
Unification Parsing;
Typed Feature Structures

Ling 571
Deep Processing Techniques for NLP

1Wednesday, February 4, 2015

Unification Parsing
Typed Feature Structures

demo: agree grammar engineering

Ling 571: Deep Processing Techniques for NLP
February 4, 2015

Glenn Slayden

Unification Parsing;
Typed Feature Structures

Ling 571
Deep Processing Techniques for NLP

2Wednesday, February 4, 2015

Parsing in the abstract
• Rule-based parsers can be defined in terms of

two operations:
– Satisfiability: does a rule apply?
– Combination: what is the result (product) of the

rule?

Unification Parsing;
Typed Feature Structures

Ling 571
Deep Processing Techniques for NLP

3Wednesday, February 4, 2015

CFG parsing
• Example CFG rule:

• Satisfiability:
– Exact match of the entities on the right side of the

rule
– Do we have an NP? Do we have a VP?
– No try another rule. Yes

• Combination:
– The result of the rule application is:

Unification Parsing;
Typed Feature Structures

Ling 571
Deep Processing Techniques for NLP

4Wednesday, February 4, 2015

Abstract parser desiderata
• Let’s consider a parsing formalism where the

satisfiability and combination functions are
combined into one operation:

• Such an operation “ ” would:
1. operate on two (or more) input structures
2. produce exactly one new output structure, or
3. sometimes fail (to produce an output structure)
– other requirements…?

Unification Parsing;
Typed Feature Structures

Ling 571
Deep Processing Techniques for NLP

5Wednesday, February 4, 2015

Problems with exact match
• In a CFG, this would be akin to having the

“output” of a rule be its entire instance:

Result: (?)

• The problem is that this result is probably not
an input (RHS) to another rule

• In fact, bottom up parsing likely would not
make it past the terminals

Unification Parsing;
Typed Feature Structures

Ling 571
Deep Processing Techniques for NLP

6Wednesday, February 4, 2015

Abstract parser desiderata
• Therefore, an additional criteria is that the

putative operation “ ”
4. tolerate inputs which have already been

specified

• This suggests that operation “ ”:
– is information-preserving
– monotonically incorporates specific information

(from runtime inputs)
– …into more general structures (authored rules)

Unification Parsing;
Typed Feature Structures

Ling 571
Deep Processing Techniques for NLP

7Wednesday, February 4, 2015

Constraint-based parsing
• From graph-theory and Prolog we know that an

ideal “ ” is graph unification.
• The unification of two graphs is the most specific

graph that preserves all of the information
contained in both graphs, if such a graph is
possible.

• We will need to define:
– how linguistic information is represented in the graphs
– whether two pieces of information are “compatible”
– If compatible, which is “more specific”

Unification Parsing;
Typed Feature Structures

Ling 571
Deep Processing Techniques for NLP

8Wednesday, February 4, 2015

Head-Driven Phrase Structure Grammar

• “HPSG,” Pollard and Sag, 1994
• Highly consistent and powerful formalism
• Monostratal, declarative, non-derivational,

lexicalist, constraint-based
• Has been studied for many different languages
• Psycholinguistic evidence

Unification Parsing;
Typed Feature Structures

Ling 571
Deep Processing Techniques for NLP

9Wednesday, February 4, 2015

HPSG foundations: Typed Feature Structures

• Typed Feature Structures (Carpenter 1992)
• High expressive power
• Parsing complexity: exponential (to the input

length)
• Tractable with efficient parsing algorithms
• Efficiency can be improved with a well

designed grammar

Unification Parsing;
Typed Feature Structures

Ling 571
Deep Processing Techniques for NLP

10Wednesday, February 4, 2015

A hierarchy of scalar types
• The basis of being able constrain information

is a closed universe of types
• Define a partial order of specificity over

arbitrary (scalar) types
– Type unification (vs. TFS unification)
– A B is defined for all types:

