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Roadmap  
�  Meaning representation: 

�  Event representations 

�  Semantic Analysis 
�  Compositionality and rule-to-rule 
�  Semantic attachments 

�  Basic 

�  Refinements 

�  Quantifier scope 

�  Earley Parsing and Semantics 



FOL Syntax Summary 
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Representing Events 
�  Initially, single predicate with some arguments 

�  Serves(Maharani,IndianFood) 
�  Assume # ags = # elements in subcategorization frame 

�  Example: 
�  I ate. 
�  I ate a turkey sandwich. 
�  I ate a turkey sandwich at my desk. 
�  I ate at my desk. 
�  I ate lunch. 
�  I ate a turkey sandwich for lunch. 
�  I ate a turkey sandwich for lunch at my desk.   
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Events 
�  Issues? 

�  Arity – how can we deal with different #s of  arguments? 

�  One predicate per frame 
�  Eating1(Speaker) 
�  Eating2(Speaker,TS) 
�  Eating3(Speaker,TS,Desk) 

�  Eating4(Speaker,Desk) 
�  Eating5(Speaker,TS,Lunch) 
�  Eating6(Speaker,TS,Lunch,Desk) 
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Events (Cont’d) 
�  Good idea? 

�  Despite the names, actually unrelated predicates 
�  Can’t derive obvious info 

�  E.g. I ate a turkey sandwich for lunch at my desk  

�  Entails all other sentences 

�  Can’t directly associate with other predicates 

�  Could write rules to implement implications 
�  But? 

�  Intractable in the large  
�  Like the subcat problem generally. 
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Variabilizing 
�  Create predicate with maximum possible arguments 

�  Include appropriate args 
�  Maintains connections 

�  Better? 
�  Yes, but 

�  Too many commitments – assume all details show up  
�  Can’t individuate – don’t know if  same event 

∃w, x, yEating(Speaker,w, x, y)
∃w, xEating(Speaker,TS,w, x)
∃wEating(Speaker,TS,w,Desk)
Eating(Speaker,TS,Lunch,Desk)
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Events - Finalized 
�  Neo-Davidsonian representation: 

�  Distill event to single argument for event itself  

�  Everything else is additional predication 

�  Pros: 
�  No fixed argument structure 

�  Dynamically add predicates as necessary 

�  No extra roles 
�  Logical connections can be derived 

∃eEating(e)∧Eater(e,Speaker)∧Eaten(e,TS)∧Meal(e,Lunch)∧Location(e,Desk)



Meaning Representation for 
Computational Semantics 

�  Requirements: 
�  Verifiability, Unambiguous representation, Canonical 

Form, Inference, Variables, Expressiveness 

�  Solution: 
�  First-Order Logic 

�  Structure 
�  Semantics 
�  Event Representation 

�  Next: Semantic Analysis 
�  Deriving a meaning representation for an input 
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Syntax-driven Semantic Analysis 
�  Key: Principle of  Compositionality 

�  Meaning of  sentence from meanings of  parts 
�  E.g. groupings and relations from syntax 

�  Question: Integration? 

�  Solution 1: Pipeline   
�  Feed parse tree and sentence to semantic unit 

�  Sub-Q: Ambiguity: 
�  Approach: Keep all analyses, later stages will select 

 



Simple Example 
�  AyCaramba serves meat. 

∃e Serving(e)∧Server(e,AyCaramba)∧Served(e,Meat)

S 

NP                   VP 

Prop-N            V               NP 

N 

AyCaramba   serves      meat. 
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Rule-to-Rule 
�  Issue:  

�  How do we know which pieces of  the semantics link to 
what part of  the analysis? 

�  Need detailed information about sentence, parse tree 
�  Infinitely many sentences & parse trees 
�  Semantic mapping function per parse tree è intractable 

�  Solution:  
�  Tie semantics to finite components of  grammar 

�  E.g. rules & lexicon 
�  Augment grammar rules with semantic info 

�  Aka “attachments” 
�  Specify how RHS elements compose to LHS 
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Semantic Attachments 
�  Basic structure: 

�  Aà a1….an   {f(aj.sem,…ak.sem)} 
�  A.sem 

�  Language for semantic attachments 
�  Arbitrary programming language fragments? 

�  Arbitrary power but hard to map to logical form 
�  No obvious relation between syntactic, semantic elements 

�  Lambda calculus 
�  Extends First Order Predicate Calculus (FOPC) with function 

application 
�  Feature-based model + unification 

�  Focus on lambda calculus approach 



Basic example 
�  Input: Maharani closed. 

