
Feature-based Parsing
Deep Processing for NLP

Ling 571
February 5, 2014

Roadmap
�  Features: Motivation

�  Constraint & compactness

�  Features
�  Definitions & representations

�  Unification

�  Application of features in the grammar
�  Agreement, subcategorization

�  Parsing with features & unification
�  Augmenting the Earley parser, unification parsing

�  Extensions: Types, inheritance, etc

�  Conclusion

Constraints & Compactness
�  Constraints in grammar

�  S à NP VP
�  They run.

�  He runs.

Constraints & Compactness
�  Constraints in grammar

�  S à NP VP
�  They run.

�  He runs.

�  But…
�  *They runs

�  *He run

�  *He disappeared the flight

Constraints & Compactness
�  Constraints in grammar

�  S à NP VP
�  They run.

�  He runs.

�  But…
�  *They runs

�  *He run

�  *He disappeared the flight

�  Violate agreement (number), subcategorization

Enforcing Constraints
�  Enforcing constraints

Enforcing Constraints
�  Enforcing constraints

�  Add categories, rules

Enforcing Constraints
�  Enforcing constraints

�  Add categories, rules
�  Agreement:

�  Sà NPsg3p VPsg3p,

�  Sà NPpl3p VPpl3p,

Enforcing Constraints
�  Enforcing constraints

�  Add categories, rules
�  Agreement:

�  Sà NPsg3p VPsg3p,

�  Sà NPpl3p VPpl3p,

�  Subcategorization:
�  VP à Vtrans NP,

�  VP à Vintrans,

�  VP à Vditrans NP NP

Enforcing Constraints
�  Enforcing constraints

�  Add categories, rules
�  Agreement:

�  Sà NPsg3p VPsg3p,

�  Sà NPpl3p VPpl3p,

�  Subcategorization:
�  VP à Vtrans NP,

�  VP à Vintrans,

�  VP à Vditrans NP NP

�  Explosive!, loses key generalizations

Why features?
� Need compact, general constraints

�  S à NP VP

Why features?
� Need compact, general constraints

�  S à NP VP
�  Only if NP and VP agree

Why features?
� Need compact, general constraints

�  S à NP VP
�  Only if NP and VP agree

� How can we describe agreement, subcat?

Why features?
� Need compact, general constraints

�  S à NP VP
�  Only if NP and VP agree

� How can we describe agreement, subcat?
�  Decompose into elementary features that must

be consistent
�  E.g. Agreement

Why features?
� Need compact, general constraints

�  S à NP VP
�  Only if NP and VP agree

� How can we describe agreement, subcat?
�  Decompose into elementary features that must

be consistent
�  E.g. Agreement

�  Number, person, gender, etc

Why features?
�  Need compact, general constraints

�  S à NP VP
�  Only if NP and VP agree

�  How can we describe agreement, subcat?
�  Decompose into elementary features that must be

consistent
�  E.g. Agreement

�  Number, person, gender, etc

�  Augment CF rules with feature constraints
�  Develop mechanism to enforce consistency
�  Elegant, compact, rich representation

Feature Representations
�  Fundamentally, Attribute-Value pairs

�  Values may be symbols or feature structures
�  Feature path: list of features in structure to value

�  “Reentrant feature structures”: share some struct

�  Represented as
�  Attribute-value matrix (AVM), or

�  Directed acyclic graph (DAG)

AVM

NUMBER PL

PERSON 3

NUMBER PL

PERSON 3

CAT NP

NUMBER PL

PERSON 3

CAT NP

AGREEMENT

NUMBER PL

PERSON 3

CAT S

HEAD AGREEM’T

NUMBER PL

PERSON 3

1

SUBJECT AGREEMENT 1

Unification
�  Two key roles:

Unification
�  Two key roles:

�  Merge compatible feature structures

Unification
�  Two key roles:

�  Merge compatible feature structures

�  Reject incompatible feature structures

Unification
�  Two key roles:

�  Merge compatible feature structures

�  Reject incompatible feature structures

�  Two structures can unify if

Unification
�  Two key roles:

�  Merge compatible feature structures

�  Reject incompatible feature structures

�  Two structures can unify if
�  Feature structures are identical

�  Result in same structure

Unification
�  Two key roles:

�  Merge compatible feature structures

�  Reject incompatible feature structures

�  Two structures can unify if
�  Feature structures are identical

�  Result in same structure

�  Feature structures match where both have values,
differ in missing or underspecified
�  Resulting structure incorporates constraints of both

Subsumption
�  Relation between feature structures

�  Less specific f.s. subsumes more specific f.s.
�  F.s. F subsumes f.s. G iff

�  For every feature x in F, F(x) subsumes G(x)
�  For all paths p and q in F s.t. F(p)=F(q), G(p)=G(q)

Subsumption
�  Relation between feature structures

�  Less specific f.s. subsumes more specific f.s.
�  F.s. F subsumes f.s. G iff

�  For every feature x in F, F(x) subsumes G(x)
�  For all paths p and q in F s.t. F(p)=F(q), G(p)=G(q)

�  Examples:
�  A: [Number SG], B: [Person 3]
�  C:[Number SG]

�  [Person 3]

Subsumption
�  Relation between feature structures

�  Less specific f.s. subsumes more specific f.s.
�  F.s. F subsumes f.s. G iff

�  For every feature x in F, F(x) subsumes G(x)
�  For all paths p and q in F s.t. F(p)=F(q), G(p)=G(q)

�  Examples:
�  A: [Number SG], B: [Person 3]
�  C:[Number SG]

�  [Person 3]

�  A subsumes C; B subsumes C; B,A don’t subsume
�  Partial order on f.s.