• “Compatible types” ⊔ B = C
• “Incompatible types” A ⊔ B = ⊥

Unification Parsing;
Typed Feature Structures

Ling 571
Deep Processing Techniques for NLP

11Wednesday, February 4, 2015

Type Hierarchy (Carpenter 1992)
• In the view of constraint-based grammar

– A unique most general type: *top* T
– Each non-top type has one or more parent type(s)
– Two types are compatible iff they share at least one

offspring type
– Each non-top type is associated with optional

constraints
• Constraints specified in ancestor types are monotonically

inherited
• Constraints (either inherited, or newly introduced) must be

compatible

Unification Parsing;
Typed Feature Structures

Ling 571
Deep Processing Techniques for NLP

12Wednesday, February 4, 2015

multiple inheritance

a non-linguistic example

Unification Parsing;
Typed Feature Structures

Ling 571
Deep Processing Techniques for NLP

13Wednesday, February 4, 2015

The type hierarchy
• A simple example

Unification Parsing;
Typed Feature Structures

Ling 571
Deep Processing Techniques for NLP

14Wednesday, February 4, 2015

GLB (Greatest Lower Bound) Types
• With multiple inheritance, two types can have more than one

shared subtype that neither is more general than the others
• Non-deterministic unification results
• Type hierarchy can be automatically modified to avoid this

Unification Parsing;
Typed Feature Structures

Ling 571
Deep Processing Techniques for NLP

15Wednesday, February 4, 2015

Deterministic type unification
• Compute “bounded complete partial order”

(BCPO) of the type graph

Fokkens/Zhang

Automatically
introduce GLB types
so that any two types
that unify have
exactly one greater
lowest bound

Unification Parsing;
Typed Feature Structures

Ling 571
Deep Processing Techniques for NLP

16Wednesday, February 4, 2015

Typed Feature Structures

• [Carpenter 1992]
• High expressive power
• Parsing complexity: exponential in input length

• Tractable with efficient parsing algorithms
• Efficiency can be improved with a well-designed grammar

Unification Parsing;
Typed Feature Structures

Ling 571
Deep Processing Techniques for NLP

17Wednesday, February 4, 2015

Feature Structure Grammars
• HPSG (Pollard & Sag 1994)
• http://hpsg.stanford.edu/index.html

Unification Parsing;
Typed Feature Structures

Ling 571
Deep Processing Techniques for NLP

18Wednesday, February 4, 2015

Feature Structures In Unification-Based
Grammar Development

• A feature structure is a set of attribute-value pairs
– Or, “Attribute-Value Matrix” (AVM)
– Each attribute (or feature) is an atomic symbol
– The value of each attribute can be either atomic, or

complex (a feature structure, a list, or a set)

Unification Parsing;
Typed Feature Structures

Ling 571
Deep Processing Techniques for NLP

19Wednesday, February 4, 2015

Typed Feature Structure
• A typed feature structure is composed of two

parts
– A type (from the scalar type hierarchy)
– A (possibly empty) set of attribute-value pairs

(“Feature Structure”) with each value being a TFS

Unification Parsing;
Typed Feature Structures

Ling 571
Deep Processing Techniques for NLP

20Wednesday, February 4, 2015

Typed Feature Structure (TFS)

Unification Parsing;
Typed Feature Structures

Ling 571
Deep Processing Techniques for NLP

21Wednesday, February 4, 2015

Properties of TFSes
• Finiteness

a typed feature structure has a finite number of nodes

• Unique root and connectedness
a typed feature structure has a unique root node; apart from the root, all
nodes have at least one parent

• No cycles
no node has an arc that points back to the root node or to another node
that intervenes between the node itself and the root

• Unique features
no node has two features with the same name and different values

• Typing
each node has single type which is defined in the hierarchy

Unification Parsing;
Typed Feature Structures

Ling 571
Deep Processing Techniques for NLP

22Wednesday, February 4, 2015

TFS equivalent views

Unification Parsing;
Typed Feature Structures

Ling 571
Deep Processing Techniques for NLP

23Wednesday, February 4, 2015

TFS partial ordering
• Just as the

(scalar) type
hierarchy is
ordered, TFS
instances can be
ordered by
subsumption

Unification Parsing;
Typed Feature Structures

Ling 571
Deep Processing Techniques for NLP

24Wednesday, February 4, 2015

TFS hierarchy
• The backbone of the TFS hierarchy is the scalar type hierarchy;

but note that TFS [agr] is not the same entity as type agr

Unification Parsing;
Typed Feature Structures

Ling 571
Deep Processing Techniques for NLP

25Wednesday, February 4, 2015

Unification
The unification result on two TFSes TFSa and TFSb is:
• , if either one of the following:

