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Parsing in the abstract
• Rule-based parsers can be defined in terms of 

two operations:
– Satisfiability: does a rule apply?
– Combination: what is the result (product) of the 

rule?
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CFG parsing
• Example CFG rule:

• Satisfiability:
– Exact match of the entities on the right side of the 

rule
– Do we have an NP? Do we have a VP?
– No  try another rule.  Yes

• Combination:
– The result of the rule application is:



Unification Parsing;
Typed Feature Structures

Ling 571
Deep Processing Techniques for NLP

4Wednesday, February 4, 2015

Abstract parser desiderata
• Let’s consider a parsing formalism where the 

satisfiability and combination functions are 
combined into one operation:

• Such an operation “ ” would:
1. operate on two (or more) input structures
2. produce exactly one new output structure, or
3. sometimes fail (to produce an output structure)
– other requirements…?
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Problems with exact match
• In a CFG, this would be akin to having the 

“output” of a rule be its entire instance:

Result:  (?)

• The problem is that this result is probably not 
an input (RHS) to another rule

• In fact, bottom up parsing likely would not 
make it past the terminals
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Abstract parser desiderata
• Therefore, an additional criteria is that the 

putative operation “ ” 
4. tolerate inputs which have already been 

specified

• This suggests that operation “ ”:
– is information-preserving
– monotonically incorporates specific information 

(from runtime inputs)
– …into more general structures (authored rules)
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Constraint-based parsing
• From graph-theory and Prolog we know that an 

ideal “ ” is graph unification.
• The unification of two graphs is the most specific

graph that preserves all of the information
contained in both graphs, if such a graph is 
possible.

• We will need to define:
– how linguistic information is represented in the graphs
– whether two pieces of information are “compatible”
– If compatible, which is “more specific”
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Head-Driven Phrase Structure Grammar

• “HPSG,” Pollard and Sag, 1994
• Highly consistent and powerful formalism
• Monostratal, declarative, non-derivational, 

lexicalist, constraint-based
• Has been studied for many different languages
• Psycholinguistic evidence
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HPSG foundations: Typed Feature Structures

• Typed Feature Structures (Carpenter 1992)
• High expressive power
• Parsing complexity: exponential (to the input 

length)
• Tractable with efficient parsing algorithms
• Efficiency can be improved with a well 

designed grammar
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A hierarchy of scalar types
• The basis of being able constrain information 

is a closed universe of types
• Define a partial order of specificity over 

arbitrary (scalar) types
– Type unification (vs. TFS unification)
– A B is defined for all types:

• “Compatible types” ⊔ B = C
• “Incompatible types” A ⊔ B = ⊥
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Type Hierarchy (Carpenter 1992)
• In the view of constraint-based grammar

– A unique most general type: *top* T
– Each non-top type has one or more parent type(s)
– Two types are compatible iff they share at least one 

offspring type
– Each non-top type is associated with optional 

constraints
• Constraints specified in ancestor types are monotonically 

inherited
• Constraints (either inherited, or newly introduced) must be 

compatible
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multiple inheritance

a non-linguistic example
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The type hierarchy
• A simple example



Unification Parsing;
Typed Feature Structures

Ling 571
Deep Processing Techniques for NLP

14Wednesday, February 4, 2015

GLB (Greatest Lower Bound) Types
• With multiple inheritance, two types can have more than one 

shared subtype that neither is more general than the others
• Non-deterministic unification results
• Type hierarchy can be automatically modified to avoid this
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Deterministic type unification
• Compute “bounded complete partial order” 

(BCPO) of the type graph

Fokkens/Zhang

Automatically 
introduce GLB types 
so that any two types 
that unify have 
exactly one greater 
lowest bound
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Typed Feature Structures

• [Carpenter 1992]
• High expressive power
• Parsing complexity: exponential in input length

• Tractable with efficient parsing algorithms
• Efficiency can be improved with a well-designed grammar
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Feature Structure Grammars
• HPSG (Pollard & Sag 1994)
• http://hpsg.stanford.edu/index.html
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Feature Structures In Unification-Based
Grammar Development

• A feature structure is a set of attribute-value pairs
– Or, “Attribute-Value Matrix” (AVM)
– Each attribute (or feature) is an atomic symbol
– The value of each attribute can be either atomic, or 

complex (a feature structure, a list, or a set)
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Typed Feature Structure
• A typed feature structure is composed of two 

parts
– A type (from the scalar type hierarchy)
– A (possibly empty) set of attribute-value pairs 

(“Feature Structure”) with each value being a TFS
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Typed Feature Structure (TFS)
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Properties of TFSes
• Finiteness

a typed feature structure has a finite number of nodes

• Unique root and connectedness
a typed feature structure has a unique root node; apart from the root, all 
nodes have at least one parent