Unification Examples
�  Identical

�  [Number SG] U [Number SG]

Unification Examples
�  Identical

�  [Number SG] U [Number SG]=[Number SG]

�  Underspecified
�  [Number SG] U [Number []]

Unification Examples
�  Identical

�  [Number SG] U [Number SG]=[Number SG]

�  Underspecified
�  [Number SG] U [Number []] = [Number SG]

�  Different specification
�  [Number SG] U [Person 3]

Unification Examples
�  Identical

�  [Number SG] U [Number SG]=[Number SG]

�  Underspecified
�  [Number SG] U [Number []] = [Number SG]

�  Different specification
�  [Number SG] U [Person 3] = [Number SG]
�  [Person 3]
�  [Number SG] U [Number PL]

Unification Examples
�  Identical

�  [Number SG] U [Number SG]=[Number SG]

�  Underspecified
�  [Number SG] U [Number []] = [Number SG]

�  Different specification
�  [Number SG] U [Person 3] = [Number SG]
�  [Person 3]

�  Mismatched
�  [Number SG] U [Number PL] à Fails!

More Unification Examples
AGREEMENT [1]

SUBJECT AGREEMENT [1]

SUBJECT AGREEMENT
PERSON 3
NUMBER SG

U

=

SUBJECT AGREEMENT [1]
PERSON 3
NUMBER SG

AGREEMENT [1]

Features in CFGs:
Agreement

�  Goal:
�  Support agreement of NP/VP, Det Nominal

�  Approach:
�  Augment CFG rules with features
�  Employ head features

�  Each phrase: VP, NP has head
�  Head: child that provides features to phrase

�  Associates grammatical role with word

�  VP – V; NP – Nom, etc

Agreement with Heads and
Features

VP à Verb NP

NP à Det Nominal

Nominal à Noun

Noun à flights

Verb à serves

Agreement with Heads and
Features

VP à Verb NP
<VP HEAD> = <Verb HEAD>

NP à Det Nominal

Nominal à Noun

Noun à flights

Verb à serves

Agreement with Heads and
Features

VP à Verb NP
<VP HEAD> = <Verb HEAD>

NP à Det Nominal
<NP HEAD> = <Nominal HEAD>
<Det HEAD AGREEMENT> = <Nominal HEAD AGREEMENT>

Nominal à Noun

Noun à flights

Verb à serves

Agreement with Heads and
Features

VP à Verb NP
<VP HEAD> = <Verb HEAD>

NP à Det Nominal
<NP HEAD> = <Nominal HEAD>
<Det HEAD AGREEMENT> = <Nominal HEAD AGREEMENT>

Nominal à Noun
<Nominal HEAD> = <Noun HEAD>

Noun à flights

Verb à serves

Agreement with Heads and
Features

VP à Verb NP
<VP HEAD> = <Verb HEAD>

NP à Det Nominal
<NP HEAD> = <Nominal HEAD>
<Det HEAD AGREEMENT> = <Nominal HEAD AGREEMENT>

Nominal à Noun
<Nominal HEAD> = <Noun HEAD>

Noun à flights
<Noun HEAD AGREEMENT NUMBER> = PL

Verb à serves

Agreement with Heads and
Features

VP à Verb NP
<VP HEAD> = <Verb HEAD>

NP à Det Nominal
<NP HEAD> = <Nominal HEAD>
<Det HEAD AGREEMENT> = <Nominal HEAD AGREEMENT>

Nominal à Noun
<Nominal HEAD> = <Noun HEAD>

Noun à flights
<Noun HEAD AGREEMENT NUMBER> = PL

Verb à serves
<Verb HEAD AGREEMENT NUMBER> = SG
<Verb HEAD AGREEMENT PERSON> = 3

Feature Applications
�  Subcategorization:

�  Verb-Argument constraints
�  Number, type, characteristics of args (e.g. animate)

�  Also adjectives, nouns

�  Long distance dependencies
�  E.g. filler-gap relations in wh-questions, rel

Implementing Unification
�  Data Structure:

�  Extension of the DAG representation

�  Each f.s. has a content field and a pointer field
�  If pointer field is null, content field has the f.s.

�  If pointer field is non-null, it points to actual f.s.