– type and are incompatible
– unification of values for attribute X in TFSa and TFSb

returns

• a new TFS, with:
– the most general shared subtype of and
– a set of attribute-value pairs being the results of

unifications on sub-TFSes of TFSa and TFSb

Unification Parsing;
Typed Feature Structures

Ling 571
Deep Processing Techniques for NLP

26Wednesday, February 4, 2015

TFS Unification

Unification Parsing;
Typed Feature Structures

Ling 571
Deep Processing Techniques for NLP

27Wednesday, February 4, 2015

TFS unification
TFS unification has much subtlety
For example, it can render authored co-references vacuous

The condition on F,
present in TFS C,
has collapsed in E

Unification Parsing;
Typed Feature Structures

Ling 571
Deep Processing Techniques for NLP

28Wednesday, February 4, 2015

Building lists with unification
• A difference list embeds an open-ended list into a container

structure that provides a ‘pointer’ to the end of the ordinary
list.

• Using the LAST pointer of difference list A we can append A
and B by
– unifying the front of B (i.e. the value of its LIST feature) into the tail of

A (its LAST value) and
– using the tail of difference list B as the new tail for the result of the

concatenation.

Unification Parsing;
Typed Feature Structures

Ling 571
Deep Processing Techniques for NLP

29Wednesday, February 4, 2015

Result of appending the lists

Unification Parsing;
Typed Feature Structures

Ling 571
Deep Processing Techniques for NLP

30Wednesday, February 4, 2015

Representing Semantics in Typed
Feature Structures

Unification Parsing;
Typed Feature Structures

Ling 571
Deep Processing Techniques for NLP

31Wednesday, February 4, 2015

Semantics desiderata
• For each sentence admitted by the grammar,

we want to produce a meaning representation
suitable for applying rules of inference.

“This fierce dog chased that angry cat.”

Unification Parsing;
Typed Feature Structures

Ling 571
Deep Processing Techniques for NLP

32Wednesday, February 4, 2015

Semantics desiderata
• Compositionality

– The meaning of a phrase is composed of the
meanings of its parts.

• Existing machinery
– Unification is the only mechanism we use for

constructing semantics in the grammar.

Unification Parsing;
Typed Feature Structures

Ling 571
Deep Processing Techniques for NLP

33Wednesday, February 4, 2015

Semantics in feature structures
• Semantic content in the CONT attribute of

every word and phrase

Unification Parsing;
Typed Feature Structures

Ling 571
Deep Processing Techniques for NLP

34Wednesday, February 4, 2015

Semantics formalism: MRS
• Minimal Recursion Semantics

Copestake, A., Flickinger, D., Pollard, C. J., and Sag, I. A. (2005).
Minimal recursion semantics: an introduction. Research on Language
and Computation, 3(4):281–332.

• Used across DELPH-IN projects
• The value of CONT for a sentence is essentially a

list of relations in the attribute RELS, with the
arguments in those relations appropriately linked:
– Semantic relations are introduced by lexical entries
– Relations are appended when words are combined

with other words or phrases.

Unification Parsing;
Typed Feature Structures

Ling 571
Deep Processing Techniques for NLP

35Wednesday, February 4, 2015

MRS: example

คณุชอบอาหารญีปุ่่ นไหม

Unification Parsing;
Typed Feature Structures

Ling 571
Deep Processing Techniques for NLP

36Wednesday, February 4, 2015

DELPH-IN consortium

Unification Parsing;
Typed Feature Structures

Ling 571
Deep Processing Techniques for NLP

37Wednesday, February 4, 2015

DELPH-IN Consortium
• An informal collaboration of about 20 research

sites worldwide focused on deep linguistic
processing since ~2002
– DFKI Saarbrücken GmbH, Germany
– Stanford University, USA
– University of Oslo, Norway
– Saarland University, Germany
– University of Washington, Seattle, USA
– Nanyang Tecnological University, Singapore
– …many others

• http://www.delph-in.net

Unification Parsing;
Typed Feature Structures

Ling 571
Deep Processing Techniques for NLP

38Wednesday, February 4, 2015

Key DELPH-IN Projects
• English Resource Grammar (ERG)

Flickinger 2002, www.delph-in.net/erg
• The Grammar Matrix

Bender et al. 2002, www.delph-in.new/matrix
• Other large grammars

JACY (Japanese, Siegel and Bender 2002)
GG; Cheetah (German; Crysmann; Cramer and Zhang 2009)
Many others: http://moin.delph-in.net/GrammarCatalogue