�  Target output: Closed(Maharani) 

S 

NP                VP 

Prop-N         Verb              

Maharani   closed. 



Semantic Analysis Example 
�  Semantic attachments: 

�  Each CFG production gets semantic attachment 

�  Maharani 



Semantic Analysis Example 
�  Semantic attachments: 

�  Each CFG production gets semantic attachment 

�  Maharani 
�  ProperNoun à Maharani 



Semantic Analysis Example 
�  Semantic attachments: 

�  Each CFG production gets semantic attachment 

�  Maharani 
�  ProperNoun à Maharani    {Maharani} 

�  FOL constant to refer to object 

�  NP à ProperNoun   



Semantic Analysis Example 
�  Semantic attachments: 

�  Each CFG production gets semantic attachment 

�  Maharani 
�  ProperNoun à Maharani    {Maharani} 

�  FOL constant to refer to object 

�  NP à ProperNoun          {ProperNoun.sem} 
�  No additional semantic info added 
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Semantic Attachment 
Example 

�  Phrase semantics is function of  SA of  children 

�  More complex functions are parameterized 
�  E.g. Verb à closed   { λx.Closed(x) } 

�  Unary predicate:  
�  1 arg = subject, not yet specified 

 
�         VP à Verb     {Verb.sem} 

�  No added information 

�         S à NP VP   {VP.sem(NP.sem)} 
�  Application=   λx.Closed(x)(Maharani) = Closed(Maharani) 



Semantic Attachment 
�  General pattern: 

�  Grammar (non-terminal) rules mostly lambda 
reductions 
�  Functor and arguments 

�  Most representation resides in lexicon 



Refining Representation 
�  Add  

�  Neo-Davidsonian event-style model 

�  Complex quantification 

�  Example II 
�  Input: Every restaurant closed. 
�  Target: 

∀xRe staurant(x)⇒∃eClosed(e)∧ClosedThing(e, x)
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Refining Representation 
�  Idea: 

�  Good enough? 
�  No: roughly ‘everything is a restaurant’ 

�  Saying something about all restaurants – nuclear scope 

�  Solution: Dummy predicate 

�  Good enough? 
�  No: no way to get Q(x) from elsewhere in sentence   

�  Solution: Lambda 

∀xRe staurant(x)

∀xRe staurant(x)⇒Q(x)

λQ.∀xRe staurant(x)⇒Q(x)
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Updating Attachments 
�  Noun à restaurant   {λx.Restaurant(x)} 

�  Nom à Noun    { Noun.sem } 

�  Det à Every    {        } 

�  NP à Det Nom   { Det.sem(Nom.sem) } 

λP.λQ.∀xP(x)⇒Q(x)
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Full Representation 
�  Verb à close   {              } 

�  VP à Verb   { Verb.sem } 

�  S à NP VP   { NP.sem(VP.sem) } 

λx.∃eClosed(e)∧ClosedThing(e, x)

λQ.∀xRe staurant(x)⇒Q(x)(λy.∃eClosed(e)∧ClosedThing(e, y))
∀xRe staurant(x)⇒ λy.∃eClosed(e)∧ClosedThing(e, y)(x)



Full Representation 
�  Verb à close   {              } 

�  VP à Verb   { Verb.sem } 

�  S à NP VP   { NP.sem(VP.sem) } 

λx.∃eClosed(e)∧ClosedThing(e, x)

λQ.∀xRe staurant(x)⇒Q(x)(λy.∃eClosed(e)∧ClosedThing(e, y))
∀xRe staurant(x)⇒ λy.∃eClosed(e)∧ClosedThing(e, y)(x)
∀xRe staurant(x)⇒∃eClosed(e)∧ClosedThing(e, x)
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Generalizing Attachments 
�  ProperNoun à Maharani   {Maharani} 

�  Does this work in the new style? 
�  No, we turned the NP/VP application around 

�  New style: λx.x(Maharani) 
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More   
�  Determiner 

�  Det -> a   {      } 

�  a restaurant   

�  Transitive verb: 
�  VP -> Verb  NP  { Verb.sem(NP.sem) } 
�  Verb -> opened  

λP.λQ.∃xP(x)∧Q(x)

λQ.∃xRe staurant(x)∧Q(x)