NUMBER SG
PERSON 3

Implementing Unification: II
�  Algorithm:

�  Operates on pairs of feature structures
�  Order independent, destructive

Implementing Unification: II
�  Algorithm:

�  Operates on pairs of feature structures
�  Order independent, destructive

�  If fs1 is null, point to fs2
�  If fs2 is null, point to fs1

Implementing Unification: II
�  Algorithm:

�  Operates on pairs of feature structures
�  Order independent, destructive

�  If fs1 is null, point to fs2
�  If fs2 is null, point to fs1

�  If both are identical,

Implementing Unification: II
�  Algorithm:

�  Operates on pairs of feature structures
�  Order independent, destructive

�  If fs1 is null, point to fs2
�  If fs2 is null, point to fs1

�  If both are identical, point fs1 to fs2, return fs2
�  Subsequent updates will update both

�  If non-identical atomic values

Implementing Unification: II
�  Algorithm:

�  Operates on pairs of feature structures
�  Order independent, destructive

�  If fs1 is null, point to fs2
�  If fs2 is null, point to fs1

�  If both are identical, point fs1 to fs2, return fs2
�  Subsequent updates will update both

�  If non-identical atomic values, fail!

Implementing Unification:
III

�  If non-identical, complex structures
�  Recursively traverse all features of fs2

�  If feature in fs2 is missing in fs1
�  Add to fs1 with value null

�  If all unify, point fs2 to fs1 and return fs1

Example
AGREEMENT [1] NUMBER SG

SUBJECT AGREEMENT [1]

SUBJECT AGREEMENT PERSON 3

U

[AGREEMENT [1]] U [AGREEMENT [PERSON 3]]

[NUMBER SG] U [PERSON 3]

[NUMBER SG] U [PERSON 3]
[PERSON NULL]

Parsing with Features &
Unification

�  How can we integrate parsing with unification?

�  Does unification have to happen at some particular
point in parsing?

Parsing with Features &
Unification

�  How can we integrate parsing with unification?

�  Does unification have to happen at some particular
point in parsing?
�  Not really, unification is order-independent

�  Simple strategy:

Parsing with Features &
Unification

�  How can we integrate parsing with unification?

�  Does unification have to happen at some particular
point in parsing?
�  Not really, unification is order-independent

�  Simple strategy:
�  Run (any) parser, apply unification constraints

�  Does it work

Parsing with Features &
Unification

�  How can we integrate parsing with unification?

�  Does unification have to happen at some particular
point in parsing?
�  Not really, unification is order-independent

�  Simple strategy:
�  Run (any) parser, apply unification constraints

�  Does it work? Yes

�  Is it optimal?

Parsing with Features &
Unification

�  How can we integrate parsing with unification?

�  Does unification have to happen at some particular
point in parsing?
�  Not really, unification is order-independent

�  Simple strategy:
�  Run (any) parser, apply unification constraints

�  Does it work? Yes

�  Is it optimal?
�  Not really, may construct lots of invalid parses

Unification and the Earley
Parser

�  Employ constraints to restrict addition to chart

�  Actually pretty straightforward

Unification and the Earley
Parser

�  Employ constraints to restrict addition to chart

�  Actually pretty straightforward
�  Augment rules with feature structure

Unification and the Earley
Parser

�  Employ constraints to restrict addition to chart

�  Actually pretty straightforward
�  Augment rules with feature structure

�  Augment state (chart entries) with DAG
�  Prediction adds DAG from rule

Unification and the Earley
Parser

�  Employ constraints to restrict addition to chart

�  Actually pretty straightforward
�  Augment rules with feature structure

�  Augment state (chart entries) with DAG
�  Prediction adds DAG from rule

�  Completion applies unification (on copies)
�  Adds entry only if current DAG is NOT subsumed

Example Rule & State
�  S à NP VP

�  <NP HEAD AGREEMENT> = <VP HEAD AGREEMENT>

�  <S HEAD> = <VP HEAD>

�  Prediction: Sà� NP VP, [0,0],[],Dag

Example Completion
�  Existing state: NP à Det � Nominal, [0,1],[Sdet],Dag1

�  Dag1:

�  Completed state: Nominal à Noun�,[1,2],[Snoun],Dag2

�  Dag2:

Unification Parsing
�  Abstracts over categories

�  S à NP VP è
�  X0 à X1 X2; <X0 cat> = S; <X1 cat>=NP;
�  <X2 cat>=VP

�  Conjunction:
�  X0 à X1 and X2; <X1 cat> = <X2 cat>;
�  <X0 cat>=<X1 cat>

�  Issue: Completer depends on categories

�  Solution: Completer looks for DAGs which unify
with the just-completed state’s DAG

Extensions
�  Types and inheritance

�  Issue: generalization across feature structures
�  E.g. many variants of agreement

�  More or less specific: 3rd vs sg vs 3rdsg

Extensions
�  Types and inheritance

�  Issue: generalization across feature structures
�  E.g. many variants of agreement

�  More or less specific: 3rd vs sg vs 3rdsg

�  Approach: Type hierarchy
�  Simple atomic types match literally

�  Multiple inheritance hierarchy
�  Unification of subtypes is most general type that is more

specific than two input types

�  Complex types encode legal features, etc

Conclusion
�  Features allow encoding of constraints

�  Enables compact representation of rules
�  Supports natural generalizations

�  Unification ensures compatibility of features
�  Integrates easily with existing parsing mech.

�  Many unification-based grammatical theories