• No cycles
no node has an arc that points back to the root node or to another node 
that intervenes between the node itself and the root

• Unique features
no node has two features with the same name and different values

• Typing
each node has single type which is defined in the hierarchy
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TFS equivalent views
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TFS partial ordering
• Just as the 

(scalar) type 
hierarchy is 
ordered, TFS 
instances can be 
ordered by 
subsumption
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TFS hierarchy
• The backbone of the TFS hierarchy is the scalar type hierarchy; 

but note that TFS [agr] is not the same entity as type agr
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Unification
The unification result on two TFSes TFSa and TFSb is:
• , if either one of the following:

– type and are incompatible
– unification of values for attribute X in TFSa and TFSb

returns 

• a new TFS, with:
– the most general shared subtype of and 
– a set of attribute-value pairs being the results of 

unifications on sub-TFSes of TFSa and TFSb



Unification Parsing;
Typed Feature Structures

Ling 571
Deep Processing Techniques for NLP

26Wednesday, February 4, 2015

TFS Unification
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TFS unification
TFS unification has much subtlety
For example, it can render authored co-references vacuous

The condition on F,
present in TFS C,
has collapsed in E
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Building lists with unification
• A difference list embeds an open-ended list into a container 

structure that provides a ‘pointer’ to the end of the ordinary 
list.

• Using the LAST pointer of difference list A we can append A 
and B by
– unifying the front of B (i.e. the value of its LIST feature) into the tail of 

A (its LAST value) and
– using the tail of difference list B as the new tail for the result of the 

concatenation.
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Result of appending the lists
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Representing Semantics in Typed 
Feature Structures
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Semantics desiderata
• For each sentence admitted by the grammar, 

we want to produce a meaning representation 
suitable for applying rules of inference.

“This fierce dog chased that angry cat.”
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Semantics desiderata
• Compositionality

– The meaning of a phrase is composed of the 
meanings of its parts.

• Existing machinery
– Unification is the only mechanism we use for 

constructing semantics in the grammar.
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Semantics in feature structures
• Semantic content in the CONT attribute of 

every word and phrase
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Semantics formalism: MRS
• Minimal Recursion Semantics

Copestake, A., Flickinger, D., Pollard, C. J., and Sag, I. A. (2005). 
Minimal recursion semantics: an introduction. Research on Language 
and Computation, 3(4):281–332.

• Used across DELPH-IN projects
• The value of CONT for a sentence is essentially a 

list of relations in the attribute RELS, with the 
arguments in those relations appropriately linked:
– Semantic relations are introduced by lexical entries
– Relations are appended when words are combined 

with other words or phrases.
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MRS: example

คณุชอบอาหารญีปุ่่ นไหม
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DELPH-IN consortium
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DELPH-IN Consortium
• An informal collaboration of about 20 research 

sites worldwide focused on deep linguistic 
processing since ~2002
– DFKI Saarbrücken GmbH, Germany
– Stanford University, USA
– University of Oslo, Norway
– Saarland University, Germany
– University of Washington, Seattle, USA
– Nanyang Tecnological University, Singapore
– …many others

• http://www.delph-in.net
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Key DELPH-IN Projects
• English Resource Grammar (ERG)

Flickinger 2002, www.delph-in.net/erg
• The Grammar Matrix

Bender et al. 2002, www.delph-in.new/matrix
• Other large grammars

JACY (Japanese, Siegel and Bender 2002)
GG; Cheetah (German; Crysmann; Cramer and Zhang 2009)
Many others: http://moin.delph-in.net/GrammarCatalogue

• Operational instrumentation of grammars
[incr tsdb()] (Oepen and Flickinger 1998)

• Joint-reference formalism tools
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English Resource Grammar
(Flickinger 2002)

• A large, open source HPSG computational 
grammar of English

• 20+ years of work
• Likely the most competent general domain, 

rule-based grammar of any language
• Redwoods treebank
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Grammar Matrix
• Rapid prototyping of computational grammars 

for new languages
• Also for computational typology research
• From a Web-based questionnaire, produce a 

customized working starter grammar
http://www.delph-in.net/matrix/customize/
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Relevant DELPH-IN research
• Morphological pre-processing
• Chart parsing optimizations
• Generation techniques
• Ambiguity packing
• Parse selection

– maximum-entropy parse selection model
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Chart parsing efficiency
• parser optimizations

– “quick-check”
– ambiguity packing
– “chart dependencies” phase
– spanning-only rules
– rule compatibility pre-checks
– key-driven
– grammar design for faster parsing
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Ambiguity packing
• Primary approach to combating parse intractability
• Every new feature structure is checked for a subsumption

relationship with existing TFSs.
– Subsumed TFSs are ‘packed’ into the more general structure
– They are excluded from continuing parse activities
– ‘Unpacking’ recovers them after the parse is complete