λw.λz.w(λx.∃eOpened(e)∧Opener(e, z)∧OpenedThing(e, x))
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Matthew opened a 
restaurant 

(λz.∃yRe staurant(y)∧
∃eOpened(e)∧Opener(e, z)∧OpenedThing(e, y))(Matthew)

∃yRe staurant(y)∧
∃eOpened(e)∧Opener(e,Matthew)∧OpenedThing(e, y)



Strategy for Semantic 
Attachments 

�  General approach: 
�  Create complex, lambda expressions with lexical items 

�  Introduce quantifiers, predicates, terms 

�  Percolate up semantics from child if  non-branching 

�  Apply semantics of  one child to other through lambda 
�  Combine elements, but don’t introduce new 



Sample Attachments 



Semantics Learning 
�  Zettlemoyer & Collins, 2005, 2007, etc; Mooney 

2007 

�  Given semantic representation and corpus of  
parsed sentences 
�  Learn mapping from sentences to logical form 

�  Structured perceptron 

�  Applied to ATIS corpus sentences 

�  Similar approaches to: learning instructions from 
computer manuals, game play from walkthroughs, 
robocup/soccer play from commentary 



Quantifier Scope 
�  Ambiguity:  

�  Every restaurant has a menu 

�  efficiently and recover all alternatives. 

∀xRe staurant(x)⇒∃y(Menu(y)∧(∃eHaving(e)∧Haver(e, x)∧Had(e, y)))
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Quantifier Scope 
�  Ambiguity:  

�  Every restaurant has a menu 

�  Readings:  
�  all have a menu; 
�  all have same menu 

�  Only derived one 

�  Potentially O(n!) scopings (n=# quantifiers) 

�  There are approaches to describe ambiguity 
efficiently and recover all alternatives. 

∀xRe staurant(x)⇒∃y(Menu(y)∧(∃eHaving(e)∧Haver(e, x)∧Had(e, y)))

∃yMenu(y)∧∀x(Re staurant(x)⇒∃eHaving(e)∧Haver(e, x)∧Had(e, y)))
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Earley Parsing with 
Semantics 

�  Implement semantic analysis 
�  In parallel with syntactic parsing 

�  Enabled by compositional approach 

�  Required modifications 
�  Augment grammar rules with semantic field 
�  Augment chart states with meaning expression 
�  Completer computes semantics  

�  Can also fail  
�  Blocks semantically invalid parses 

�  Can impose extra work 



Sidelight: Idioms 
�  Not purely compositional 

�  E.g. kick the bucket = die 

�          tip of  the iceberg = beginning 

�  Handling: 
�  Mix lexical items with constituents (word nps) 
�  Create idiom-specific const. for productivity 

�  Allow non-compositional semantic attachments 

�  Extremely complex: e.g. metaphor 



Semantic Analysis 
�  Applies principle of  compositionality 

�  Rule-to-rule hypothesis 

�  Links semantic attachments to syntactic rules 
�  Incrementally ties semantics to parse processing 

�  Lambda calculus meaning representations 

�  Most complexity pushed into lexical items 

�  Non-terminal rules largely lambda applications 



Representing Time 
�  Temporal logic: 

�  Includes tense logic to capture verb tense info 

�  Basic notion: 
�  Timeline: 

�  From past to future 

�  Events associated with points or intervals on line 
�  Ordered by positioning on line  

�  Current time 
�  Relative order gives past/present/future 
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Temporal Information 
�  I arrived in New York. 
�  I am arriving in New York. 
�  I will arrive in New York. 

�  Same event, differ only in tense 

�  Create temporal representation based on verb tense 
�  Add predication about event variable 
�  Temporal variables represent: 

�  Interval of  event 
�  End point of  event 
�  Predicates link end point to current time 

∃eArriving(e)∧Arriver(e,Speaker)∧Destination(e,NY )



Temporal Representation 

∃e, i,nArriving(e)∧Arriver(e,Speaker)∧Destination(e,NY )
∧IntervalOf (e, i)∧EndPo int(i,n)∧Pr ecedes(n,Now)
∃e, i,nArriving(e)∧Arriver(e,Speaker)∧Destination(e,NY )
∧IntervalOf (e, i)∧MemberOf (i,Now)
∃e, i,nArriving(e)∧Arriver(e,Speaker)∧Destination(e,NY )
∧IntervalOf (e, i)∧EndPo int(i,n)∧Pr ecedes(Now,e)
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More Temp Rep 
�  Flight 902 arrived late. 
�  Flight 902 had arrived late. 