• Operational instrumentation of grammars
[incr tsdb()] (Oepen and Flickinger 1998)

• Joint-reference formalism tools

Unification Parsing;
Typed Feature Structures

Ling 571
Deep Processing Techniques for NLP

39Wednesday, February 4, 2015

English Resource Grammar
(Flickinger 2002)

• A large, open source HPSG computational
grammar of English

• 20+ years of work
• Likely the most competent general domain,

rule-based grammar of any language
• Redwoods treebank

Unification Parsing;
Typed Feature Structures

Ling 571
Deep Processing Techniques for NLP

40Wednesday, February 4, 2015

Grammar Matrix
• Rapid prototyping of computational grammars

for new languages
• Also for computational typology research
• From a Web-based questionnaire, produce a

customized working starter grammar
http://www.delph-in.net/matrix/customize/

Unification Parsing;
Typed Feature Structures

Ling 571
Deep Processing Techniques for NLP

41Wednesday, February 4, 2015

Relevant DELPH-IN research
• Morphological pre-processing
• Chart parsing optimizations
• Generation techniques
• Ambiguity packing
• Parse selection

– maximum-entropy parse selection model

Unification Parsing;
Typed Feature Structures

Ling 571
Deep Processing Techniques for NLP

42Wednesday, February 4, 2015

Chart parsing efficiency
• parser optimizations

– “quick-check”
– ambiguity packing
– “chart dependencies” phase
– spanning-only rules
– rule compatibility pre-checks
– key-driven
– grammar design for faster parsing

Unification Parsing;
Typed Feature Structures

Ling 571
Deep Processing Techniques for NLP

43Wednesday, February 4, 2015

Ambiguity packing
• Primary approach to combating parse intractability
• Every new feature structure is checked for a subsumption

relationship with existing TFSs.
– Subsumed TFSs are ‘packed’ into the more general structure
– They are excluded from continuing parse activities
– ‘Unpacking’ recovers them after the parse is complete

• agree: concurrent implementation of a DELPH-IN method
– Oepen and Carroll 2000
– Proactive/retroactive; subsumption/equivalence

• Applicable to parsing and generation

Unification Parsing;
Typed Feature Structures

Ling 571
Deep Processing Techniques for NLP

44Wednesday, February 4, 2015

Parsing vs. Generation
• DELPH-IN computational grammars are bi-directional:

คณุชอบอาหารญีปุ่่ นไหม

Parsing Generation

Unification Parsing;
Typed Feature Structures

Ling 571
Deep Processing Techniques for NLP

45Wednesday, February 4, 2015

Generation
• Generation uses the same bottom-up chart parser…

…with a different adjacency/proximity condition
– Instead of joining adjacent words (parsing) the generator

joins mutually-exclusive EPs
• Trigger rules

– Required for postulating semantically vacuous lexemes
• Index accessibility filtering

– Futile hypotheses can be intelligently avoided
• Skolemization

– Inter-EP relationships (‘variables’) are burned-in to the
input semantics to guarantee proper semantics

Unification Parsing;
Typed Feature Structures

Ling 571
Deep Processing Techniques for NLP

46Wednesday, February 4, 2015

DELPH-IN Joint Reference Formalism
• Key focus of DELPH-IN research: computational Head-

driven Phrase Structure Grammar
HPSG, Pollard & Sag 1994

• TDL: Type Description Language
Krieger & Schafer 1994

• A minimalistic constraint-based typed feature structure
(TFS) formalism that maintains computational
tractability

Carpenter 1992
• MRS: Minimum Recursion Semantics

Copestake et al. 1995, 2005
• Multiple toolsets: LKB, PET, Ace, agree
• Committed to open source

Unification Parsing;
Typed Feature Structures

Ling 571
Deep Processing Techniques for NLP

47Wednesday, February 4, 2015

TDL: Type Description Language
• A text-based format for authoring constraint-

based grammars
demonst-numcl-lex := raise-sem-lex-item &

[SYNSEM.LOCAL [CAT [HEAD numcl & [MOD < >],
VAL [COMPS < [OPT +, LOCAL [CAT.HEAD num,

CONT.HOOK [XARG #xarg,
LTOP #larg]]] >,

SPEC < >,
SPR < >,
SUBJ < >]],

CONT.HOOK [XARG #xarg, LTOP #larg]]].