• agree: concurrent implementation of a DELPH-IN method
– Oepen and Carroll 2000
– Proactive/retroactive; subsumption/equivalence

• Applicable to parsing and generation
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Parsing vs. Generation
• DELPH-IN computational grammars are bi-directional:

คณุชอบอาหารญีปุ่่ นไหม 

Parsing Generation
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Generation
• Generation uses the same bottom-up chart parser…

…with a different adjacency/proximity condition
– Instead of joining adjacent words (parsing) the generator 

joins mutually-exclusive EPs
• Trigger rules

– Required for postulating semantically vacuous lexemes
• Index accessibility filtering

– Futile hypotheses can be intelligently avoided
• Skolemization

– Inter-EP relationships (‘variables’) are burned-in to the 
input semantics to guarantee proper semantics
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DELPH-IN Joint Reference Formalism
• Key focus of DELPH-IN research: computational Head-

driven Phrase Structure Grammar
HPSG, Pollard & Sag 1994

• TDL: Type Description Language
Krieger & Schafer 1994

• A minimalistic constraint-based typed feature structure 
(TFS) formalism that maintains computational 
tractability

Carpenter 1992
• MRS: Minimum Recursion Semantics

Copestake et al. 1995, 2005
• Multiple toolsets: LKB, PET, Ace, agree
• Committed to open source



Unification Parsing;
Typed Feature Structures

Ling 571
Deep Processing Techniques for NLP

47Wednesday, February 4, 2015

TDL: Type Description Language
• A text-based format for authoring constraint-

based grammars
demonst-numcl-lex := raise-sem-lex-item &

[ SYNSEM.LOCAL [ CAT [ HEAD numcl & [ MOD < > ],
VAL [ COMPS < [ OPT +, LOCAL [ CAT.HEAD num,

CONT.HOOK [ XARG #xarg, 
LTOP #larg ] ] ] >,

SPEC < >,
SPR < >,
SUBJ < > ] ],

CONT.HOOK [ XARG #xarg, LTOP #larg ] ] ].
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TDL: type definition language
;;; Types
string := *top*.
*list* := *top*.
*ne-list* := *list* &
[ FIRST *top*,
REST *list* ].

*null* := *list*.
synsem-struc := *top* &

[ CATEGORY cat,
NUMAGR agr ].

cat := *top*.
s := cat.
np := cat.
vp := cat.
det := cat.
n := cat.
agr := *top*.
sg := agr.

;;; Lexicon
this := sg-lexeme & [ ORTH "this", CATEGORY det ].
these := pl-lexeme & [ ORTH "these", CATEGORY det ].
sleep := pl-lexeme & [ ORTH "sleep", CATEGORY vp ].
sleeps := sg-lexeme & [ ORTH "sleeps", CATEGORY vp ].
dog := sg-lexeme & [ ORTH "dog", CATEGORY n ].
dogs := pl-lexeme & [ ORTH "dogs", CATEGORY n ].

;;; Rules
s_rule := phrase & [ CATEGORY s, NUMAGR #1, ARGS [ FIRST [ 
CATEGORY np,...
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‘agree’ grammar engineering
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agree grammar engineering environment
• A new toolset for the DELPH-IN formalism

– Started in 2009
– Joins the LKB  (1993), PET (2001) and ACE (2011)

• All-new code (C#), for .NET/Mono platforms
• Concurrency-enabled from the ground-up

– Thread-safe unification engine
– Lock-free concurrent parse/generation chart

• Supports both parsing and generation
– Also, DELPH-IN compatible morphology unit
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agree WPF
• For Windows, there is a graphical client application
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Proposed “deep” Thai-English system
“แมวนอน”“The cat is 

sleeping.”

“แมวนอน”
“The cat is 
sleeping.”

Matrix grammar 
of Thai

English Resource 
Grammar

agree grammar 
engineering system
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Project components

Thai 
Grammar

English 
Resource 
Grammar

thai-language.com 
production server

agree-sys 
engine

agree console 
parser

agree chart 
debugger

agree WPF 
client app

tl-db
database

Thai text 
utilities

JACY

agree
utilities
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Grammar
Type Hierarchy

Lexicon Provider

Corpus Provider

Tokenizer

Start Symbols
Grammar Rules

Lexical Rules
Lexical Entries

agree-sys engine components

lexicon
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Job control
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agree parser performance
Time to parse 287 sentences from ‘hike’ corpus; agree concurrency x8
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agree Mono
• agree is primarily tested and developed on Windows 

(.NET runtime environment)
• Mac and Linux builds have also been tested:
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agree demo…