�  Does the current model cover this? 
�  Not really 

�  Need additional notion: 
�  Reference point 

�  As well as current time, event time 

�  Current model: current = utterance time = reference point 



Reichenbach’s Tense Model 



Roadmap 
�  Lexical Semantics 

�  Motivation: Word sense disambiguation 
�  Meaning at the word level 
�  Issues 

�  Ambiguity 
�  Meaning 
�  Meaning structure 

�  Relations to other words 
�  Subword meaning composition 

�  WordNet: Lexical ontology 

 



What is a plant? 
There are more kinds of  plants and animals in the rainforests than anywhere 
else on Earth.  Over half  of  the millions of  known species of  plants and animals 
live in the rainforest.  Many are found nowhere else. There are even plants and 
animals in the rainforest that we have not yet discovered.  
 
 
 
The Paulus company was founded in 1938.  Since those days the product range 
has been the subject of  constant expansions and is brought up continuously to 
correspond with the state of  the art.  We’re engineering, manufacturing, and 
commissioning world-wide ready-to-run plants packed with our comprehensive  
know-how. 



Lexical Semantics 
�  Focus on word meanings: 

�  Relations of  meaning among words 
�  Similarities & differences of  meaning in sim context 

�  Internal meaning structure of  words 
�  Basic internal units combine for meaning 

�  Lexeme: meaning entry in lexicon 
�  Orthographic form, phonological form, sense 



Sources of  Confusion 
� Homonymy:  

�  Words have same form but different meanings 
�  Generally same POS, but unrelated meaning 

�  E.g. bank (side of  river) vs bank (financial institution) 
�  Bank1 vs bank2 

�  Homophones: same phonology, diff’t orthographic form 
�  E.g. two, to, too 

�  Homographs: Same orthography, diff’t phonology 

� Why? 
�  Problem for applications: TTS, ASR transcription, IR 



Sources of  Confusion II 
�  Polysemy 

�  Multiple RELATED senses 
�  E.g. bank: money, organ, blood,… 

�  Big issue in lexicography 
�  # of  senses, relations among senses, differentiation 

�  E.g. serve breakfast, serve Philadelphia, serve time 

 



Relations between Words 
�  Synonymy: 

�  “same meaning”: substitutability? 
�  Issues: 

�  Polysemy – same as some sense 
�  Shades of  meaning – other associations:  

�  Price/fare 
�  Collocational constraints: e.g. babbling brook 
�  Register: social factors: e.g. politeness, formality 

� Hyponomy: 
�  Isa relations:  

�  More General (hypernym) vs more specific (hyponym) 
�  E.g. dog vs golden retriever 

�  Organize as ontology/taxonomy  



WordNet Taxonomy 
�  Manually constructed lexical database 

�  3 Tree-structured hierarchies 
�  Nouns, verbs, adjective+adverb 

�  Entries: synonym set, gloss, example use 

�  Relations between entries: 
�  Synonymy: in synset 
�  Hypo(per)nym: Isa tree 

�  Heavily used resource 



Word-internal Structure 
�  Thematic roles: 

�  Characterize verbs by their arguments 
�  E.g. transport: agent, theme, source, destination 

�  They transported grain from the fields to the silo. 

�  Deep structure: passive / active: same roles 

�  Thematic hierarchy  
�  E.g. agent > theme > source, dest 

�  Provide default surface positions 

�  Tie to semantics (e.g. Levin): Interlinguas 
�  Cluster verb meanings by set of  syntactic alternations 
�  Limitations: only NP,PP: other arguments predicates less  



Selectional Restrictions 
�  Semantic constraints on filling of  roles 

�  E.g. Bill ate chicken 
�  Eat: Agent: animate; Theme: Edible 

�  Associate with sense  
�  Most commonly of  verb/event; possibly adj, noun… 

�  Specifying constraints: 
�  Add a term to semantics, e.g. Isa(x,Ediblething) 
�  Tie to position in WordNet 

�  All hyponyms inherit 



Primitive Decompositions 
�  Jackendoff(1990), Dorr(1999), McCawley (1968) 

�  Word meaning constructed from primitives 
�  Fixed small set of  basic primitives 

�  E.g. cause, go, become, 

�   kill=cause X to become Y 

�  Augment with open-ended “manner” 
�  Y = not alive 

�  E.g. walk vs run 

�  Fixed primitives/Infinite descriptors 