Unification Parsing;
Typed Feature Structures

Ling 571
Deep Processing Techniques for NLP

48Wednesday, February 4, 2015

TDL: type definition language
;;; Types
string := *top*.
list := *top*.
ne-list := *list* &
[FIRST *top*,
REST *list*].

null := *list*.
synsem-struc := *top* &

[CATEGORY cat,
NUMAGR agr].

cat := *top*.
s := cat.
np := cat.
vp := cat.
det := cat.
n := cat.
agr := *top*.
sg := agr.

;;; Lexicon
this := sg-lexeme & [ORTH "this", CATEGORY det].
these := pl-lexeme & [ORTH "these", CATEGORY det].
sleep := pl-lexeme & [ORTH "sleep", CATEGORY vp].
sleeps := sg-lexeme & [ORTH "sleeps", CATEGORY vp].
dog := sg-lexeme & [ORTH "dog", CATEGORY n].
dogs := pl-lexeme & [ORTH "dogs", CATEGORY n].

;;; Rules
s_rule := phrase & [CATEGORY s, NUMAGR #1, ARGS [FIRST [
CATEGORY np,...

Unification Parsing;
Typed Feature Structures

Ling 571
Deep Processing Techniques for NLP

49Wednesday, February 4, 2015

‘agree’ grammar engineering

Unification Parsing;
Typed Feature Structures

Ling 571
Deep Processing Techniques for NLP

50Wednesday, February 4, 2015

agree grammar engineering environment
• A new toolset for the DELPH-IN formalism

– Started in 2009
– Joins the LKB (1993), PET (2001) and ACE (2011)

• All-new code (C#), for .NET/Mono platforms
• Concurrency-enabled from the ground-up

– Thread-safe unification engine
– Lock-free concurrent parse/generation chart

• Supports both parsing and generation
– Also, DELPH-IN compatible morphology unit

Unification Parsing;
Typed Feature Structures

Ling 571
Deep Processing Techniques for NLP

51Wednesday, February 4, 2015

agree WPF
• For Windows, there is a graphical client application

Unification Parsing;
Typed Feature Structures

Ling 571
Deep Processing Techniques for NLP

52Wednesday, February 4, 2015

Proposed “deep” Thai-English system
“แมวนอน”“The cat is

sleeping.”

“แมวนอน”
“The cat is
sleeping.”

Matrix grammar
of Thai

English Resource
Grammar

agree grammar
engineering system

Unification Parsing;
Typed Feature Structures

Ling 571
Deep Processing Techniques for NLP

53Wednesday, February 4, 2015

Project components

Thai
Grammar

English
Resource
Grammar

thai-language.com
production server

agree-sys
engine

agree console
parser

agree chart
debugger

agree WPF
client app

tl-db
database

Thai text
utilities

JACY

agree
utilities

Unification Parsing;
Typed Feature Structures

Ling 571
Deep Processing Techniques for NLP

54Wednesday, February 4, 2015

Grammar
Type Hierarchy

Lexicon Provider

Corpus Provider

Tokenizer

Start Symbols
Grammar Rules

Lexical Rules
Lexical Entries

agree-sys engine components

lexicon

TF
S

m
an

ag
em

en
t

M
RS

 m
an

ag
em

en
t

Parser

Generator

Grammar
Type Hierarchy

Lexicon Provider

Corpus Provider

Tokenizer

Start Symbols
Grammar Rules

Lexical Rules
Lexical Entries

corpora

Unifier

TDL loader

Config/settings mgr.

Workspace mgmt.

Job control

Morphology

multiple
grammars…

Pa
ck

in
g/

un
pa

ck
in

g

Pa
rs

e
se

le
ct

io
n

Unification Parsing;
Typed Feature Structures

Ling 571
Deep Processing Techniques for NLP

55Wednesday, February 4, 2015

agree parser performance
Time to parse 287 sentences from ‘hike’ corpus; agree concurrency x8

Unification Parsing;
Typed Feature Structures

Ling 571
Deep Processing Techniques for NLP

56Wednesday, February 4, 2015

Unification Parsing;
Typed Feature Structures

Ling 571
Deep Processing Techniques for NLP

57Wednesday, February 4, 2015

agree Mono
• agree is primarily tested and developed on Windows

(.NET runtime environment)
• Mac and Linux builds have also been tested:

Unification Parsing;
Typed Feature Structures

Ling 571
Deep Processing Techniques for NLP

58Wednesday, February 4, 2015

agree demo…

