUMBER SG
PERSON 3

Implementing Unification: II
�  Algorithm:

�  Operates on pairs of feature structures
�  Order independent, destructive

�  If fs1 is null, point to fs2
�  If fs2 is null, point to fs1

�  If both are identical, point fs1 to fs2, return fs2
�  Subsequent updates will update both

�  If non-identical atomic values, fail!

Implementing Unification:
III

�  If non-identical, complex structures
�  Recursively traverse all features of fs2

�  If feature in fs2 is missing in fs1
�  Add to fs1 with value null

�  If all unify, point fs2 to fs1 and return fs1

Example
AGREEMENT [1] NUMBER SG

SUBJECT AGREEMENT [1]

SUBJECT AGREEMENT PERSON 3

U

[AGREEMENT [1]] U [AGREEMENT [PERSON 3]]

[NUMBER SG] U [PERSON 3]

[NUMBER SG] U [PERSON 3]
[PERSON NULL]

Unification and the Earley
Parser

�  Employ constraints to restrict addition to chart

�  Actually pretty straightforward
� 

Unification and the Earley
Parser

�  Employ constraints to restrict addition to chart

�  Actually pretty straightforward
�  Augment rules with feature structure

Unification and the Earley
Parser

�  Employ constraints to restrict addition to chart

�  Actually pretty straightforward
�  Augment rules with feature structure

�  Augment state (chart entries) with DAG
�  Prediction adds DAG from rule

�  Completion applies unification (on copies)
�  Adds entry only if current DAG is NOT subsumed

Unification Parsing
�  Abstracts over categories

�  S-> NP VP =>
�  X0 -> X1 X2; <X0 cat> = S; <X1 cat>=NP;
�  <X2 cat>=VP

�  Conjunction:
�  X0->X1 and X2; <X1 cat> =<X2 cat>;
�  <X0 cat>=<X1 cat>

�  Issue: Completer depends on categories

�  Solution: Completer looks for DAGs which unify
with the just-completed state’s DAG

Extensions
�  Types and inheritance

�  Issue: generalization across feature structures
�  E.g. many variants of agreement

�  More or less specific: 3rd vs sg vs 3rdsg

�  Approach: Type hierarchy
�  Simple atomic types match literally

�  Multiple inheritance hierarchy
�  Unification of subtypes is most general type that is more

specific than two input types

�  Complex types encode legal features, etc

Conclusion
�  Features allow encoding of constraints

�  Enables compact representation of rules
�  Supports natural generalizations

�  Unification ensures compatibility of features
�  Integrates easily with existing parsing mech.

�  Many unification-based grammatical theories

